1
|
Yu T, Zhao Y, Li J, Li Y, Qiu L, Pan H, Salman Nasir M, Song J, Huang Z, Zhou B. Binary Iron-Manganese Cocatalyst for Simultaneous Activation of C-C and C-O Bonds to Maximally Utilize Lignin for Syngas Generation over InGaN. Angew Chem Int Ed Engl 2025; 64:e202413528. [PMID: 39473265 DOI: 10.1002/anie.202413528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 11/30/2024]
Abstract
Solar-powered lignin reforming offers a carbon-neutral route for syngas production. This study explores a dual non-precious iron-manganese cocatalyst to simultaneously activate both C-C and C-O bonds for maximizing the utilization of various substituents of native lignin to yield syngas. The cocatalyst, integrated with InGaN nanowires on a Si wafer, affords a measurable syngas evolution rate of 42.4 mol gcat -1 h-1 from native lignin in distilled water with a high selectivity of 93 % and tunable H2/CO ratios under concentrated light, leading to a considerable light-to-fuel efficiency of 11.8 %. The high FeMn atom efficiency arising from the 1-dimensional nanostructure of InGaN enables the achievement of a high turnover frequency (TOF) of 220896 mol syngas per mol FeMn per hour. Combined experimental and theoretical investigations reveal that the synergetic iron-manganese cocatalyst supported by InGaN nanowires enables simultaneous activation of C-C and C-O bonds with comparable minimized dissociation energies, thus promising to maximally utilize different substituents of -OCH3, and -CH2CH2CH3 in lignin for syngas production. Moreover, the dual Fe-Mn cocatalyst demonstrates a most energetically favorable route for the consecutive release of hydrogen from •CH3 and •OH by the oxidative holes while inhibiting the reversion of hydrogen and hydroxyl into water.
Collapse
Affiliation(s)
- Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Zhao
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A0C9, Canada
| | - Jingling Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hu Pan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Muhammad Salman Nasir
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A0C9, Canada
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Billah MM, Kawamura G. Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting. MATERIALS HORIZONS 2025. [PMID: 39791383 DOI: 10.1039/d4mh01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO4) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications. Nevertheless, sluggish water oxidation rates, severe charge recombination, limited hole diffusion length, and inadequate electron transport properties restrict the PEC performance of BiVO4. To surmount these constraints, incorporating layered double hydroxides (LDHs) onto BiVO4 photoanodes has emerged as a promising approach for enhancing the performance. Herein, the latest advancements in employing LDHs to decorate BiVO4 photoanodes for enhancing PEC water splitting have been thoroughly studied and outlined. Initially, the fundamental principles of PEC water splitting and the roles of LDHs are summarized. Secondly, it covers the development of different composite structures, including BiVO4 combined with bimetallic and trimetallic LDHs, as well as other BiVO4-based composites such as BiVO4/metal oxide, metal sulfide, and various charge transport layers integrated with LDHs. Additionally, LDH composites incorporating materials like graphene, carbon dots, quantum dots, single-atom catalysts, and techniques for surface engineering and LDH exfoliation with BiVO4 are discussed. The research analyzes the design principles of these composites, with a specific focus on how LDHs enhance the performance of BiVO4 by increasing the efficiency and stability through synergistic effects. Finally, challenges and perspectives in future research toward developing efficient and stable BiVO4/LDHs photoelectrodes for PEC water splitting are described.
Collapse
Affiliation(s)
- Md Masum Billah
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
- Department of Chemistry, Comilla University, Cumilla-3506, Bangladesh
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.
| |
Collapse
|
3
|
Zhao X, Lai X, Yan B, Cao P, Peng Y, Zhang R, Chen X, Chen D, Pei H, Wang Y, Wu Q, Qiao B. A novel photoelectrochemical biosensor for sensitive detection of nucleic acids based on recombinase polymerase amplification and 3D-array titania nanorods. Int J Biol Macromol 2025; 296:139528. [PMID: 39778823 DOI: 10.1016/j.ijbiomac.2025.139528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Nucleic acids detection is essential for diagnosing pathogens; however, traditional methods usually face challenges such as low sensitivity, lengthy reaction times, and strict temperature requirements. This study develops a novel photoelectrochemical (PEC) biosensor that integrates recombinase polymerase amplification (RPA) with a 3D-array titania (TiO2) nanorods nanorod electrode, addressing the challenge of achieving sensitive detection of RPA-amplified nucleic acids products, thereby enabling earlier and more reliable pathogen detection. The biosensor utilizes a triple-binding mode involving FITC antibodies, target nucleic acids, and an HRP-streptavidin sandwich structure, significantly improving the bio-functionalization of the electrode surface. The isothermal RPA process amplifies DNA at 37 °C within 20 min, while the TiO2 nanorods ensure efficient photoelectric conversion. The oxidation of 4-chloro-1-naphthol (4-CN) generates a signal-reducing benzo-4-chlorohexadienone (4-CD), enabling precise and sensitive detection. This PEC-RPA biosensor successfully detects Orientia tsutsugamushi (Ot) nucleic acids with a detection limit of 15 copies/μL within 60 min, demonstrating robust performance. The study provides a promising strategy for advancing pathogen nucleic acids diagnostic platforms and offers a versatile approach adaptable for detecting diverse pathogens.
Collapse
Affiliation(s)
- Xuan Zhao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China; Department of Clinical Laboratory, Affiliated Cancer Hospital, Hainan Medical University, Haikou 570311, PR China
| | - Xiangde Lai
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Bingdong Yan
- College of Science, Qiongtai Normal University, Haikou 571127, PR China
| | - Peipei Cao
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, PR China
| | - Yanan Peng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China
| | - Xinping Chen
- Department of Clinical Laboratory, Affiliated Cancer Hospital, Hainan Medical University, Haikou 570311, PR China
| | - Delun Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Hua Pei
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, PR China.
| | - Bin Qiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, PR China.
| |
Collapse
|
4
|
Tong T, Chen X, Tang K, Ma W, Gao C, Song W, Wu J, Wang X, Liu GQ, Liu L. A new-to-nature photosynthesis system enhances utilization of one-carbon substrates in Escherichia coli. Nat Commun 2025; 16:145. [PMID: 39747054 PMCID: PMC11695776 DOI: 10.1038/s41467-024-55498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Photosynthesis harvests solar energy to convert CO2 into chemicals, offering a potential solution to reduce atmospheric CO2. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E. coli, by integrating light and dark reaction to synthesize bioproducts from one-carbon substrates. A light reaction is reconstructed using the photosystem of photosynthetic bacteria, increasing ATP and NADH contents by 337.9% and 383.7%, respectively. A dark reaction is constructed by designing CO2 fixation pathway to synthesize pyruvate. By assembling the light and dark reaction, a photosynthesis system is established and further programmed by installing an energy adapter, enabling the production of acetone, malate, and α-ketoglutarate, with a negative carbon footprint of -0.84 ~ -0.23 kgCO2e/kg product. Furthermore, light-driven one-carbon trophic growth of E. coli is achieved with a doubling time of 19.86 h. This photosynthesis system provides a green and sustainable approach to enhance one-carbon substrates utilization in the future.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Kexin Tang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanrong Ma
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaoling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Song K, Liu H, Chen B, Gong C, Ding J, Wang T, Liu E, Ma L, Zhao N, He F. Toward Efficient Utilization of Photogenerated Charge Carriers in Photoelectrochemical Systems: Engineering Strategies from the Atomic Level to Configuration. Chem Rev 2024; 124:13660-13680. [PMID: 39570635 DOI: 10.1021/acs.chemrev.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Photoelectrochemical (PEC) systems are essential for solar energy conversion, addressing critical energy and environmental issues. However, the low efficiency in utilizing photogenerated charge carriers significantly limits overall energy conversion. Consequently, there is a growing focus on developing strategies to enhance photoelectrode performance. This review systematically explores recent advancements in PEC system modifications, spanning from atomic and nanoscopic levels to configuration engineering. We delve into the relationships between PEC structures, intrinsic properties, kinetics of photogenerated charge carriers, and their utilization. Additionally, we propose future directions and perspectives for developing more efficient PEC systems, offering valuable insights into potential innovations in the field.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Chuangchuang Gong
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Jiawei Ding
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Tengfei Wang
- Department of Physics, School of Applied Sciences, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Enzuo Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Liying Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P.R. China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
6
|
Zhou Q, Feng C, Wang X, He J, Wang J, Zhang H, Wang Y. Se-S bonded non-metal elementary substance heterojunction activating photoelectrochemical water splitting. J Colloid Interface Sci 2024; 680:868-879. [PMID: 39546907 DOI: 10.1016/j.jcis.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Non-metal elements are often merely regarded as electronic modulators, yet their intrinsic characteristics are frequently overlooked. Indeed, non-metal elements possess notable advantages in high-abundance, excellent hydrogen adsorption and the ability of active sites to be inversely activated, rendering them potential photoelectrochemical (PEC) materials. However, weak non-metal interbinding, susceptibility to photocorrosion, and high photogenerated carrier recombination rates hinder their practical applications. Herein, for the first time, we report a novel non-metal elementary substance heterojunction Se/S based on interfacial bonding engineering strategy. Atomic-level tight coupling of sulfonyl-rich sulfur quantum dots (SQDs) with selenium microtube arrays (Se-MTAs) enhances the structural stability of Se/S and introduces crucial Se-S heterointerfacial bonds, which not only endow Se/S with robust internal electronic interactions, but also provide high-speed channels for charge separation via unique bridging. Consequently, Se/S achieves optimal photocurrent density of 3.91 mA cm-2 at 0 VRHE, accompanied by long-term stability over 24 h. It is the highest value reported to date for Se-based photocathodes without co-catalyst and outperforms most metal-selenide-based photoelectrodes. Furthermore, the direct Z-scheme charge transport mechanism is exposed by in-depth spectroscopic analyses. Our work fills the gap in application of non-metal elementary substance heterojunction for PEC, poised for potential expansion into other new-energy devices.
Collapse
Affiliation(s)
- Qingxia Zhou
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Xiaodong Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Jialing He
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Junyu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| |
Collapse
|
7
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
8
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Li J, Sheng B, Chen Y, Yang J, Wang P, Li Y, Yu T, Pan H, Song J, Zhu L, Wang X, Ma T, Zhou B. An Active and Robust Catalytic Architecture of NiCo/GaN Nanowires for Light-Driven Hydrogen Production from Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309906. [PMID: 38221704 DOI: 10.1002/smll.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/26/2023] [Indexed: 01/16/2024]
Abstract
On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.
Collapse
Affiliation(s)
- Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bowen Sheng
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 10087, China
| | - Yiqing Chen
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A0C9, Canada
| | - Jiajia Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 10087, China
| | - Ping Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 10087, China
| | - Yixin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianqi Yu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hu Pan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC, H3A0C9, Canada
| | - Lei Zhu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinqiang Wang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Nano-Optoelectronics Frontier Center of Ministry of Education (NFC-MOE), Peking University, Beijing, 10087, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing, 100871, China
| | - Tao Ma
- Michigan Center for Materials Characterization (MC)2, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
10
|
Das KK, Aich D, Dey S, Panda S. One pot conversion of phenols and anilines to aldehydes and ketones exploiting α gem boryl carbanions. Nat Commun 2024; 15:3794. [PMID: 38714666 PMCID: PMC11076505 DOI: 10.1038/s41467-024-47156-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/22/2024] [Indexed: 05/10/2024] Open
Abstract
Functional group interconversion is an important asset in organic synthesis. Phenols/anilines being naturally abundant and the carbonyl being the most common in a wide range of bioactive molecules, an efficient conversion is of prime interest. The reported methods require transition metal catalyzed cross coupling which limits its applicability. Here we have described a method for synthesizing various aldehydes and ketones, starting from phenol and protected anilines via Csp2-O/N bond cleavage in a one-pot/stepwise manner. Our synthetic method is found to be compatible with a diverse range of phenols and anilines carrying sensitive functional groups including halides, esters, ketal, hydroxyl, alkenes, and terminal alkynes as well as the substitution on the aryl cores. A short-step synthesis of bioactive molecules and their functionalization have been executed. Starting from BINOL, a photocatalyst has been designed. Here, we have developed a transition metal-free protocol for the conversion of phenols and anilines to aldehydes and ketones.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Debasis Aich
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sutapa Dey
- School of Energy Science & Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
11
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
12
|
Lai J, Fan C, You F, Liu Y, Zhou X, Lin Y, Ding L, Wang K. Synergistic effect of surface metal vacancies and Schottky junction on high-transconductance organic photoelectrochemical transistor aptasensing. Chem Commun (Camb) 2024; 60:2934-2937. [PMID: 38372635 DOI: 10.1039/d3cc05964b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The synergistic effect between surface metal vacancies and a Schottky junction on enhanced transconductance, and the gating effect of an organic photoelectrochemical transistor was reported.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Fuheng You
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yuanhao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Xilong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Yuhang Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Lijun Ding
- Key Laboratory for Theory and Technology of Intelligent Agricultural Machinery and Equipment, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
13
|
Yang J, Liang Q, Zhou Q, Sha L, Shi H, Li G. An electrochemical biosensor to assay Trop-2 of breast cancer cells fabricated by methylene blue-assisted assembly of DNA nanoparticles. Biosens Bioelectron 2024; 246:115907. [PMID: 38064995 DOI: 10.1016/j.bios.2023.115907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Human trophoblast surface cell antigen 2 (Trop-2) on the tumor cell membrane can not only serve as the target for chemotherapy drugs, but also as a biomarker for typing and prognosis of breast cancer; however, assay of Trop-2 is seriously hampered due to the limitations of available tool. Herein, we have designed and fabricated an electrochemical biosensor for the assay of Trop-2 based on methylene blue (MB)-assisted assembly of DNA nanocomposite particles (DNPs). Specially, the recognition between Trop-2 and its aptamer may activate the primer exchange reaction (PER) on an electrode surface to produce long single-strand DNA (ssDNA) which can be self-assembled into DNPs by electrostatic interaction between negative charged DNA and positive charged and electro-active MB molecules which can also be used to give electrochemical signal. By using this electrochemical biosensor, ultrasensitive detection of tumor cells with high Trop-2 expressions can be conducted, with the limit of detection (LOD) of 1 cell/mL. Moreover, this biosensor can be further used for accurately profiling Trop-2 expression of tumor cells in mouse tissues, suggesting its great potential in the precise definition of breast cancer.
Collapse
Affiliation(s)
- Jiahua Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Qizhi Liang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Qianxi Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Lingjun Sha
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Hai Shi
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, PR China.
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
14
|
Dursap T, Fadel M, Regreny P, Tapia Garcia C, Chevalier C, Nguyen HS, Drouard E, Brottet S, Gendry M, Danescu A, Koepf M, Artero V, Bugnet M, Penuelas J. Enhanced Light Trapping in GaAs/TiO 2-Based Photocathodes for Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53446-53454. [PMID: 37943978 DOI: 10.1021/acsami.3c11481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Photoelectrochemical cells (PEC) are appealing devices for the production of renewable energy carriers. In this context, III-V semiconductors such as GaAs are very promising materials due to their tunable band gaps, which can be appropriately adjusted for sunlight harvesting. Because of the high cost of these semiconductors, the nanostructuring of the photoactive layer can help to improve the device efficiency as well as drastically reduce the amount of material needed. III-V nanowire-based photoelectrodes benefit from the intrinsically high aspect ratio of nanowires, their enhanced ability to trap light, and their improved charge separation and collection abilities and thus are particularly attractive for PECs. However, III-V semiconductors often suffer from corrosion in aqueous electrolytes, preventing their utilization over long periods under relevant working conditions. Here, photocathodes of GaAs nanowires protected with thin TiO2 shells were prepared and studied under simulated sunlight irradiation to assess their photoelectrochemical performances in correlation with their structural degradation, highlighting the advantageous nanowire geometry compared to its thin-film counterpart. Morphological and electronic parameters, such as the aspect ratio of the nanowires and their doping pattern, were found to strongly influence the photocatalytic performances of the system. This work highlights the advantageous combination of nanowires featuring a buried radial p-n junction with Co nanoparticles used as a hydrogen evolution catalyst. The nanostructured photocathodes exhibit significant photocatalytic activities comparable with previous noble-metal-based systems. This study demonstrates the potential of a GaAs nanostructured semiconductor and its reliable use for photodriven hydrogen production.
Collapse
Affiliation(s)
- Thomas Dursap
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Mariam Fadel
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Philippe Regreny
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Cristina Tapia Garcia
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Céline Chevalier
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Hai Son Nguyen
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Emmanuel Drouard
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Solène Brottet
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Michel Gendry
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Alexandru Danescu
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| | - Matthieu Koepf
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Vincent Artero
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Matthieu Bugnet
- Univ. Lyon, CNRS, INSA Lyon, UCBL, MATEIS, UMR 5510, 69621 Villeurbanne, France
| | - José Penuelas
- Univ. Lyon, CNRS, ECL, INSA Lyon, UCBL, CPE Lyon, INL, UMR 5270, 69130 Ecully, France
| |
Collapse
|
15
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
16
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
17
|
Farhadi A, Bartschmid T, Bourret GR. Dewetting-Assisted Patterning: A Lithography-Free Route to Synthesize Black and Colored Silicon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44087-44096. [PMID: 37669230 PMCID: PMC10520913 DOI: 10.1021/acsami.3c08533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
We report the use of thermal dewetting to structure gold-based catalytic etching masks for metal-assisted chemical etching (MACE). The approach involves low-temperature dewetting of metal films to generate metal holey meshes with tunable morphologies. Combined with MACE, dewetting-assisted patterning is a simple, benchtop route to synthesize Si nanotubes, Si nanowalls, and Si nanowires with defined dimensions and optical properties. The approach is compatible with the synthesis of both black and colored nanostructured silicon substrates. In particular, we report the lithography-free fabrication of silicon nanowires with diameters down to 40 nm that support leaky wave-guiding modes, giving rise to vibrant colors. Additionally, micrometer-sized areas with tunable film composition and thickness were patterned via shadow masking. After dewetting and MACE, such patterned metal films produced regions with distinct nanostructured silicon morphologies and colors. To-date, the fabrication of colored silicon has relied on complicated nanoscale patterning processes. Dewetting-assisted patterning provides a simpler alternative that eliminates this requirement. Finally, the simple transfer of resonant SiNWs into ethanolic solutions with well-defined light absorption properties is reported. Such solution-dispersible SiNWs could open new avenues for the fabrication of ultrathin optoelectronic devices with enhanced and tunable light absorption.
Collapse
Affiliation(s)
- Amin Farhadi
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| | - Theresa Bartschmid
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department of Chemistry and
Physics of Materials, University of Salzburg, Jakob Haringerstraße 2a, A-5020 Salzburg, Austria
| |
Collapse
|
18
|
Lineberry E, Kim J, Kim J, Roh I, Lin JA, Yang P. High-Photovoltage Silicon Nanowire for Biological Cofactor Production. J Am Chem Soc 2023; 145:19508-19512. [PMID: 37651703 DOI: 10.1021/jacs.3c06243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 μmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.
Collapse
Affiliation(s)
- Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jimin Kim
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jia-An Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Xiao Y, Kong X, Vanka S, Dong WJ, Zeng G, Ye Z, Sun K, Navid IA, Zhou B, Toma FM, Guo H, Mi Z. Oxynitrides enabled photoelectrochemical water splitting with over 3,000 hrs stable operation in practical two-electrode configuration. Nat Commun 2023; 14:2047. [PMID: 37041153 PMCID: PMC10090041 DOI: 10.1038/s41467-023-37754-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Solar photoelectrochemical reactions have been considered one of the most promising paths for sustainable energy production. To date, however, there has been no demonstration of semiconductor photoelectrodes with long-term stable operation in a two-electrode configuration, which is required for any practical application. Herein, we demonstrate the stable operation of a photocathode comprising Si and GaN, the two most produced semiconductors in the world, for 3,000 hrs without any performance degradation in two-electrode configurations. Measurements in both three- and two-electrode configurations suggest that surfaces of the GaN nanowires on Si photocathode transform in situ into Ga-O-N that drastically enhances hydrogen evolution and remains stable for 3,000 hrs. First principles calculations further revealed that the in-situ Ga-O-N species exhibit atomic-scale surface metallization. This study overcomes the conventional dilemma between efficiency and stability imposed by extrinsic cocatalysts, offering a path for practical application of photoelectrochemical devices and systems for clean energy.
Collapse
Affiliation(s)
- Yixin Xiao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Xianghua Kong
- Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada
| | - Srinivas Vanka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Wan Jae Dong
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Guosong Zeng
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Zhengwei Ye
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Kai Sun
- Department of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
| | - Ishtiaque Ahmed Navid
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Baowen Zhou
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA
| | - Francesca M Toma
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Hong Guo
- Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8, Canada.
| | - Zetian Mi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, 1301 Beal Avenue, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Shulenberger KE, Jilek MR, Sherman SJ, Hohman BT, Dukovic G. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods. Chem Rev 2023; 123:3852-3903. [PMID: 36881852 DOI: 10.1021/acs.chemrev.2c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The cylindrical quasi-one-dimensional shape of colloidal semiconductor nanorods (NRs) gives them unique electronic structure and optical properties. In addition to the band gap tunability common to nanocrystals, NRs have polarized light absorption and emission and high molar absorptivities. NR-shaped heterostructures feature control of electron and hole locations as well as light emission energy and efficiency. We comprehensively review the electronic structure and optical properties of Cd-chalcogenide NRs and NR heterostructures (e.g., CdSe/CdS dot-in-rods, CdSe/ZnS rod-in-rods), which have been widely investigated over the last two decades due in part to promising optoelectronic applications. We start by describing methods for synthesizing these colloidal NRs. We then detail the electronic structure of single-component and heterostructure NRs and follow with a discussion of light absorption and emission in these materials. Next, we describe the excited state dynamics of these NRs, including carrier cooling, carrier and exciton migration, radiative and nonradiative recombination, multiexciton generation and dynamics, and processes that involve trapped carriers. Finally, we describe charge transfer from photoexcited NRs and connect the dynamics of these processes with light-driven chemistry. We end with an outlook that highlights some of the outstanding questions about the excited state properties of Cd-chalcogenide NRs.
Collapse
Affiliation(s)
| | - Madison R Jilek
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Skylar J Sherman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin T Hohman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Gordana Dukovic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.,Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Yang F, Ren R, Zhang X, Waqas M, Peng X, Wang L, Liu X, Chen DH, Fan Y, Chen W. Tailoring the electronic structure of PdAg alloy nanowires for high oxygen reduction reaction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
22
|
Kang Y, Wang D, Gao Y, Guo S, Hu K, Liu B, Fang S, Memon MH, Liu X, Luo Y, Sun X, Luo D, Chen W, Li L, Jia H, Hu W, Liu Z, Ge B, Sun H. Achieving Record-High Photoelectrochemical Photoresponse Characteristics by Employing Co 3O 4 Nanoclusters as Hole Charging Layer for Underwater Optical Communication. ACS NANO 2023; 17:3901-3912. [PMID: 36753692 DOI: 10.1021/acsnano.2c12175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physicochemical properties of a semiconductor surface, especially in low-dimensional nanostructures, determine the electrical and optical behavior of the devices. Thereby, the precise control of surface properties is a prerequisite for not only preserving the intrinsic material quality but also manipulating carrier transport behavior for promoting device characteristics. Here, we report a facile approach to suppress the photocorrosion effect while boosting the photoresponse performance of n-GaN nanowires in a constructed photoelectrochemical-type photodetector by employing Co3O4 nanoclusters as a hole charging layer. Essentially, the Co3O4 nanoclusters not only alleviate nanowires from corrosion by optimizing the oxygen evolution reaction kinetics at the nanowire/electrolyte interface but also facilitate an efficient photogenerated carrier separation, migration, and collection process, leading to a significant ease of photocurrent attenuation (improved by nearly 867% after Co3O4 decoration). Strikingly, a record-high responsivity of 217.2 mA W-1 with an ultrafast response/recovery time of 0.03/0.02 ms can also be achieved, demonstrating one of the best performances among the reported photoelectrochemical-type photodetectors, that ultimately allowed us to build an underwater optical communication system based on the proposed nanowire array for practical applications. This work provides a perspective for the rational design of stable nanostructures for various applications in photo- and biosensing or energy-harvesting nanosystems.
Collapse
Affiliation(s)
- Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Danhao Wang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yunzhi Gao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Siqi Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Kejun Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Boyang Liu
- Platform for Characterization and Test, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiyu Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongfeng Jia
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenghui Liu
- Platform for Characterization and Test, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- The CAS Key Laboratory of Wireless-Optical Communications, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| |
Collapse
|
23
|
Chen Q, Jin H, Cheng T, Wang Z, Ren Y, Tian J, Zhu Y. Small amounts of main group metal atoms matter: ultrathin Pd-based alloy nanowires enabling high activity and stability towards efficient oxygen reduction reaction and ethanol oxidation. NANOSCALE 2023; 15:3772-3779. [PMID: 36723133 DOI: 10.1039/d2nr07101k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proton-exchange membrane fuel cells are considered as promising energy-conversion devices. Alloying 3d transition metals with noble metals not only highly improves the performance of noble metal-based catalysts towards electrocatalytic reactions in fuel cells due to d-d hybridization interaction but also decreases the total cost. However, the rapid leaching of transition metal atoms leads to a fast decay of the activity, which seriously affects the performance of the fuel cell. Herein, alloyed Pd-main group metal (e.g. Pb, Bi, Sn) ultrathin nanowires were realized by a facile one-step wet-chemical strategy. The content of the main group metal could be tuned in a certain range while maintaining the same one-dimensional ultrathin nanowire morphology, which provided a large surface area and many more active sites. These Pd-based alloys showed a significant improvement in electrocatalytic activity and durability towards the oxygen reaction reaction as well as ethanol oxidation reaction. Optimal activity occurred when a small amount of main group metal existed, which could be explained through calculations by a strong p-d hybridization interaction between the main group metal and Pd to optimize the surface electronic structure collaboratively. Besides, high stability was achieved, which could be ascribed to the increased antioxidant activity of Pd by the main group metal. Furthermore, the low amount of the main group metal atoms also prevented them from leaching out of the crystal lattice.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Hui Jin
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tianchun Cheng
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Zhi Wang
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yaoyao Ren
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jinshu Tian
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yihan Zhu
- College of Chemical Engineering and State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
24
|
Jia T, Meng D, Duan R, Ji H, Sheng H, Chen C, Li J, Song W, Zhao J. Single-Atom Nickel on Carbon Nitride Photocatalyst Achieves Semihydrogenation of Alkynes with Water Protons via Monovalent Nickel. Angew Chem Int Ed Engl 2023; 62:e202216511. [PMID: 36625466 DOI: 10.1002/anie.202216511] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Prospects in light-driven water activation have prompted rapid progress in hydrogenation reactions. We describe a Ni2+ -N4 site built on carbon nitride for catalyzed semihydrogenation of alkynes, with water supplying protons, powered by visible-light irradiation. Importantly, the photocatalytic approach developed here enabled access to diverse deuterated alkenes in D2 O with excellent deuterium incorporation. Under visible-light irradiation, evolution of a four-coordinate Ni2+ species into a three-coordinate Ni+ species was spectroscopically identified. In combination with theoretical calculations, the photo-evolved Ni+ is posited as HO-Ni+ -N2 with an uncoordinated, protonated pyridinic nitrogen, formed by coupled Ni2+ reduction and water dissociation. The paired Ni-N prompts hydrogen liberation from water, and it renders desorption of alkene preferred over further hydrogenation to alkane, ensuring excellent semihydrogenation selectivity.
Collapse
Affiliation(s)
- Tongtong Jia
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ran Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Andrei V, Roh I, Yang P. Nanowire photochemical diodes for artificial photosynthesis. SCIENCE ADVANCES 2023; 9:eade9044. [PMID: 36763656 PMCID: PMC9917021 DOI: 10.1126/sciadv.ade9044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Artificial photosynthesis can provide a solution to our current energy needs by converting small molecules such as water or carbon dioxide into useful fuels. This can be accomplished using photochemical diodes, which interface two complementary light absorbers with suitable electrocatalysts. Nanowire semiconductors provide unique advantages in terms of light absorption and catalytic activity, yet great control is required to integrate them for overall fuel production. In this review, we journey across the progress in nanowire photoelectrochemistry (PEC) over the past two decades, revealing design principles to build these nanowire photochemical diodes. To this end, we discuss the latest progress in terms of nanowire photoelectrodes, focusing on the interplay between performance, photovoltage, electronic band structure, and catalysis. Emphasis is placed on the overall system integration and semiconductor-catalyst interface, which applies to inorganic, organic, or biologic catalysts. Last, we highlight further directions that may improve the scope of nanowire PEC systems.
Collapse
Affiliation(s)
- Virgil Andrei
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Grain N, Kim S. Insight into refractive index modulation as route to enhanced light coupling in semiconductor nanowires. OPTICS LETTERS 2023; 48:227-230. [PMID: 36638424 DOI: 10.1364/ol.478419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Recent developments in chemical processes to prepare single-crystalline nanowire (NW) superlattices (SLs) have discovered a range of unique nanophotonic properties. In particular, diameter-modulated silicon NW geometric SLs (GSLs) have shown their ability to produce complex interference effects through which enhanced light manipulation is achieved. Here, we re-imagine the origin of the complex interference effects occurring in shallow-modulated GSLs and present a refractive index modulation as a key deciding factor. We introduce the design of a NW refractive index SL (ISL), a hypothetical uniform-diameter NW in which the refractive index is periodically modulated, and explain the coupling effect between Mie resonance and bound guided state. We apply the ISL concept to other NW SL systems and suggest potential routes to bring substantial enhancements in lasing activities.
Collapse
|
27
|
Liu J, Luo Z, Mao X, Dong Y, Peng L, Sun-Waterhouse D, Kennedy JV, Waterhouse GIN. Recent Advances in Self-Supported Semiconductor Heterojunction Nanoarrays as Efficient Photoanodes for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204553. [PMID: 36135974 DOI: 10.1002/smll.202204553] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Growth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed. Synthetic methods for the fabrication of heterojunction nanoarrays with specific compositions and structures are first discussed, including templating methods, wet chemical syntheses, electrochemical approaches and chemical vapor deposition (CVD) methods. Then, various heterojunction nanoarrays that have been reported in recent years based on particular core semiconductor scaffolds (e.g., TiO2 , ZnO, WO3 , Fe2 O3 , etc.) are summarized, placing strong emphasis on the synergies generated at the interface between the semiconductor components that can favorably boost PEC water oxidation. Whilst strong progress has been made in recent years to enhance the visible-light responsiveness, photon-to-O2 conversion efficiency and stability of photoanodes based on heterojunction nanoarrays, further advancements in all these areas are needed for PEC water splitting to gain any traction alongside photovoltaic-electrochemical (PV-EC) systems as a viable and cost-effective route toward the hydrogen economy.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Xichen Mao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yusong Dong
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Lishan Peng
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| | - John V Kennedy
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
- National Isotope Centre, GNS Science, Lower Hutt, 5010, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6140, New Zealand
| |
Collapse
|
28
|
Bu Y, Wang K, Yang X, Nie G. Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Anal Chim Acta 2022; 1233:340496. [DOI: 10.1016/j.aca.2022.340496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/01/2022]
|
29
|
Dong X, Lu Y, Liu X, Zhang L, Tong Y. Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
31
|
Zhou Y, Lv S, Wang XY, Kong L, Bi S. Biometric Photoelectrochemical-Visual Multimodal Biosensor Based on 3D Hollow HCdS@Au Nanospheres Coupled with Target-Induced Ion Exchange Reaction for Antigen Detection. Anal Chem 2022; 94:14492-14501. [PMID: 36194848 DOI: 10.1021/acs.analchem.2c03885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) hollow photoactive nanomaterials can enhance light capture due to the light scattering benefiting from the unique hollow nanostructures, which contributes to the decrease in energy loss and the electron-hole recombination during the process of photoelectric conversion. Herein, a 3D hollow HCdS@Au nanosphere synthesized by the templated-assisted method and photodeposition is employed to construct a multimodal sensing platform by combining the photoelectrochemical (PEC) biosensor with colorimetric analysis and photothermal imaging. In the presence of target carcinoembryonic antigen (CEA), a sandwich structure is formed on magnetic beads based on the dual-aptamer recognition, followed by the initiation of rolling circle amplification (RCA) to bind numerous CuO-DNA probes. Upon stimulation by chlorhydric acidic, a large number of Cu2+ is released from CuO, which could interact with yellow HCdS@Au on electrode to produce dark CuS by ion exchange. As a result, with increased CEA level, the photocurrent is weakened and the color of electrode interface is changed from yellow to dark, which thus facilitates the PEC and colorimetric detection of CEA. Simultaneously, the formed CuS with highly photothermal effect can achieve qualitative visual analysis of CEA using a portable infrared thermal imager. This work exhibits an excellent performance for sensitive and selective detection of CEA in the dynamic working range from 0.015 to 2.4 ng/mL with a detection limit as low as 3.5 pg/mL. Moreover, the proposed PEC biosensor is successfully applied to CEA determination in human serum, which holds great promise in accurate analysis of biomarkers and early diagnosis of diseases in the clinic.
Collapse
Affiliation(s)
- Yuting Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, P. R. China
| | - Shuzhen Lv
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, P. R. China
| | - Xin-Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, P. R. China
| | - Lingyi Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao266071, P. R. China
| |
Collapse
|
32
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
33
|
Meng L, Cheng C, Long R, Xu W, Li S, Tian W, Li L. Synergistic effect of atomic layer deposition-assisted cocatalyst and crystal facet engineering in SnS2 nanosheet for solar water oxidation. Sci Bull (Beijing) 2022; 67:1562-1571. [DOI: 10.1016/j.scib.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
|
34
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
35
|
Bartschmid T, Wendisch FJ, Farhadi A, Bourret GR. Recent Advances in Structuring and Patterning Silicon Nanowire Arrays for Engineering Light Absorption in Three Dimensions. ACS APPLIED ENERGY MATERIALS 2022; 5:5307-5317. [PMID: 35647497 PMCID: PMC9131305 DOI: 10.1021/acsaem.1c02683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 05/04/2023]
Abstract
Vertically aligned silicon nanowire (VA-SiNW) arrays can significantly enhance light absorption and reduce light reflection for efficient light trapping. VA-SiNW arrays thus have the potential to improve solar cell design by providing reduced front-face reflection while allowing the fabrication of thin, flexible, and efficient silicon-based solar cells by lowering the required amount of silicon. Because their interaction with light is highly dependent on the array geometry, the ability to control the array morphology, functionality, and dimension offers many opportunities. Herein, after a short discussion about the remarkable optical properties of SiNW arrays, we report on our recent progress in using chemical and electrochemical methods to structure and pattern SiNW arrays in three dimensions, providing substrates with spatially controlled optical properties. Our approach is based on metal-assisted chemical etching (MACE) and three-dimensional electrochemical axial lithography (3DEAL), which are both affordable and large-scale wet-chemical methods that can provide a spatial resolution all the way down to the sub-5 nm range.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Fedja J. Wendisch
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
- Nanoinstitut
München, Department of Physics, Ludwig-Maximilians-University
Munich, 80539 München, Germany
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| |
Collapse
|
36
|
Kong W, Zhu D, Luo R, Yu S, Ju H. Framework-promoted charge transfer for highly selective photoelectrochemical biosensing of dopamine. Biosens Bioelectron 2022; 211:114369. [PMID: 35594626 DOI: 10.1016/j.bios.2022.114369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Traditional photoelectrochemical (PEC) systems with inorganic semiconductors as photoactive materials generally involve effortless recombination of electron-hole pairs, which greatly limit the detection sensitivity. The arrangement of multiple components with tunable bandgaps provides an effective way to accelerate charge transfer. In this work, a framework material with adjustable structure was used to promote the charge transfer in the PEC process. The framework was constructed with 9,10-di(p-carboxyphenyl)anthracene (DPA) ligands as the light collector to coordinate with Zn2+ nodes, which formed an electronegative metal-organic framework (ZnMOF), and showed good conductivity and PEC performance due to the π-π stacking of DPA and the intrareticular charge transfer. Based on the band and charge matching of dopamine (DA) with ZnMOF, the ZnMOF modified electrode as a biosensor showed excellent PEC response to DA with good selectivity, thus realized sensitive detection of DA ranging from 0.03 to 10 μM with a detection limit of 17.7 nM. The biosensor could be used to monitor the release of DA from PC12 cells and evaluate the stimulation of K+ to DA release. The conductive framework material provided an approach to develop highly selective sensing platform for trace bioanalysis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Da Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Siqi Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
37
|
Wang C, Zhang B, Cao J, Zeng B, Zhao F. Organic-Inorganic Hybrid Flower-Shaped Microspheres Applied in Photoelectrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23743-23755. [PMID: 35535992 DOI: 10.1021/acsami.2c02332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic hybrid materials are rarely applied in photoelectrochemical (PEC) sensing because of the serious charge-carrier recombination in organic conjugated polymers. In this work, a series of poly(3,4-ethylenedioxythiophene) (PEDOT)/ZnIn2S4 hybrid flower-shaped microspheres were synthesized using ionic liquids (ILs) as the supporting electrolyte for EDOT electropolymerization and as the regulating reagent for controlling ZnIn2S4 growth, respectively. It was found that the hybrid material [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-ZnIn2S4 ([HOEMIM]+: 1-hydroxyethyl-3-methylimidazolium cation; NTf2-: bis(trifluoromethanesulfonyl)amide) was the optimal one, with a smooth, transparent, and continuous polymer film covering the uniform and ordered cross-linked nanosheet arrays. The hybrid material could produce a high anodic photocurrent, which was about 78 times as high as that produced by the [HOEMIM]BF4-ZnIn2S4. The enhancement effect should be the highest among all the organic-inorganic hybrid materials reported so far. This was related to its unique micromorphology structure, p-n heterojunction, and the coexisting ILs, which restrained the charge-carrier recombination in PEDOT and enhanced PEDOT sensitization to ZnIn2S4. Then, a carcinoembryonic antigen PEC immunosensor was constructed based on the photoanodic sensing platform, and it exhibited good performance. Furthermore, the [HOEMIM]BF4-ZnIn2S4 was treated with NaClO solution to create the [HOEMIM]NTf2-PEDOT/[HOEMIM]BF4-S-ZnwInxSyOz general platform for both photoanodic and photocathodic sensing. As a proof of concept, L-cysteine and dissolved oxygen were used as models for photoanodic and photocathodic sensing, respectively. The results demonstrated that the general PEC platform was quite competent. This work opens up a window for the design of organic-inorganic hybrid PEC materials and will promote the application of such hybrid materials in PEC biosensing.
Collapse
Affiliation(s)
- Caiyun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Bihong Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Jiangping Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province 430072, PR China
| |
Collapse
|
38
|
Wu J, Jin Y, Wu D, Yan X, Ma N, Dai W. Well-construction of Zn2SnO4/SnO2@ZIF-8 core-shell hetero-structure with efficient photocatalytic activity towards tetracycline under restricted space. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Roh I, Yu S, Lin CK, Louisia S, Cestellos-Blanco S, Yang P. Photoelectrochemical CO 2 Reduction toward Multicarbon Products with Silicon Nanowire Photocathodes Interfaced with Copper Nanoparticles. J Am Chem Soc 2022; 144:8002-8006. [PMID: 35476928 DOI: 10.1021/jacs.2c03702] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of photoelectrochemical systems for converting CO2 into chemical feedstocks offers an attractive strategy for clean energy storage by directly utilizing solar energy, but selectivity and stability for these systems have thus been limited. Here, we interface silicon nanowire (SiNW) photocathodes with a copper nanoparticle (CuNP) ensemble to drive efficient photoelectrochemical CO2 conversion to multicarbon products. This integrated system enables CO2-to-C2H4 conversion with faradaic efficiency approaching 25% and partial current densities above 2.5 mA/cm2 at -0.50 V vs RHE, while the nanowire photocathodes deliver 350 mV of photovoltage under 1 sun illumination. Under 50 h of continual bias and illumination, CuNP/SiNW can sustain stable photoelectrochemical CO2 reduction. These results demonstrate the nanowire/catalyst system as a powerful modular platform to achieve stable photoelectrochemical CO2 reduction and the feasibility to facilitate complex reactions toward multicarbons using generated photocarriers.
Collapse
Affiliation(s)
- Inwhan Roh
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sunmoon Yu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chung-Kuan Lin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Sheena Louisia
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefano Cestellos-Blanco
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Costas A, Florica C, Preda N, Besleaga C, Kuncser A, Enculescu I. Self-connected CuO-ZnO radial core-shell heterojunction nanowire arrays grown on interdigitated electrodes for visible-light photodetectors. Sci Rep 2022; 12:6834. [PMID: 35478207 PMCID: PMC9046224 DOI: 10.1038/s41598-022-10879-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
An original photodetector system based on self-connected CuO–ZnO radial core–shell heterojunction nanowire arrays grown on metallic interdigitated electrodes, operating as visible-light photodetector was developed by combining simple preparation approaches. Metallic interdigitated electrodes were fabricated on Si/SiO2 substrates using a conventional photolithography process. Subsequently, a Cu layer was electrodeposited on top of the metallic interdigitated electrodes. The CuO nanowire arrays (core) were obtained by thermal oxidation in air of the Cu layer. Afterwards, a ZnO thin film (shell) was deposited by RF magnetron sputtering covering the surface of the CuO nanowires. The morphological, structural, compositional, optical, electrical and photoelectrical properties of the CuO nanowire arrays and CuO–ZnO core–shell nanowire arrays grown on metallic interdigitated electrodes were investigated. The performances of the devices were evaluated by assessing the figures of merit of the photodetectors based on self-connected CuO–ZnO core–shell heterojunction nanowire arrays grown on the metallic interdigitated electrodes. The radial p–n heterojunction formed between CuO and ZnO generates a type II band alignment that favors an efficient charge separation of photogenerated electron–hole pairs at the CuO–ZnO interface, suppressing their recombination and consequently enhancing the photoresponse and the photoresponsivity of the photodetectors. The electrical connections in the fabricated photodetector devices are made without any additional complex and time-consuming lithographic step through a self-connecting approach for CuO–ZnO core–shell heterojunction nanowire arrays grown directly onto the Ti/Pt metallic interdigitated electrodes. Therefore, the present study provides an accessible path for employing low dimensional complex structures in functional optoelectronic devices such as photodetectors.
Collapse
Affiliation(s)
- Andreea Costas
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania.
| | - Camelia Florica
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Nicoleta Preda
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Cristina Besleaga
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Andrei Kuncser
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania
| | - Ionut Enculescu
- National Institute of Materials Physics, Nanostructures Laboratory, 405A Atomistilor Street, 077125, Magurele, Ilfov, Romania.
| |
Collapse
|
41
|
Lin H, Jiang A, Xing S, Li L, Cheng W, Li J, Miao W, Zhou X, Tian L. Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. NANOMATERIALS 2022; 12:nano12060910. [PMID: 35335723 PMCID: PMC8953703 DOI: 10.3390/nano12060910] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be developed as soon as possible on the basis of these works.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Lun Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wenxi Cheng
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Jinling Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wei Miao
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Xuefei Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Li Tian
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| |
Collapse
|
42
|
Nanocell hybrids for green chemistry. Trends Biotechnol 2022; 40:974-986. [PMID: 35210123 DOI: 10.1016/j.tibtech.2022.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022]
Abstract
Global concerns about reducing or minimizing the costs associated with toxic waste materials have driven the continuing development of green-cell-based biosynthesis methods. Inspired by the hybridization phenomenon of living organisms, recent interest has arisen in nanocell hybrids that possess multiple new functions. They have potential to propel biosynthesis into a new generation of green chemistry. This review article discusses the development of applications for nanocell hybrids in the areas of sustainable energy, clean environment, and green catalysis. Continuing advances in these hybrids will require combining knowledge from the fields of biology, physics, chemistry, material science, and engineering.
Collapse
|
43
|
Zhu Q, Murphy CJ, Baker LR. Opportunities for Electrocatalytic CO 2 Reduction Enabled by Surface Ligands. J Am Chem Soc 2022; 144:2829-2840. [PMID: 35137579 DOI: 10.1021/jacs.1c11500] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To achieve high selectivity in enzyme catalysis, nature carefully controls both the catalyst active site and the pocket or environment that mediates access and the geometry of a reactant. Despite the many advantages of heterogeneous catalysis, active sites on a surface are rarely defined with atomic precision, making it difficult to control reaction selectivity with the molecular precision of homogeneous systems. In colloidal nanoparticle synthesis, structural control is accomplished using a surface ligand or capping layer that stabilizes a specific particle morphology and prevents nanoparticle aggregation. Usually, these surface ligands are considered detrimental for catalysis because they occupy otherwise active surface sites. However, a number of examples have shown that surface ligands can play a beneficial role in defining the catalytic environment and enhancing performance by a variety of mechanisms. This perspective summarizes recent advances and opportunities using surface ligands to enhance the performance of nanocatalysts for electrochemical CO2 reduction. Several mechanisms are discussed, including selective permeability, modulating interfacial solvation structure and electric fields, chemical activation, and templating active site selection. These examples inform strategies and point to emerging opportunities to design nanocatalysts toward molecular level control of electrochemical CO2 conversion.
Collapse
Affiliation(s)
- Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Dey S, Chakravorty A, Mishra SB, Khatun N, Hazra A, Nanda BRK, Sudakar C, Kabiraj D, Roy SC. Localized thermal spike driven morphology and electronic structure transformation in swift heavy ion irradiated TiO 2 nanorods. NANOSCALE ADVANCES 2021; 4:241-249. [PMID: 36132944 PMCID: PMC9419832 DOI: 10.1039/d1na00666e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/11/2021] [Indexed: 06/15/2023]
Abstract
Irradiation of materials by high energy (∼MeV) ions causes intense electronic excitations through inelastic transfer of energy that significantly modifies physicochemical properties. We report the effect of 100 MeV Ag ion irradiation and resultant localized (∼few nm) thermal spike on vertically oriented TiO2 nanorods (∼100 nm width) towards tailoring their structural and electronic properties. Rapid quenching of the thermal spike induced molten state within ∼0.5 picosecond results in a distortion in the crystalline structure that increases with increasing fluences (ions per cm2). Microstructural investigations reveal ion track formation along with a corrugated surface of the nanorods. The thermal spike simulation validates the experimental observation of the ion track dimension (∼10 nm diameter) and melting of the nanorods. The optical absorption study shows direct bandgap values of 3.11 eV (pristine) and 3.23 eV (5 × 1012 ions per cm2) and an indirect bandgap value of 3.10 eV for the highest fluence (5 × 1013 ions per cm2). First principles electronic structure calculations corroborate the direct-to-indirect transition that is attributed to the structural distortion at the highest fluence. This work presents a unique technique to selectively tune the properties of nanorods for versatile applications.
Collapse
Affiliation(s)
- Sutapa Dey
- Semiconducting Oxide Materials, Nanostructures and Tailored Heterojunction (SOMNaTH) Lab, Functional Oxide Research Group (FORG), Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | | | - Shashi Bhusan Mishra
- Condensed Matter Theory and Computational Lab, Department of Physics and Center for Atomistic Modelling and Materials Design (CAMMD), Indian Institute of Technology Madras Chennai 600036 India
| | - Nasima Khatun
- Semiconducting Oxide Materials, Nanostructures and Tailored Heterojunction (SOMNaTH) Lab, Functional Oxide Research Group (FORG), Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Hazra
- Department of Electrical & Electronics Engineering, Birla Institute of Technology & Science-Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Birabar Ranjit Kumar Nanda
- Condensed Matter Theory and Computational Lab, Department of Physics and Center for Atomistic Modelling and Materials Design (CAMMD), Indian Institute of Technology Madras Chennai 600036 India
| | - Chandran Sudakar
- Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| | - Debdulal Kabiraj
- Inter-University Accelerator Centre Aruna Asaf Ali Marg New Delhi 110067 India
| | - Somnath C Roy
- Semiconducting Oxide Materials, Nanostructures and Tailored Heterojunction (SOMNaTH) Lab, Functional Oxide Research Group (FORG), Department of Physics, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
45
|
Creation of oxygen vacancies to activate 2D BiVO4 photoanode by photoassisted self‐reduction for enhanced solar‐driven water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
|
47
|
Hou C, Yu J, Ding J, Fan W, Bai H, Xu D, Shi W. An effective route for growth of WO3/BiVO4 heterojunction thin films with enhanced photoelectrochemical performance. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Wang J, Sun Y, Lai J, Pan R, Fan Y, Wu X, Ou M, Zhu Y, Fu L, Shi F, Wu Y. Two-dimensional graphitic carbon nitride/N-doped carbon with a direct Z-scheme heterojunction for photocatalytic generation of hydrogen. NANOSCALE ADVANCES 2021; 3:6580-6586. [PMID: 36132663 PMCID: PMC9419065 DOI: 10.1039/d1na00629k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 05/08/2023]
Abstract
Photocatalysts with a direct Z-scheme heterojunction are promising by virtue of the effectively enhanced separation of charge carriers, high retention of redox ability and the absence of backward photocatalytic reactions. Their activity depends on band alignment and interfacial configurations between two semiconductors for charge carrier kinetics and the effective active sites for photochemical reactions. Herein, a two-dimensional (2D) graphitic carbon nitride/N-doped carbon (C3N4/NC) photocatalyst is synthesized by a gas template (NH4Cl)-assisted thermal condensation method. C3N4/NC has the synthetic merits of a direct Z-scheme heterojunction, 2D-2D interfacial contact, and enhanced specific surface area to improve charge separation kinetics and provide abundant active sites for photochemical reaction. It exhibits an over 46-fold increase of the photocatalytic hydrogen production rate compared to bulk C3N4 under visible light illumination. This work demonstrates the great potential of 2D Z-scheme heterojunctions for photocatalysis and will inspire more related work in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Youcai Sun
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Jianwei Lai
- John and Willie Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University University Park PA 16802 USA
| | - Runhui Pan
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Yulei Fan
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Xiongwei Wu
- School of Chemistry and Materials Science, Hunan Agricultural University Changsha 410128 China
| | - Man Ou
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Yusong Zhu
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Lijun Fu
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Feifei Shi
- John and Willie Leone Family Department of Energy and Mineral Engineering, Pennsylvania State University University Park PA 16802 USA
| | - Yuping Wu
- College of Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University Nanjing Jiangsu 211816 China
| |
Collapse
|
49
|
Bielinski AR, Gayle AJ, Lee S, Dasgupta NP. Geometric Optimization of Bismuth Vanadate Core-Shell Nanowire Photoanodes using Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52063-52072. [PMID: 34283562 DOI: 10.1021/acsami.1c09236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, systematic geometric tuning of core-shell nanowire (NW) architectures is used to decouple the contributions from light absorption, charge separation, and charge transfer kinetics in photoelectrochemical water oxidation. Core-shell-shell NW arrays were fabricated using a combination of hydrothermal synthesis of ZnO and atomic layer deposition (ALD) of SnO2 and BiVO4. The length and spacing of the NW scaffold, as well as the BiVO4 film thickness, were systematically tuned to optimize the photoelectrochemical performance. A photocurrent of 4.4 mA/cm2 was measured at 1.23 V vs RHE for sulfite oxidation and 4.0 mA/cm2 at 1.80 V vs RHE for water oxidation without a cocatalyst, which are the highest values reported to date for an ALD-deposited photoanode. Electromagnetic simulations demonstrate that spatial heterogeneity in light absorption along the core-shell NW length has a critical role in determining internal quantum efficiency. The mechanistic understandings in this study highlight the benefits of systematically optimizing electrode geometry at the nanoscale when designing photoelectrodes.
Collapse
Affiliation(s)
- Ashley R Bielinski
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew J Gayle
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sudarat Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Neil P Dasgupta
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
50
|
Fang Y, Yang X, Lin Y, Shi J, Prominski A, Clayton C, Ostroff E, Tian B. Dissecting Biological and Synthetic Soft-Hard Interfaces for Tissue-Like Systems. Chem Rev 2021; 122:5233-5276. [PMID: 34677943 DOI: 10.1021/acs.chemrev.1c00365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft and hard materials at interfaces exhibit mismatched behaviors, such as mismatched chemical or biochemical reactivity, mechanical response, and environmental adaptability. Leveraging or mitigating these differences can yield interfacial processes difficult to achieve, or inapplicable, in pure soft or pure hard phases. Exploration of interfacial mismatches and their associated (bio)chemical, mechanical, or other physical processes may yield numerous opportunities in both fundamental studies and applications, in a manner similar to that of semiconductor heterojunctions and their contribution to solid-state physics and the semiconductor industry over the past few decades. In this review, we explore the fundamental chemical roles and principles involved in designing these interfaces, such as the (bio)chemical evolution of adaptive or buffer zones. We discuss the spectroscopic, microscopic, (bio)chemical, and computational tools required to uncover the chemical processes in these confined or hidden soft-hard interfaces. We propose a soft-hard interaction framework and use it to discuss soft-hard interfacial processes in multiple systems and across several spatiotemporal scales, focusing on tissue-like materials and devices. We end this review by proposing several new scientific and engineering approaches to leveraging the soft-hard interfacial processes involved in biointerfacing composites and exploring new applications for these composites.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Jiuyun Shi
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Aleksander Prominski
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Clementene Clayton
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ellie Ostroff
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.,Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.,The Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|