1
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Amin M, Usman M, Kella T, Khan WU, Khan IA, Hoon Lee K. Issues and challenges of Fischer-Tropsch synthesis catalysts. Front Chem 2024; 12:1462503. [PMID: 39324063 PMCID: PMC11422086 DOI: 10.3389/fchem.2024.1462503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Depletion of oil and gas resources is a major concern for researchers and the global community. Researchers are trying to develop a way to overcome these issues using the Fischer-Tropsch synthesis (FTS) process. The FTS reaction converts a mixture of hydrogen and carbon monoxide gases into a liquid fuel. The reactions are performed in the reactor and in the presence of a catalyst. A series of catalysts, such as iron, cobalt, nickel, and ruthenium, have been used for the FTS process. In iron-based catalysts, the Fe5C phase is the active phase that produces C5+ hydrocarbons. At higher conversion rates, the presence of water in the products is a problem for cobalt catalysts because it can trigger catalyst deactivation mechanisms. Ni-based catalysts play key roles as base catalysts, promoters, and photothermal catalysts in FTS reactions to produce different useful hydrocarbons. Ruthenium catalysts offer not only high activity but also selectivity toward long-chain hydrocarbons. Moreover, depending on the Ru particle size and interaction with the oxide support, the catalyst properties can be tuned to enhance the catalytic activity during FTS. The detailed reaction pathways based on catalyst properties are explained in this article. This review article describes the issues and challenges associated with catalysts used for the FTS process.
Collapse
Affiliation(s)
- Muhammad Amin
- Interdisciplinary Research Centre for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Muhammad Usman
- Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatinaidu Kella
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Wasim Ullah Khan
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon-si, Republic of Korea
| |
Collapse
|
3
|
Huang J, Zhang Y, Chen J, Zhang Z, Zhang C, Huang C, Fei L. Surface topology of MXene flakes induces the selection of the sintering mechanism for supported Pt nanoparticles. Chem Sci 2024:d4sc03284e. [PMID: 39170721 PMCID: PMC11333939 DOI: 10.1039/d4sc03284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Yucheng Zhang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Zhouyang Zhang
- School of Materials and New Energy, Ningxia University Yinchuan 750021 China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| |
Collapse
|
4
|
Turner SJ, Visser NL, Dalebout R, Wezendonk DFL, de Jongh PE, de Jong KP. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401009. [PMID: 38552229 DOI: 10.1002/smll.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Indexed: 08/09/2024]
Abstract
Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H2/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.
Collapse
|
5
|
Lindley M, Stishenko P, Crawley JWM, Tinkamanyire F, Smith M, Paterson J, Peacock M, Xu Z, Hardacre C, Walton AS, Logsdail AJ, Haigh SJ. Tuning the Size of TiO 2-Supported Co Nanoparticle Fischer-Tropsch Catalysts Using Mn Additions. ACS Catal 2024; 14:10648-10657. [PMID: 39050900 PMCID: PMC11264206 DOI: 10.1021/acscatal.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Matthew Lindley
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Pavel Stishenko
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - James W. M. Crawley
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Fred Tinkamanyire
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Matthew Smith
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - James Paterson
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Mark Peacock
- bp,
Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
| | - Zhuoran Xu
- bp,
Applied Sciences, Innovation & Engineering, Chicago, Illinois 60606, United States
| | - Christopher Hardacre
- Department
of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Alex S. Walton
- Department
of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Andrew J. Logsdail
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10
3AT, U.K.
| | - Sarah J. Haigh
- Department
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Lai KC, Campbell CT, Evans JW. Size-dependent diffusion of supported metal nanoclusters: mean-field-type treatments and beyond for faceted clusters. NANOSCALE HORIZONS 2023; 8:1556-1567. [PMID: 37574918 DOI: 10.1039/d3nh00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanostructured systems are intrinsically metastable and subject to coarsening. For supported 3D metal nanoclusters (NCs), coarsening can involve NC diffusion across the support and subsequent coalescence (as an alternative to Ostwald ripening). When used as catalysts, this leads to deactivation. The dependence of diffusivity, DN, on NC size, N (in atoms), controls coarsening kinetics. Traditional mean-field (MF) theory for DNversus N assumes that NC diffusion is mediated by independent random hopping of surface adatoms with low coordination, and predicts that DN ∼ hN-4/3neq. Here, h = ν exp[-Ed/(kBT)] denotes the hop rate, and neq = exp[-Eform/(kBT)] the density of those adatoms. The adatom formation energy, Eform, approaches a finite large-N limit, as does the effective barrier, Eeff = Ed + Eform, for NC diffusion. This MF theory is critically assessed for a realistic stochastic atomistic model for diffusion of faceted fcc metal NCs with a {100} facet epitaxially attached to a (100) support surface. First, the MF formulation is refined to account for distinct densities and hop rates for surface adatoms on different facets and along the base contact line, and to incorporate the exact values of Eform and neqversus N for our model. MF theory then captures the occurrence of local minima in DNversus N at closed-shell sizes, as shown by KMC simulation. However, the MF treatment also displays fundamental shortcomings due to the feature that diffusion of faceted NCs is actually dominated by a cooperative multi-step process involving disassembling and reforming of outer layers on side facets. This mechanism leads to an Eeff which is well above MF values, and which increases with N, features captured by a beyond-MF treatment.
Collapse
Affiliation(s)
- King C Lai
- Division of Chemical & Biological Sciences, Ames National Laboratory - USDOE, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Charles T Campbell
- Chemistry Department, University of Washington, Seattle, Washington 98195, USA
| | - James W Evans
- Division of Chemical & Biological Sciences, Ames National Laboratory - USDOE, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
7
|
Visser N, Turner SJ, Stewart JA, Vandegehuchte BD, van der Hoeven JES, de Jongh PE. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere. ACS NANO 2023; 17:14963-14973. [PMID: 37504574 PMCID: PMC10416566 DOI: 10.1021/acsnano.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO2 hydrogenation at atmospheric pressure (H2:CO2 = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement (vmax = 0.7 nm s-1) and slow, gradual movement (vaverage = 0.05 nm s-1). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts.
Collapse
Affiliation(s)
- Nienke
L. Visser
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Savannah J. Turner
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | - Jessi E. S. van der Hoeven
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Petra E. de Jongh
- Materials
Chemistry and Catalysis, Debye Institute
for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
8
|
Safari M, Haghtalab A, Roghabadi FA. A hollow void catalyst of Co@C(Z-d)@void@CeO 2 for enhancing the performance and stability of the Fischer-Tropsch synthesis. RSC Adv 2023; 13:23223-23235. [PMID: 37533781 PMCID: PMC10393217 DOI: 10.1039/d3ra04884e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
To enhance the catalyst performance of Fischer-Tropsch synthesis (FTS), removing the mass-transfer restriction in the catalysis synthesis is essential. Although the core-shell nanostructures can improve the activity and stability of the catalyst, they can restrict the reactants' diffusion towards the active sites and the transfer of the products from these sites in FTS. Creating an adequate porosity between the core and the outer shell of the catalyst structure can tackle this issue. In this work, the synthesized cobalt-based nano-catalyst is encapsulated with two shells and a middle porous shell. The first shell is a carbon shell at the core of the catalyst derived from ZIF-67, the second one is the outer shell of ceria, and the middle porous shell is formed by removing the sacrificial silica shell through the etching technique. The characterization and performance tests represent significant evidence of the etching treatment's impact on the FTS catalyst performance. Besides, molecular dynamics simulation is also utilized to clarify its effect. The FTS catalytic performance is enhanced more than 2 times with the etched catalyst versus the catalyst without it at 17.5 bar and a (H2/CO) ratio of 1.2. In addition, not only does the etched catalyst with high porosity play the role of a nanoreactor and intensify its catalytic performance, but it also has higher stability.
Collapse
Affiliation(s)
- Masoud Safari
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University P.O. Box: 14115-143 Tehran Iran
| | - Ali Haghtalab
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University P.O. Box: 14115-143 Tehran Iran
| | - Farzaneh Arabpour Roghabadi
- Faculty of Chemical Engineering, Department of Process, Tarbiat Modares University P.O. Box: 14115-143 Tehran Iran
| |
Collapse
|
9
|
Han YC, Yi J, Pang B, Wang N, Li XC, Yao T, Novoselov KS, Tian ZQ. Graphene-confined ultrafast radiant heating for high-loading subnanometer metal cluster catalysts. Natl Sci Rev 2023; 10:nwad081. [PMID: 37404853 PMCID: PMC10317146 DOI: 10.1093/nsr/nwad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 07/06/2023] Open
Abstract
Thermally activated ultrafast diffusion, collision and combination of metal atoms comprise the fundamental processes of synthesizing burgeoning subnanometer metal clusters for diverse applications. However, so far, no method has allowed the kinetically controllable synthesis of subnanometer metal clusters without compromising metal loading. Herein, we have developed, for the first time, a graphene-confined ultrafast radiant heating (GCURH) method for the synthesis of high-loading metal cluster catalysts in microseconds, where the impermeable and flexible graphene acts as a diffusion-constrained nanoreactor for high-temperature reactions. Originating from graphene-mediated ultrafast and efficient laser-to-thermal conversion, the GCURH method is capable of providing a record-high heating and cooling rate of ∼109°C/s and a peak temperature above 2000°C, and the diffusion of thermally activated atoms is spatially limited within the confinement of the graphene nanoreactor. As a result, due to the kinetics-dominant and diffusion-constrained condition provided by GCURH, subnanometer Co cluster catalysts with high metal loading up to 27.1 wt% have been synthesized by pyrolyzing a Co-based metal-organic framework (MOF) in microseconds, representing one of the highest size-loading combinations and the quickest rate for MOF pyrolysis in the reported literature. The obtained Co cluster catalyst not only exhibits an extraordinary activity similar to that of most modern multicomponent noble metal counterparts in the electrocatalytic oxygen evolution reaction, but is also highly convenient for catalyst recycling and refining due to its single metal component. Such a novel GCURH technique paves the way for the kinetically regulated, limited diffusion distance of thermally activated atoms, which in turn provides enormous opportunities for the development of sophisticated and environmentally sustainable metal cluster catalysts.
Collapse
Affiliation(s)
| | | | | | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xu-Cheng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Graphene Industry and Engineering Research Institute, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | | | | |
Collapse
|
10
|
van Koppen LM, Iulian Dugulan A, Leendert Bezemer G, Hensen EJ. Elucidating deactivation of titania-supported cobalt Fischer-Tropsch catalysts under simulated high conversion conditions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Solano E, Dendooven J, Deduytsche D, Poonkottil N, Feng JY, Roeffaers MBJ, Detavernier C, Filez M. Metal Nanocatalyst Sintering Interrogated at Complementary Length Scales. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205217. [PMID: 36445117 DOI: 10.1002/smll.202205217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Metal nanoparticle (NP) sintering is a prime cause of catalyst degradation, limiting its economic lifetime and viability. To date, sintering phenomena are interrogated either at the bulk scale to probe averaged NP properties or at the level of individual NPs to visualize atomic motion. Yet, "mesoscale" strategies which bridge these worlds can chart NP populations at intermediate length scales but remain elusive due to characterization challenges. Here, a multi-pronged approach is developed to provide complementary information on Pt NP sintering covering multiple length scales. High-resolution scanning electron microscopy (HRSEM) and Monte Carlo simulation show that the size evolution of individual NPs depends on the number of coalescence events they undergo during their lifetime. In its turn, the probability of coalescence is strongly dependent on the NP's mesoscale environment, where local population heterogeneities generate NP-rich "hotspots" and NP-free zones during sintering. Surprisingly, advanced in situ synchrotron X-ray diffraction shows that not all NPs within the small NP sub-population are equally prone to sintering, depending on their crystallographic orientation on the support surface. The demonstrated approach shows that mesoscale heterogeneities in the NP population drive sintering and mitigation strategies demand their maximal elimination via advanced catalyst synthesis strategies.
Collapse
Affiliation(s)
- Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Cerdanyola del Vallès, 08290, Spain
| | - Jolien Dendooven
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Davy Deduytsche
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Nithin Poonkottil
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Ji-Yu Feng
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Maarten B J Roeffaers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan, 200F, Leuven, 3001, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
| | - Matthias Filez
- Conformal Coating of Nanomaterials (CoCooN), Ghent University, Krijgslaan 281/S1, Ghent, 9000, Belgium
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan, 200F, Leuven, 3001, Belgium
| |
Collapse
|
12
|
Lim AMH, Zeng HC. Controlling Nanosheet Spacing of ZnAl-Layered Double Hydroxide Assemblages for High-Efficiency Hydrogenation of CO 2 to Methanol. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Alvin M. H. Lim
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
- Cambridge Centre for Advanced Research and Education in Singapore Ltd., 1 Create Way, CREATE Tower #05-05, Singapore 138602, Singapore
| |
Collapse
|
13
|
Deng S, Huang Y, Mao C, Wang JG. Size-Dependent Interfacial Thermal Transport in Supported Platinum Nanocatalysts. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Cao Y, Peng Y, Cheng D, Chen L, Wang M, Shang C, Zheng L, Ma D, Liu ZP, He L. Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yao Peng
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Danyang Cheng
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Lin Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Maolin Wang
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Wang SD, Chen JJ, Liu YZ, Ma TM, Li XN, He SG. Facile CO bond cleavage on polynuclear vanadium nitride clusters V 4N 5. Phys Chem Chem Phys 2022; 24:29765-29771. [PMID: 36458914 DOI: 10.1039/d2cp04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying the structural configurations of precursors for CO dissociation is fundamentally interesting and industrially important in the fields of, e.g., Fischer-Tropsch synthesis. Herein, we demonstrated that CO could be dissociated on polynuclear vanadium nitride V4N5- clusters at room temperature, and a key intermediate, with CO in a N-assisted tilted bridge coordination where the C-O bond ruptures easily, was discovered. The reaction was characterized by mass spectrometry, photoelectron spectroscopy, and quantum-chemistry calculations, and the nature of the adsorbed CO on product V4N5CO- was further characterized by a collision-induced dissociation experiment. Theoretical analysis evidences that CO dissociation is predominantly governed by the low-coordinated V and N atoms on the (V3N4)VN- cluster and the V3N4 moiety resembles a support. This finding strongly suggests that a novel mode for facile CO dissociation was identified in a gas-phase cluster study.
Collapse
Affiliation(s)
- Si-Dun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China. .,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
16
|
Soromotin VN, Yakovenko RE, Krasnyakova TV, Svetogorov RD, Mitchenko SA. Effect of Tail Gas Recirculation Mode on the Activity and Selectivity of the Сo/SiO2 Catalyst for Fischer‒Tropsch Synthesis. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s0023158422060131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
17
|
Zhdanov VP. Comment on "Real-time atomistic simulation of the Ostwald ripening of TiO 2 supported Au nanoparticles" by B. Zhu, R. Qi, L. Yuan and Y. Gao, Nanoscale, 2020, 12, 19142. NANOSCALE 2022; 14:16321-16323. [PMID: 36285473 DOI: 10.1039/d1nr05352c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Using Monte Carlo simulations (MCS) in combination with an analytical model for the metal-metal interaction with the parameters based on density functional theory (DFT), Zhu, Qi, Yuan, and Gao predicted that the Ostwald ripening of Au nanoparticles on TiO2 occurs primarily via the detachment and attachment of Au dimers. I show that this and some other predictions are not properly validated because the parameters employed in the analytical model in order to describe the Au-Au interaction are in fact inconsistent both with DFT and experimental thermodynamical data.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
18
|
Liu JC, Luo L, Xiao H, Zhu J, He Y, Li J. Metal Affinity of Support Dictates Sintering of Gold Catalysts. J Am Chem Soc 2022; 144:20601-20609. [DOI: 10.1021/jacs.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin-Cheng Liu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hai Xiao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology China, Hefei, Anhui 230029, China
| | - Yang He
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
19
|
Lin F, Xu M, Ramasamy KK, Li Z, Klinger JL, Schaidle JA, Wang H. Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Mengze Xu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Karthikeyan K. Ramasamy
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| | - Zhenglong Li
- Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37830, United States
| | | | - Joshua A. Schaidle
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado80401, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington99354, United States
| |
Collapse
|
20
|
Sintering and carbidization under simulated high conversion on a cobalt-based Fischer-Tropsch catalyst; manganese oxide as a structural promotor. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Suo Y, Yao Y, Zhang Y, Xing S, Yuan ZY. Recent advances in cobalt-based Fischer-Tropsch synthesis catalysts. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Abstract
When it comes to using solar energy to promote catalytic reactions, photocatalysis technology is the first choice. However, sunlight can not only be directly converted into chemical energy through a photocatalytic process, it can also be converted through different energy-transfer pathways. Using sunlight as the energy source, photocatalytic reactions can proceed independently, and can also be coupled with other catalytic technologies to enhance the overall catalytic efficiency. Therefore, sunlight-driven catalytic reactions are diverse, and need to be given a specific definition. We propose a timely perspective for catalytic reactions driven by sunlight and give them a specific definition, namely "solar energy catalysis". The concept of different types of solar energy catalysis, such as photocatalysis, photothermal catalysis, solar cell powered electrocatalysis, and pyroelectric catalysis, are highlighted. Finally, their limitations and future research directions are discussed.
Collapse
Affiliation(s)
- Xiaodong Sun
- Institute of Clean Energy ChemistryKey Laboratory for Green Synthesis and Preparative Chemistry of Advanced MaterialsCollege of ChemistryLiaoning UniversityShenyang110036P. R. China
| | - Shuaiyu Jiang
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid WastesNational Laboratory of Mineral MaterialsSchool of Materials Science and TechnologyChina University of GeosciencesBeijing100083China
| | - Hui Li
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| | - Baohua Jia
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| | - Tianyi Ma
- School of ScienceRMIT UniversityMelbourneVIC 3000Australia
| |
Collapse
|
23
|
Coating PtRh alloy nanoparticles with mesoporous silica for the hydrogenation of toluene to methylcyclohexane. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Sun X, Jiang S, Huang H, Li H, Jia B, Ma T. Solar Energy Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaodong Sun
- Institute of Clean Energy Chemistry Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials College of Chemistry Liaoning University Shenyang 110036 P. R. China
| | - Shuaiyu Jiang
- School of Science RMIT University Melbourne VIC 3000 Australia
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences Beijing 100083 China
| | - Hui Li
- School of Science RMIT University Melbourne VIC 3000 Australia
| | - Baohua Jia
- School of Science RMIT University Melbourne VIC 3000 Australia
| | - Tianyi Ma
- School of Science RMIT University Melbourne VIC 3000 Australia
| |
Collapse
|
25
|
Han G, Zhang P, Scholzen P, Noh H, Yang M, Kweon DH, Jeon J, Kim YH, Kim S, Han S, Andreev AS, Lang G, Ihm K, Li F, d'Espinose de Lacaillerie J, Baek J. Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angew Chem Int Ed Engl 2022; 61:e202117851. [DOI: 10.1002/anie.202117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Gao‐Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 P. R. China
| | - Pascal Scholzen
- Soft Matter Science and Engineering Laboratory (SIMM) UMR CNRS 7615, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Jong‐Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Seong‐Wook Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Sun‐Phil Han
- UNIST Central Research Facilities Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Andrey S. Andreev
- Total Research and Technology Feluy (TRTF) Zone Industrielle C 7181 Feluy Belgium
| | - Guillaume Lang
- Laboratoire de Physique et d'Étude des Matériaux (LPEM) UMR CNRS 8213, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | | | - Jong‐Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
26
|
Han G, Zhang P, Scholzen P, Noh H, Yang M, Kweon DH, Jeon J, Kim YH, Kim S, Han S, Andreev AS, Lang G, Ihm K, Li F, d'Espinose de Lacaillerie J, Baek J. Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gao‐Feng Han
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education Institute of Environmental Research at Greater Bay Guangzhou University Guangzhou 510006 P. R. China
| | - Pascal Scholzen
- Soft Matter Science and Engineering Laboratory (SIMM) UMR CNRS 7615, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Hyuk‐Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Do Hyung Kweon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Jong‐Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Young Hyun Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Seong‐Wook Kim
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | - Sun‐Phil Han
- UNIST Central Research Facilities Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 South Korea
| | - Andrey S. Andreev
- Total Research and Technology Feluy (TRTF) Zone Industrielle C 7181 Feluy Belgium
| | - Guillaume Lang
- Laboratoire de Physique et d'Étude des Matériaux (LPEM) UMR CNRS 8213, ESPCI Paris, Université PSL Sorbonne Université 75005 Paris France
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory Pohang 37673 South Korea
| | - Feng Li
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| | | | - Jong‐Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks Ulsan National Institute of Science and Technology (UNIST) 50 UNIST Ulsan 44919 South Korea
| |
Collapse
|
27
|
Recent Progress on Sulfated Nanozirconia as a Solid Acid Catalyst in the Hydrocracking Reaction. Catalysts 2022. [DOI: 10.3390/catal12020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Zirconia has advantageous thermal stability and acid–base properties. The acidity character of ZrO2 can be enhanced through the sulfation process forming sulfated zirconia (ZrO2-SO4). An acidity test of the catalyst produced proved that the sulfate loading succeeded in increasing the acidity of ZrO2 as confirmed by the presence of characteristic absorptions of the sulfate group from the FTIR spectra of the catalyst. The ZrO2-SO4 catalyst can be further modified with transition metals, such as Platinum (Pt), Chromium (Cr), and Nickel (Ni) to increase catalytic activity and catalyst stability. It was observed that variations in the concentrations of Pt, Cr, and Ni produced a strong influence on the catalytic activity as the acidity and porosity of the catalyst increased with their addition. The activity, selectivity, and catalytic stability tests of Pt/ZrO2-SO4, Cr/ZrO2-SO4 and Ni/ZrO2-SO4 were carried out with their application in the hydrocracking reaction to produce liquid fuel. The percentage of liquid fractions produced using these catalysts were higher than the fraction produced using pure ZrO2 and ZrO2-SO4 catalyst.
Collapse
|
28
|
Plessow PN, Campbell CT. Influence of Adhesion on the Chemical Potential of Supported Nanoparticles as Modeled with Spherical Caps. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Philipp N. Plessow
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
29
|
Alioui O, Badawi M, Erto A, Amin MA, Tirth V, Jeon BH, Islam S, Balsamo M, Virginie M, Ernst B, Benguerba Y. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2021.2020518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oualid Alioui
- Laboratoire de génie des procédés chimiques, LGPC, Université Ferhat ABBAS Sétif-1 19000 Sétif, Algeria
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, 54000 Nancy, France
| | - Alessandro Erto
- Dipartimento di Ingegneria Chimica, dei Materiali e Università degli Studi di Napoli, P.leTecchio, 80, 80125, Napoli, Italy
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Asir, Kingdom of Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha, Asir, Kingdom of Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha-61411, Asir, Kingdom of Saudi Arabia
| | - Marco Balsamo
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy
| | - Mirella Virginie
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Uni. Artois, UMR 8181 –UCCS – Unité de Catalyse et de Chimie du Solide, F-59000 Lille, France
| | - Barbara Ernst
- Université de Strasbourg, CNRS, IPHC UMR 7178, Laboratoire de Reconnaissance et Procédés de Séparation Moléculaire (RePSeM), ECPM 25 rue Becquerel, Université de Strasbourg, Strasbourg, France
| | - Yacine Benguerba
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
- Department of process engineering, Faculty of Technology, Ferhat ABBAS Sétif 1 University, 19000 Setif, Algeria
| |
Collapse
|
30
|
Soromotin VN, Yakovenko RE, Medvedev AV, Mitchenko SA. Reasons for the Rapid Deactivation of a Cobalt Catalyst in the High-Efficiency Fischer–Tropsch Synthesis of C19+ Hydrocarbons. KINETICS AND CATALYSIS 2022. [DOI: 10.1134/s002315842106015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Liu J, Shi X, Lv Z, Yu Y, He H. Ceria–tungsten–tin oxide catalysts with superior regeneration capacity after sulfur poisoning for NH 3-SCR process. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00036a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined study on the anti-sintering ability, SO2-poisoning mechanism and thermal regeneration property of CeWSnOx catalysts for NH3-SCR reaction.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
32
|
Yue X, Liu X, Wang K, Yang Z, Chen X, Dai W, Fu X. Photo-assisted thermal catalytic Fischer-Tropsch Synthesis over Co-Cu/CeO2. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00004k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Generally, the increase in temperature in the Fischer-Tropsch synthesis accelerates the conversion of CO but reduces the selectivity of high value-added products due to the increase in the percentage of...
Collapse
|
33
|
Kang J, Fan QY, Zhou W, Zhang Q, He S, Yue L, Tang Y, Nguyen L, Yu X, You Y, Chang H, Liu X, Chen L, Liu Y, Tao F, Cheng J, Wang Y. Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. Chem 2022. [DOI: 10.1016/j.chempr.2021.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
A general principle enabling the design of ultrastable metal nanocatalysts. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Full life cycle characterization strategies for spatiotemporal evolution of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63786-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Hu S, Li WX. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021; 374:1360-1365. [PMID: 34735220 DOI: 10.1126/science.abi9828] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sulei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China
| | - Wei-Xue Li
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Center for Excellence in Nanoscience, iChEM, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Wang W, Yao S, Deng S, Wang Y, Qiu C, Mao C, Wang JG. Sintering Rate and Mechanism of Supported Pt Nanoparticles by Multiscale Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12529-12538. [PMID: 34689549 DOI: 10.1021/acs.langmuir.1c01628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermal stability is the key issue in the industrial application of supported metal nanocatalysts. A combination method of density functional theory calculations, machine learning, and molecular dynamics simulation is adopted to study the sintering behavior of supported platinum (Pt) nanoparticles on graphene or TiO2 nanosheet, and analyze sintering mechanisms under different temperatures, particle sizes, and metal support interactions (MSIs). The results show that the agglomeration of supported nanoparticles is mainly based on the mechanism of small particle migration and growth. Small-sized particles with high surface energy determine the sintering rate. In addition, the increase of temperature is conducive to the agglomeration of particles, especially for systems with strong MSI. Based on the analysis of the sintering process, a sintering kinetic model of supported Pt nanoparticles related to particle size, temperature, and MSI is established, which provides theoretical guidance for the design of supported metal catalysts with high thermal stability.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Senjun Yao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Shengwei Deng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yinbin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenglong Qiu
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chengli Mao
- Shanghai Xinli Power Equipment Research Institute, Shanghai 201100, People's Republic of China
| | - Jian-Guo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
38
|
Straß‐Eifert A, Sheppard TL, Becker H, Friedland J, Zimina A, Grunwaldt J, Güttel R. Cobalt‐based Nanoreactors in Combined Fischer‐Tropsch Synthesis and Hydroprocessing: Effects on Methane and CO
2
Selectivity. ChemCatChem 2021. [DOI: 10.1002/cctc.202101053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 D-89069 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Henning Becker
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 D-89069 Ulm Germany
| | - Jens Friedland
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 D-89069 Ulm Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstraße 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 D-89069 Ulm Germany
| |
Collapse
|
39
|
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An
In Situ
Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenwei Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yifeng Yun
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Tianfu Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Haiyun Suo
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Lai Yan
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Xianfeng Shen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| |
Collapse
|
40
|
Li X, Wang X, Sadykov II, Palagin D, Safonova OV, Li J, Beck A, Krumeich F, van Bokhoven JA, Artiglia L. Temperature and Reaction Environment Influence the Nature of Platinum Species Supported on Ceria. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiansheng Li
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xing Wang
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Ilia I. Sadykov
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Operando Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Dennis Palagin
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Olga V. Safonova
- Laboratory for Operando Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Junhua Li
- School of Environment, Tsinghua University, 100084 Beijing,, China
| | - Arik Beck
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Frank Krumeich
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Luca Artiglia
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory of Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
41
|
Chen J, Zheng X, Zhang J, Ma Q, Zhao Z, Huang L, Wu W, Wang Y, Wang J, Dong S. Bubble-templated synthesis of nanocatalyst Co/C as NADH oxidase mimic. Natl Sci Rev 2021; 9:nwab186. [PMID: 35261777 PMCID: PMC8897313 DOI: 10.1093/nsr/nwab186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Designing highly active nanozymes for various enzymatic reactions remains a challenge in practical applications and fundamental research. In this work, by studying the catalytic functions of natural NADH oxidase (NOX), we devised and synthesized a porous carbon-supported cobalt catalyst (Co/C) to mimic NOX. The Co/C can catalyze dehydrogenation of NADH and transfers electrons to O2 to produce H2O2. Density functional theory calculations reveal that the Co/C can catalyze O2 reduction to H2O2 or H2O considerably. The Co/C can also mediate electron transfer from NADH to heme protein cytochrome c, thereby exhibiting cytochrome c reductase-like activity. The Co/C nanoparticles can deplete NADH in cancer cells, induce increase of the reactive oxygen species, lead to impairment of oxidative phosphorylation and decrease in mitochondrial membrane potential, and cause ATP production to be damaged. This ‘domino effect’ facilitates the cell to approach apoptosis.
Collapse
Affiliation(s)
- Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhiwei Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
42
|
Jiang M, Wu Q, Yan J, Pan J, Dai Q, Zhan W. Si-doped Al 2O 3 nanosheet supported Pd for catalytic combustion of propane: effects of Si doping on morphology, thermal stability, and water resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56480-56490. [PMID: 34057630 DOI: 10.1007/s11356-021-14646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Catalytic combustion of propane as typical light alkanes was important for the purification of industrial VOCs and automobile hydrocarbon emissions. Si-doped Al2O3 nanosheet was synthesized by a hydrothermal method, and effects of Si content on the morphology and thermal stability of Al2O3 were investigated. The doping of SiO2 could tune the thickness of Al2O3 nanosheets and significantly improve its thermal stability, the θ phase was still maintained, and the specific surface area was as high as 56.3 m2 g-1 after calcination at 1200 °C. And then the Si-doped Al2O3 nanosheets were used as support of Pd catalysts (Pd/Si-Al2O3 nanosheets) for catalytic combustion of propane, especially Pd/3.6Si-Al2O3 nanosheets, which presented high activity, stability, and resistance to sintering and H2O due to the promotion of Si on the thermal stability of Al2O3 and the stabilization (dispersion, isolation, and strong interaction) of PdOx species.
Collapse
Affiliation(s)
- Mingxiang Jiang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qingqing Wu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiaorong Yan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jun Pan
- Nanjing Engineering Institute of Aircraft Systems, AVIC, Nanjing, 211106, People's Republic of China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
43
|
Armengol RA, Lim J, Ledendecker M, Hengge K, Scheu C. Correlation between the TiO 2 encapsulation layer on Pt and its electrochemical behavior. NANOSCALE ADVANCES 2021; 3:5075-5082. [PMID: 36132343 PMCID: PMC9417513 DOI: 10.1039/d1na00423a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/14/2021] [Indexed: 06/14/2023]
Abstract
Supported metal catalysts with partial encapsulation resulting from strong metal-support interactions show distinctive structural features which strongly affect their functionalities. Yet, challenges in systematic synthesis and in-depth characterization for such systems limit the present understanding of structure-property relationships. Herein, the synthesis and characterization of two Pt/TiO2 models are conducted by a simple change of the synthesis order, while keeping all other parameters constant. They differ in containing either bare or encapsulated Pt nanoparticles. The presence of an extremely thin and inhomogeneous TiO2 layer is clearly demonstrated on 2-3 nm sized Pt nanoparticles by combination of imaging, energy dispersive X-ray spectroscopy and electron energy loss spectroscopy performed in a transmission electron microscope. The two Pt/TiO2 systems exhibit differences in morphology and local structure which can be correlated with their electrochemical activity and stability using cyclic voltammetry experiments. Beyond enhanced particle stability, we report an increase in H+ intercalation on titania and reduced Pt activity due to partial encapsulation by TiO2. Finally, the growth of an encapsulation layer as a result of cyclic voltammetry measurements is discussed. These results shed light on the in-depth structure-property relationship of catalysts with strong metal-support interactions which leads to enhanced functional materials for electrochromic devices and energy applications.
Collapse
Affiliation(s)
| | - Joohyun Lim
- Department of Chemistry, Kangwon National University Chuncheon Gangwon 24341 Republic of Korea
| | - Marc Ledendecker
- Department of Technical Chemistry I, Technical University Darmstadt Alarich-Weiss-Straße 8 64287 Germany
| | - Katharina Hengge
- Max-Planck Institut für Eisenforschung GmbH Max-Planck-Straße 1 40237 Germany
| | - Christina Scheu
- Max-Planck Institut für Eisenforschung GmbH Max-Planck-Straße 1 40237 Germany
| |
Collapse
|
44
|
Smarzaro JL, Baldanza MAS, de Almeida AJ, Caytuero A, Salim VMM, Passos FB, Teixeira da Silva V. Effect of Silica Encapsulation on Cobalt-Based Catalysts for Fischer–Tropsch Synthesis under Different Reaction Conditions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juliana L. Smarzaro
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria A. S. Baldanza
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio J. de Almeida
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander Caytuero
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Vera M. M. Salim
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio B. Passos
- Departamento de Engenharia Química e de Petróleo, Universidade Federal Fluminense, Rua Passo da Pátria 156, 24210-240 Niterói, Rio de Janeiro, Brazil
| | - Victor Teixeira da Silva
- Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Passivation of Co/Al2O3 Catalyst by Atomic Layer Deposition to Reduce Deactivation in the Fischer–Tropsch Synthesis. Catalysts 2021. [DOI: 10.3390/catal11060732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work explores the technical feasibility of passivating a Co/γ-Al2O3 catalyst by atomic layer deposition (ALD) to reduce deactivation rate during Fischer–Tropsch synthesis (FTS). Three samples of the reference catalyst were passivated using different numbers of ALD cycles (3, 6 and 10). Characterization results revealed that a shell of the passivating agent (Al2O3) grew around catalyst particles. This shell did not affect the properties of passivated samples below 10 cycles, in which catalyst reduction was hindered. Catalytic tests at 50% CO conversion evidenced that 3 and 6 ALD cycles increased catalyst stability without significantly affecting the catalytic performance, whereas 10 cycles caused blockage of the active phase that led to a strong decrease of catalytic activity. Catalyst deactivation modelling and tests at 60% CO conversion served to conclude that 3 to 6 ALD cycles reduced Co/γ-Al2O3 deactivation, so that the technical feasibility of this technique was proven in FTS.
Collapse
|
46
|
Shi X, Cao B, Liu J, Zhang J, Du Y. Rare-Earth-Based Metal-Organic Frameworks as Multifunctional Platforms for Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005371. [PMID: 33605028 DOI: 10.1002/smll.202005371] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/30/2020] [Indexed: 06/12/2023]
Abstract
The development of catalytic conversion is very important for human society. In the catalytic process, metal-organic frameworks (MOFs) can be utilized to obtain effective catalysts for their porous structures and adjustable properties. In addition, the introduction of rare-earth (RE) elements with unique properties for catalysts can realize good catalytic performances. Thus, the RE-MOF related catalysts for catalytic conversion are summarized. Due to the cooperation of RE elements and porous MOF structures, the RE-based MOFs can be used as promising catalysts or precursors/supports for other catalysts in the areas of energy conversion, environmental governance, and organic synthesis. These aggregated studies highlight the RE-MOFs as promising candidates for catalytic conversion.
Collapse
Affiliation(s)
- Xiaomeng Shi
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Cao
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jinghai Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao, 028000, P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering, Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
47
|
|
48
|
Lim AMH, Zeng HC. Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20501-20510. [PMID: 33891399 DOI: 10.1021/acsami.1c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerium(IV) oxide (CeO2), or ceria, is one of the most abundant rare-earth materials that has been extensively investigated for its catalytic properties over the past two decades. However, due to the global scarcity and increasing cost of rare-earth materials, efficient utilization of this class of materials poses a challenging issue for the materials research community. Thus, this work is directed toward an exploration of making ultrathin hollow ceria or other rare-earth metal oxides and mixed rare-earth oxides in general. Such a hollow morphology appears to be attractive, especially when the thickness is trimmed to its limit, so that it can be viewed as a two-dimensional sheet of organized nanoscale crystallites, while remaining three-dimensional spatially. This ensures that both inner and outer shell surfaces can be better utilized in catalytic reactions if the polycrystalline sphere is further endowed with mesoporosity. Herein, we have devised our novel synthetic protocol for making ultrathin mesoporous hollow spheres of ceria or other desired rare-earth oxides with a tunable shell thickness in the region of 10 to 40 nm. Our ceria ultrathin hollow spheres are catalytically active and outperform other reported similar nanostructured ceria for the oxidation reaction of carbon monoxide in terms of fuller utilization of cerium. The versatility of this approach has also been extended to fabricating singular or multicomponent rare-earth metal oxides with the same ultrathin hollow morphology and structural uniformity. Therefore, this approach holds good promise for better utilization of rare-earth metal elements across their various technological applications, not ignoring nano-safety considerations.
Collapse
Affiliation(s)
- Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
49
|
Zhdanov VP. Nanocrystallites, adsorption, surface tension, and Wulff rule. Phys Rev E 2021; 103:012802. [PMID: 33601602 DOI: 10.1103/physreve.103.012802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Chemisorption on the surface of metal nanocrystallites (NCs) sometimes induces their reshaping. This interesting phenomenon was observed experimentally in various systems. Related theoretical studies imply that it can be described using the Wulff rule with the surface tension dependent on the coverage of the NC facets by adsorbate. There is, however, no agreement as to how the surface tension should be calculated in this case. Relying on the laws of statistical physics, I clarify the situation in this area in general and also in the framework of the mean-field approximation in three situations: (i) with adsorption-desorption equilibrium, (ii) with a fixed amount of adsorbate at a NC, and (iii) with a fixed amount of adsorbate at facets of a NC. Under these conditions, the surface tension is shown to be described by the same expressions.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
50
|
Meng G, Sun J, Tao L, Ji K, Wang P, Wang Y, Sun X, Cui T, Du S, Chen J, Wang D, Li Y. Ru1Con Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04162] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ge Meng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiaqiang Sun
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Tao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaohui Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tingting Cui
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shixuan Du
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangang Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|