1
|
Bhatia P, Das P, Bijlwan A, Kumar D. Systematic Synthesis of Thermally Stable Zwitterionic Energetic Materials Based on 4-Hydroxy-3,5-dinitropyrazole. Org Lett 2024. [PMID: 39495720 DOI: 10.1021/acs.orglett.4c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
4-Hydroxy-3,5-dinitropyrazole (HODNP) was investigated as a precursor for synthesizing two thermally stable, insensitive zwitterionic energetic materials. The ability of the hydroxy functionality to carry negative charge was leveraged and further covalently bonded with two positively charged moieties (3,4-diamino-1,2,4-triazole and acetimidamide) via N-functionalization to form zwitterions 2 and 3. Structural characterization and a study of the energetic performance were carried out. The zwitterionic nature of compound 3 was confirmed by single-crystal analysis.
Collapse
Affiliation(s)
- Prachi Bhatia
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Priyanka Das
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Amit Bijlwan
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Dheeraj Kumar
- Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| |
Collapse
|
2
|
Xu Z, Gu H, Lu M, Xu Y. Energetic coordination polymers (ECPs) based on tetrazole N-oxides: green nitrogen-rich energetic complexes of variable dimensions. Dalton Trans 2024; 53:16461-16466. [PMID: 39291454 DOI: 10.1039/d4dt01882f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent years, it has been demonstrated that the energetic properties of many tetrazole-containing compounds can be enhanced through the formation of the corresponding N-oxides. The introduction of N-O groups increases the oxygen balance of tetrazole compounds, while providing additional coordination sites and enriching the coordination modes between tetrazole compounds and metal ions. The introduction of O atoms alters the polarity of the substance from N to N-O, the packing and density increase and therefore the detonation velocity (VD) and pressure (P) also increase. Based on this, energetic coordination polymers (ECPs) with tetrazole N-oxides serving as ligands possess extremely high research value. In this paper, we aim to summarize the existing ECPs based on tetrazole N-oxides briefly and discuss their advantages, emphasizing their excellent stability and application prospects.
Collapse
Affiliation(s)
- Ze Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China.
| | - Haolin Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China.
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China.
| | - Yuangang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, China.
| |
Collapse
|
3
|
Khoranyan TE, Larin AA, Suponitsky KY, Ananyev IV, Melnikov IN, Kosareva EK, Muravyev NV, Dalinger IL, Pivkina AN, Fershtat LL. First Alliance of Pyrazole and Furoxan Leading to High-Performance Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53972-53979. [PMID: 39318327 DOI: 10.1021/acsami.4c12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nitrogen heterocyclic scaffolds retain their leading position as valuable building blocks in material science, particularly for the design of small-molecule energetic materials. However, the search for more balanced combinations of directly linked heterocyclic cores is far from being exhausted and aims to reach ideally balanced high-energy substances. Herein, we present the synthetic route to novel pyrazole-furoxan framework enriched with nitro groups and demonstrate a promising set of properties, viz., good thermal stability, acceptable mechanical sensitivity, and high detonation performance. In-depth crystal analysis showed that the isomers having lower-impact sensitivity values in both types of regioisomeric pairs are those with the exocyclic furoxan oxygen atom being closer to the pyrazole ring. Owing to the favorable combination of high crystal densities (1.83-1.93 g cm-3), positive oxygen balance to CO (up to +13.9%), and high enthalpies of formation (322-435 kJ mol-1), the synthesized compounds show high calculated detonation velocities (8.4-9.1 km s-1) and excellent metal accelerating abilities. The incorporation of the 3-nitrofuroxan moiety increases the thermal stability (by ca. 20 °C) and decreases the mechanical sensitivity of target hybrid materials in both types of regioisomeric pairs. Simultaneously, the detonation performance of 3-nitrofuroxans is almost identical to that of 4-nitrofuroxans, highlighting the potential of the regioisomeric tunability in the future design of energetic materials.
Collapse
Affiliation(s)
- Tigran E Khoranyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Alexander A Larin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Kyrill Yu Suponitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow 119991, Russian Federation
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow 119991, Russian Federation
| | - Igor N Melnikov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Ekaterina K Kosareva
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Nikita V Muravyev
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Igor L Dalinger
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| | - Alla N Pivkina
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Shaferov AV, Ananyev IV, Monogarov KA, Fomenkov IV, Pivkina AN, Fershtat LL. Energetic Methylene-Bridged Furoxan-Triazole/Tetrazole Hybrids. Chempluschem 2024:e202400496. [PMID: 39210702 DOI: 10.1002/cplu.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Design and synthesis of new energetic materials retains its urgency in chemistry and materials science. Herein, rational construction and regioselective synthesis of a series of energetic compounds comprising of a methylene-bridged combination of 1,2,5-oxadiazole and nitrogen-rich azoles (1,2,4-triazole and tetrazole) enriched with additional explosophoric functionalities (nitro and azo moieties) is presented. All target materials were thoroughly characterized using IR and multinuclear NMR (1H, 13C, 14N, 15N) NMR spectroscopy, high-resolution mass spectrometry, X-ray diffraction, and differential scanning calorimetry. All synthesized energetic substances showed good thermal stability (up to 239 °C) and low mechanical sensitivity, while their performance reached or exceeded the level of TNT.
Collapse
Affiliation(s)
- Alexander V Shaferov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Ivan V Ananyev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, Moscow, 119991, Russian Federation
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prosp., 31, 119991, Moscow, Russian Federation
| | - Konstantin A Monogarov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow, 119991, Russian Federation
| | - Igor V Fomenkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| | - Alla N Pivkina
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow, 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
- National Research University Higher School of Economics, 101000, Myasnitskaya str., 20, Moscow, Russian Federation
| |
Collapse
|
5
|
Jin B, Liu S, Hu K, Yao Z, Liu B. Ambient-Condition Recoverable Polymeric N 10 Discovered from the Predicted Zr-N Compounds. Inorg Chem 2024; 63:12615-12623. [PMID: 38917336 DOI: 10.1021/acs.inorgchem.4c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Polynitrogen has been widely studied recently as a rising star of high energy density materials. Here, we performed a systematic study of the Zr-N compounds in the N-rich region by the first-principles method. The high-pressure phase diagram of the Zr-N system is enriched by proposing five new compounds. ZrN10 with the infinitely extended band shaped structure is first reported. The band-like polynitrogen of ZrN10 decomposes into a more stable chain-like polynitrogen structure under the influence of temperature. Additionally, the novel honeycomb-like band-shaped N10 structure hcb-N10 has been discovered by removing the Zr atoms. The absence of the -4 oxidation state in the N10 unit prompts its further polymerization, which makes hcb-N10 possess dynamical and thermal stability in ambient conditions. hcb-N10 is a semiconductor with a bandgap of 2.97 eV due to highly localized electrons. Both chain-ZrN10 and hcb-N10 represent potential candidates for HEDMs with outstanding energy and explosive performance.
Collapse
Affiliation(s)
- Bo Jin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Kuo Hu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Zhen Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
6
|
Babu A, Sinha A. Catalytic Tetrazole Synthesis via [3+2] Cycloaddition of NaN 3 to Organonitriles Promoted by Co(II)-complex: Isolation and Characterization of a Co(II)-diazido Intermediate. ACS OMEGA 2024; 9:21626-21636. [PMID: 38764698 PMCID: PMC11097157 DOI: 10.1021/acsomega.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The [3+2] cycloaddition of sodium azide to nitriles to give 5-substituted 1H-tetrazoles is efficiently catalyzed by a Cobalt(II) complex (1) with a tetradentate ligand N,N-bis(pyridin-2-ylmethyl)quinolin-8-amine. Detailed mechanistic investigation shows the intermediacy of the cobalt(II) diazido complex (2), which has been isolated and structurally characterized. Complex 2 also shows good catalytic activity for the synthesis of 5-substituted 1H-tetrazoles. These are the first examples of cobalt complexes used for the [3+2] cycloaddition reaction for the synthesis of 1H-tetrazoles under homogeneous conditions.
Collapse
Affiliation(s)
- Archana Babu
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| | - Arup Sinha
- Advanced Catalysis Facility,
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632 006, India
| |
Collapse
|
7
|
Šarlauskas J. Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material. Int J Mol Sci 2024; 25:5099. [PMID: 38791139 PMCID: PMC11121466 DOI: 10.3390/ijms25105099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
2,3-dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD), molecular formula = C8H4N4O10, is a completely nitrated aromatic ring 1,4-benzodioxane derivative. The convenient method of TNBD synthesis was developed (yield = 81%). The detailed structure of this compound was investigated by X-ray crystallography. The results of the thermal analysis (TG) obtained with twice re-crystallized material revealed the onset at 240 °C (partial sublimation started) and melting at 286 °C. The investigated material degraded completely at 290-329 °C. The experimental density of 1.85 g/cm3 of TNBD was determined by X-ray crystallography. The spectral properties of TNBD (NMR, FT-IR and Raman) were explored. The detonation properties of TNBD calculated by the EXPLO 5 code were slightly superior in comparison to standard high-energy material-tetryl (detonation velocity of TNBD-7727 m/s; detonation pressure-278 kbar; and tetryl-7570 m/s and 226.4 kbar at 1.614 g/cm3, or 260 kbar at higher density at 1.71 g/cm3. The obtained preliminary results might suggest TNBD can be a potential thermostable high-energy and -density material (HEDM).
Collapse
Affiliation(s)
- Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Sauletekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
8
|
Zhang R, Xu Y, Yang F, Jiang S, Wang P, Lin Q, Huang H, Lu M. Synthesis, Characterization, and Properties of Heat-Resistant Energetic Materials Based on C-C Bridged Dinitropyrazole Energetic Materials. J Org Chem 2024; 89:5966-5976. [PMID: 38651598 DOI: 10.1021/acs.joc.3c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Polycyclic energetic materials make up a distinctive class of conjugated structures that consist of two or more rings. In this work, 1,3-bis(3,5-dinitro-1H-pyrazol-4-yl)-4,6-dinitrobenzene (BDPD) was synthesized and investigated in detail as a polycyclic heat-resistant energetic molecule that can be deprotonated by bases to obtain its anionic (3-5) salts. All compounds were thoroughly characterized by 1H and 13C NMR, infrared spectroscopy, high-resolution mass spectrometry, and elemental analysis. The structural features of BDPD and its salts were investigated by single-crystal X-ray diffraction and analyzed by different kinds of computing software, like Multiwfn, Gaussian 09W, and so on. In addition, their thermal decomposition temperatures were evaluated by differential scanning calorimetry to be 319.8-329.0 °C, revealing that they possessed high thermal stabilities. The results of impact sensitivity and friction sensitivity analysis confirm that these energetic compounds were insensitive. The detonation properties of neutral compound BDPD and all its nonmetallic salts were calculated by the EXPLO5 v6.05.04 program. The results revealed that their detonation performances were higher than those of the widely used heat-resistant explosive 2,2',4,4',6,6'-hexanitrostilbene (HNS). Combining the above results, it is reasonable to suggest that these compounds have the potential to be heat-resistant energetic materials.
Collapse
Affiliation(s)
- Rongzheng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuangang Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuaijie Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qiuhan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hui Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Ming Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Zheng Y, Hu QQ, Huang Q, Xie Y. Late-Stage C-H Nitration of Unactivated Arenes by Fe(NO 3) 3·9H 2O in Hexafluoroisopropanol. Org Lett 2024; 26:3316-3320. [PMID: 38598253 DOI: 10.1021/acs.orglett.4c01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Operationally simple and generally applicable arene nitration with cheap and easily accessible chemicals has been a long-sought transformation in the synthetic organic community. In this work, we realized this goal with nontoxic and inexpensive Fe(NO3)3·9H2O as the nitro source and easily recyclable solvent hexafluoroisopropanol as the promotor via a network of hydrogen-bonding interactions. As a result of the relative mildness and high reliability of this protocol, late-stage nitration of various highly functionalized natural products and commercially available drugs was realized.
Collapse
Affiliation(s)
- Yuzhu Zheng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People's Republic of China
| | - Qi-Qi Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People's Republic of China
| | - Qing Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People's Republic of China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
10
|
Li L, Zhang J, Li B, Yi G, Wang T, Peng Y. Theoretical exploration of the stabilities and detonation parameters of nitro-substituted 1H-benzotriazole. J Mol Model 2024; 30:104. [PMID: 38483705 DOI: 10.1007/s00894-024-05899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
CONTEXT The nitro group was introduced into the nitrogen heterocycle of 1H-benzotriazole to design a total of 31 derivatives. To estimate the thermal stability of these derivatives, the heat of formation (HOF) is calculated based on the isodesmic reaction. The bond dissociation energy (BDE) was also predicted based on the homolytic reaction to further evaluate the dynamic stability. To evaluate the possibility of utilizing as high energy density compounds (HEDCs), the detonation parameters including the detonation pressure (P), detonation velocity (D), and explosive heat (Q) are predicted by taking advantage of the Kamlet-Jacobs empirical equation. To measure the sensitivity to impact, both the characteristic height (H50) and free space in crystal (∆V) are considered in this paper. Based on our calculations, D-series and E are found to be the candidates for HEDCs. METHODS The Gaussian 09 software package was used in this paper. The B3PW91 hybrid function with the 6-311 + G(d,p) basis set was chosen to perform the structural optimization, frequency analysis, heat of formation, and bond dissociation energy. The detonation parameters were calculated following the Kamlet-Jacobs equation.
Collapse
Affiliation(s)
- Lulin Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, 051008, China
| | - Jiawei Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| | - Butong Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China.
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China.
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang, 051008, China.
| | - Guobin Yi
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China.
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China.
| | - Taoyu Wang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| | - Yanhong Peng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 522000, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 510006, China
| |
Collapse
|
11
|
Aslandukov A, Aslandukova A, Laniel D, Khandarkhaeva S, Yin Y, Akbar FI, Chariton S, Prakapenka V, Bright EL, Giacobbe C, Wright J, Comboni D, Hanfland M, Dubrovinskaia N, Dubrovinsky L. Stabilization of N 6 and N 8 anionic units and 2D polynitrogen layers in high-pressure scandium polynitrides. Nat Commun 2024; 15:2244. [PMID: 38472167 DOI: 10.1038/s41467-024-46313-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen catenation under high pressure leads to the formation of polynitrogen compounds with potentially unique properties. The exploration of the entire spectrum of poly- and oligo-nitrogen moieties is still in its earliest stages. Here, we report on four novel scandium nitrides, Sc2N6, Sc2N8, ScN5, and Sc4N3, synthesized by direct reaction between yttrium and nitrogen at 78-125 GPa and 2500 K in laser-heated diamond anvil cells. High-pressure synchrotron single-crystal X-ray diffraction reveals that in the crystal structures of the nitrogen-rich Sc2N6, Sc2N8, and ScN5 phases nitrogen is catenated forming previously unknown N66- and N86- units and ∞ 2 ( N 5 3 - ) anionic corrugated 2D-polynitrogen layers consisting of fused N12 rings. Density functional theory calculations, confirming the dynamical stability of the synthesized compounds, show that Sc2N6 and Sc2N8 possess an anion-driven metallicity, while ScN5 is an indirect semiconductor. Sc2N6, Sc2N8, and ScN5 solids are promising high-energy-density materials with calculated volumetric energy density, detonation velocity, and detonation pressure higher than those of TNT.
Collapse
Affiliation(s)
- Andrey Aslandukov
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany.
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Alena Aslandukova
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3FD, Edinburgh, United Kingdom
| | - Saiana Khandarkhaeva
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Fariia I Akbar
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Vitali Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | | | | | - Jonathan Wright
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Davide Comboni
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 38000, Grenoble, France
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Leonid Dubrovinsky
- Bavarian Research Institute of Experimental Geochemistry and Geophysics (BGI), University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
12
|
López-Carballeira D, Polcar T. High throughput selection of organic cathode materials. J Comput Chem 2024; 45:264-273. [PMID: 37800977 DOI: 10.1002/jcc.27236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Efficient and affordable batteries require the design of novel organic electrode materials to overcome the drawbacks of the traditionally used inorganic materials, and the computational screening of potential candidates is a very efficient way to identify prospective solutions and minimize experimental testing. Here we present a DFT high-throughput computational screening where 86 million molecules contained in the PUBCHEM database have been analyzed and classified according to their estimated electrochemical features. The 5445 top-performing candidates were identified, and among them, 2306 are expected to have a one-electron reduction potential higher than 4 V versus (Li/Li+ ). Analogously, one-electron energy densities higher than 800 Whkg-1 have been predicted for 626 molecules. Explicit calculations performed for certain materials show that at least 69 candidates with a two-electron energy density higher than 1300 Whkg-1 . Successful molecules were sorted into several families, some of them already commonly used electrode materials, and others still experimentally untested. Most of them are small systems containing conjugated CO, NN, or NC functional groups. Our selected molecules form a valuable starting point for experimentalists exploring new materials for organic electrodes.
Collapse
Affiliation(s)
- Diego López-Carballeira
- Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Tomáš Polcar
- Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
13
|
Lin C, Yi P, Yi X, He P, Wang T, Zhang J. Synthesis and detonation characters of 3,4,5-1 H-trinitropyrazole and its nitrogen-rich energetic salts. Dalton Trans 2024; 53:1430-1433. [PMID: 38180128 DOI: 10.1039/d3dt03683a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The development of energetic materials is still facing challenges due to the inherent contradiction between energy and sensitivity. Two new nitrogen-rich energetic salts of 3,4,5-1H-trinitropyrazole (HTNP) were synthesized. They are fully characterized by X-ray diffraction, NMR, MS and IR spectroscopy. The DSC and BAM tests were carried out as well. These TNP salts show high thermostability and high positive heat of formation. Their detonation performances were calculated by the EXPLO5 program. Most noteworthy is that DATr salt exhibits superior sensitivity and detonation performance comparable to secondary explosive RDX, making it promising for use as a new-generation green energetic material.
Collapse
Affiliation(s)
- Chenchen Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Pingping Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Xiaoyi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.
| | - Tingwei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
14
|
Deltsov ID, Ananyev IV, Meerov DB, Fershtat LL. Expanding the Limits of Organic Energetic Materials: High-Performance Alliance of 1,3,4-Thiadiazole and Furazan Scaffolds. J Org Chem 2024; 89:174-182. [PMID: 38079563 DOI: 10.1021/acs.joc.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A majority of known and newly synthesized energetic materials comprise polynitrogen or nitrogen-oxygen heterocycles with various explosophores. However, available structural combinations of these organic scaffolds are finite and are about to reach their limits. Herein, we present the design and synthesis of a series of sulfur-containing polyazole structures comprising 1,3,4-thiadiazole and furazan rings linked by C-C bonds and enriched with energetic nitro and azo functionalities. In terms of detonation performance, all synthesized 1,3,4-thiadiazole-furazan assemblies (D = 7.7-7.9 km s-1; P = 26-28 GPa) lie between the powerful explosive TATB (D = 8.0 km s-1; P = 31 GPa) and melt-cast material TNT (D = 6.9 km s-1; P = 23 GPa). In the synthesized series, azo-bridged derivative 5 seems to be most practically interesting, as it combines a relatively high energetic performance (D = 7.9 km s-1; P = 28 GPa), a very high thermal stability (271 °C), and insensitivity to friction. By these functional properties, 5 outperforms the benchmark heat-resistant explosive hexanitrostilbene (HNS). To the best of our knowledge, this is the first example of an energetic alliance of furazan and 1,3,4-thiadiazole scaffolds and a rare case of sulfur-containing high-energy materials, which can certainly be considered as an evolutionary step in energetic materials science.
Collapse
Affiliation(s)
- Ilya D Deltsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
| | - Ivan V Ananyev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, Moscow 119991, Russian Federation
| | - Dmitry B Meerov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Strasse, Moscow 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Myasnitskaya strasse, 20, Moscow 101000, Russian Federation
| |
Collapse
|
15
|
Khakimov DV, Fershtat LL, Pivina TS. Substituted tetrazoles with N-oxide moiety: critical assessment of thermochemical properties. Phys Chem Chem Phys 2023; 25:32071-32077. [PMID: 37982240 DOI: 10.1039/d3cp05144g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Modeling of the structure of molecules and simulation of crystal structure followed by the calculation of the enthalpies of formation for 21 salts of three high-energy tetrazole 1N-oxides: 5-nitro-1-hydroxy-1H-tetrazole 1a-1g, 5-trinitromethyl-1-hydroxy-1H-tetrazole 2a-2g and 6-amino-3-(1-hydroxy-1H-tetrazol-5-yl)-1,2,4,5-tetrazine 1,5-dioxide 3a-3g was performed. The methods of quantum chemistry and the method of atom-atom potentials were used. Structural search for optimal crystal packings was carried out in 11 most common space symmetry groups. The enthalpies of formation were obtained and analyzed using two different approaches: VBT and MICCM methods, which allowed to evaluate the quality of these calculation methods. In addition, the results obtained indicate high values of thermochemical characteristics for some of the considered compounds, which have a positive effect on their explosive properties and unveil their future application potential.
Collapse
Affiliation(s)
- Dmitry V Khakimov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation.
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation.
- National Research University Higher School of Economics, Myasnitskaya str., 20, Moscow 101000, Russian Federation
| | - Tatyana S Pivina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation.
| |
Collapse
|
16
|
Dong Y, Li M, Liu J, Liu Y, Huang W, Shreeve JM, Tang Y. Pushing the limits of the heat of detonation via the construction of polynitro bipyrazole. MATERIALS HORIZONS 2023; 10:5729-5733. [PMID: 37800191 DOI: 10.1039/d3mh01381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The trinitromethyl group is a highly oxidized group that is found as an active functionality in many high-energy-density materials. The most frequently used previous synthetic method for the introduction of the trinitromethyl group is the nitration of heterocyclic compounds containing an acetonyl/ethyl acetate/chloroxime group. Now a novel strategy for constructing a trinitromethyl group (5) via nitration of an ethylene bridged compound, dipyrazolo[1,5-a:5',1'-c]pyrazine (2), is reported. In addition, the other two nitrated products (3 and 4) were obtained under different nitrating conditions. Compound 5 has excellent detonation performance (Dv = 9047 m s-1, P = 35.6 GPa), and a low mechanical sensitivity (IS = 10 J, FS = 216 N), with an especially attractive heat of detonation of 6921 kJ kg-1, which significantly exceeds that of the state-of-the-art explosive CL-20 (Q: 6162 kJ kg-1).
Collapse
Affiliation(s)
- Yaqun Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Miao Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuji Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho, 83844-2343, USA
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Du W, Tang P, Yang B, Yang L, Li X, Duan M, Gou S, Ma Q. Metal-Free Hybrid Energetic Composites Based on Donor-Acceptor π-Conjugated Organic Energetic Catalysts with Enlightening the Laser Ignition Performance of Multi-Scale Ammonium Perchlorate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303678. [PMID: 37475508 DOI: 10.1002/smll.202303678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Indexed: 07/22/2023]
Abstract
Photosensitive materials, such as energetic complexes, usually have high sensitivity and cause heavy-metal pollution, whereas others, like carbon black and dye, do not contain energy, which affects energy output and mechanical properties. In this work, donor-acceptor π-conjugated energetic catalysts, denoted as D-n, are designed and synthesized. Nonmetallic hybrid energetic composites are prepared by assembling the as-synthesized catalysts into multiscale ammonium perchlorate (AP). Composites containing catalysts and APs can be successfully ignited without the involvement of metals. The new ignition mechanism is further analyzed using experimental and theoretical analyses such as UV-vis-near-infrared (NIR) spectra, electron-spin resonance spectroscopy, and energy-gap analysis. The shortest ignition delay time is 56 ms under the experimental condition of a NIR wavelength of 1064 nm and a laser power of 10 W. At the voltage of 1 kV and the electric field of 500 V mm-1 , the laser-ignition delay time of D-2/AP hybrid composite decreases from 56 to 35 ms because D-2 also exhibits organic semiconductor-like properties. D-2/AP and D-12/AP can also be used to successfully laser ignite other common energetic materials. This study can guide the development of advanced metal-free laser-ignitable energetic composites to address challenges in the field of aerospace engineering.
Collapse
Affiliation(s)
- Wei Du
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pengfei Tang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Bo Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Lei Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiaodong Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Ming Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shaohua Gou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Qing Ma
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China
| |
Collapse
|
18
|
Savastano M, López de la Torre MD, Pagliai M, Poggi G, Ridi F, Bazzicalupi C, Melguizo M, Bianchi A. Crystal engineering of high explosives through lone pair-π interactions: Insights for improving thermal safety. iScience 2023; 26:107330. [PMID: 37636051 PMCID: PMC10448033 DOI: 10.1016/j.isci.2023.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
In this high-risk/high-reward study, we prepared complexes of a high explosive anion (picrate) with potentially explosive s-tetrazine-based ligands with the sole purpose of advancing the understanding of one of the weakest supramolecular forces: the lone pair-π interaction. This is a proof-of-concept study showing how lone pair-π contacts can be effectively used in crystal engineering, even of high explosives, and how the supramolecular architecture of the resulting crystalline phases influences their experimental thermokinetic properties. Herein we present XRD structures of 4 novel detonating compounds, all showcasing lone pair-π interactions, their thermal characterization (DSC, TGA), including the correlation of experimental thermokinetic parameters with crystal packing, and in silico explosion properties. This last aspect is relevant for improving the safety of high-energy materials.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Human Sciences and Quality of Life Promotion, University San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | - Marco Pagliai
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giovanna Poggi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Francesca Ridi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Carla Bazzicalupi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Manuel Melguizo
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaén, Spain
| | - Antonio Bianchi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Zhang C, Xu MQ, Dong WS, Lu ZJ, Zhang H, Wu XW, Li ZM, Zhang JG. Combining the advantages of 1,3,4-oxadiazole and tetrazole enables achieving high-energy insensitive materials. Dalton Trans 2023; 52:12404-12409. [PMID: 37594183 DOI: 10.1039/d3dt02079g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Combining the advantages of energetic heterocycles to achieve high-energy insensitive explosives is a significant challenge. Herein, based on high-energy tetrazole rings and highly stable 1,3,4-oxadiazole rings, a series of novel nitrogen rich energetic compounds 5-9 were successfully constructed. The related compounds were fully characterized by EA, FT-IR, NMR, DSC, and MS, and compounds 6-9 were further confirmed by X-ray single crystal diffraction. Among them, the energetic ion salts 6-8 show high thermal stability (Tdec > 250 °C) and low mechanical sensitivity (IS > 40 J, FS > 360 N), as well as good energy properties (7552-8050 m s-1, 19.4-23.3 GPa). In particular, the azo compound 9 exhibits competent comprehensive performances (Tdec = 226.2 °C, D = 8502 m s-1, P = 28.9 GPa, IS = 32 J, FS = 320 N). These results suggest that the strategy of integrating tetrazole and 1,3,4-oxadiazole and employing an azo structure as a bridging unit are effective approaches to construct high-energy insensitive materials.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Mei-Qi Xu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Wen-Shuai Dong
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Zu-Jia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Han Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiao-Wei Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Zhi-Min Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
20
|
Xu Z, Hou T, Yang F, Zhang L, Zhang X, Liu W, Lang Q, Lu M, Xu Y. 2,2'-Azobis(1,5'-bitetrazole) with a N 10 Chain and 1,5'-Bitetrazolate-2 N-oxides: Construction of Highly Energetic Nitrogen-Rich Materials Based on C-N-Linked Tetrazoles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41580-41589. [PMID: 37609932 DOI: 10.1021/acsami.3c09652] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A series of high-nitrogen compounds, including a unique molecule 2,2'-azobis(1,5'-bitetrazole) with a branched N10 chain and 1,5'-bitetrazolate-2N-oxides, were synthesized successfully based on C-N-linked 1,5'-bistetrazoles using azo coupling of N-amine bonds and N-oxide introduction strategies. All compounds were characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and differential scanning calorimetry, in which the structures of five compounds were further determined by single-crystal X-ray diffraction analysis (2, T-N10B, 3a, 3b, and THX). The nitrogen contents of these five compounds range from 63.62 (THX) to 83.43% (T-N10B), which are much higher than that of CL-20 (38.34%). The heat of formation for the prepared compounds was calculated by using the Gaussian 09 program, with T-N10B having the highest value of 5.13 kJ g-1, about 6 times higher than that of CL-20 (0.83 kJ g-1). The calculated detonation performances by EXPLO5 v6.05.04 show that THX has excellent detonation performance (D = 9581 m s-1, P = 35.93 GPa) and a remarkable specific impulse (Isp = 284.9 s).
Collapse
Affiliation(s)
- Ze Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianyang Hou
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Feng Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linan Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaopeng Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Qing Lang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ming Lu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuangang Xu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
21
|
Yang X, Li N, Li Y, Pang S. Can Catenated Nitrogen Compounds with Amine-like Structures Become Candidates for High-Energy-Density Compounds? J Org Chem 2023; 88:12481-12492. [PMID: 37590038 PMCID: PMC10476612 DOI: 10.1021/acs.joc.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 08/18/2023]
Abstract
The worthwhile idea of whether amine-like catenated nitrogen compounds are stable enough to be used as high-energy materials was proposed and answered. Abstracting the NH3 structure into NR3 (R is the substituent) yields a new class of amine-like catenated nitrogen compounds. Most of the azole ring structures have a high nitrogen content and stability. Inspired by this idea, a series of new amine-like catenated nitrogen compounds (A1 to H5) were designed, and their basic energetic properties were calculated. The results showed that (1) amine-like molecular structures are often characterized by low density; however, the density of these compounds increases as the number of nitrogens in the azole ring increases; (2) these catenated nitrogen compounds generally have extremely high enthalpies of formation (882.91-2652.03 kJ/mol), and the detonation velocity of some compounds exceeds 9254.00 m/s; (3) the detonation performance of amine-like catenated nitrogen compounds designed based on imidazole and pyrazole rings is poor due to their low nitrogen content; and (4) the bond dissociation enthalpy of trigger bonds of most compounds is higher than 84 kJ/mol, indicating that these compounds have a certain thermodynamic stability. In summary, amine-like catenated nitrogen compounds have the potential to become energetic compounds with excellent detonation properties and should be considered to be synthesized by experimental chemists.
Collapse
Affiliation(s)
- Xinbo Yang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| | - Nan Li
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| | - Yuchuan Li
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
22
|
Abstract
The development of a new N-nitro type compound, dinitro-5,5-dimethylhydantoin (DNDMH), has been reported as an arene nitration reagent. The exploration demonstrated that arene nitration with DNDMH exhibited good tolerance with diverse functional groups. It is notable that, among the two N-nitro units of DNDMH, only the N-nitro unit on N1 was delivered to the nitroarene products. The N-nitro type compound with a single N-nitro unit on N2 cannot promote the arene nitration.
Collapse
Affiliation(s)
- Fuqiang Jia
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Ao Li
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi'an 710127, China
| |
Collapse
|
23
|
Chinnam AK, Staples RJ, Shreeve JM. Bisnitramide-Bridged N-Substituted Tetrazoles with Balanced Sensitivity and High Performance. Org Lett 2023; 25:1481-1485. [PMID: 36847214 DOI: 10.1021/acs.orglett.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In this study, a simple synthetic strategy for bridged bis(nitramide)-based N-substituted tetrazoles is described. All new compounds were isolated and fully characterized by sophisticated analytical techniques. The structures of the intermediate derivative and two final compounds were determined by single-crystal X-ray data. The structures of the intermediate derivative and two final compounds were determined by single crystal X-ray data. Thermostabilities and energetic properties of new bridged bisnitramide-based N-substituted tetrazoles were discussed and compared with known materials.
Collapse
Affiliation(s)
- Ajay Kumar Chinnam
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343 United States
| | - Richard J Staples
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343 United States
| |
Collapse
|
24
|
Feng S, Zhang B, Luo C, Liu Y, Zhu S, Gou R, Zhang S, Yin P, Pang S. Challenging the Limitations of Tetranitro Biimidazole through Introducing a gem-Dinitromethyl Scaffold. Org Lett 2023. [PMID: 36795059 DOI: 10.1021/acs.orglett.3c00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
A gem-dinitromethyl group was successfully introduced into the TNBI·2H2O structure (TNBI: 4,4',5,5'-tetranitro-2,2'-bi-1H-imidazole) to obtain 1-(dinitromethyl)-4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (DNM-TNBI). Benefiting from the transformation of an N-H proton into a gem-dinitromethyl group, the current limitations of TNBI were well solved. More importantly, DNM-TNBI has high density (1.92 g·cm-3, 298 K), good oxygen balance (15.3%), and excellent detonation properties (Dv = 9102 m·s-1, P = 37.6 GPa), suggesting that it has great potential as an oxidizer or a high-performance energetic material.
Collapse
Affiliation(s)
- Shangbiao Feng
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China.,School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Baoseng Zhang
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Chunwang Luo
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Yang Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Shuangfei Zhu
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Ruijun Gou
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Shuhai Zhang
- School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
25
|
Li J, Heng P, Wang B, Wang B, Liu N, Wang X. Comparative Study on the Unimolecular Decompositions of Energetic Regioisomers: BFTF-1 and BFTF-2. FIREPHYSCHEM 2023. [DOI: 10.1016/j.fpc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
26
|
Liu Y, Yi P, Gong L, Yi X, He P, Wang T, Zhang J. Three-Dimensional Metal-Organic Frameworks as Super Heat-Resistant Explosives: Potassium 4,4'-Oxybis[3,3'-(5-tetrazol)]furazan and Potassium (1,2,4-Triazol-3-yl)tetrazole. Inorg Chem 2023; 62:3186-3194. [PMID: 36757804 DOI: 10.1021/acs.inorgchem.2c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Heat-resistant explosives play an irreplaceable role in specialized applications. Two energetic metal-organic frameworks (EMOFs), potassium 4,4'-oxybis[3,3'-(5-tetrazol)]furazan and potassium (1,2,4-triazol-3-yl)tetrazole, featuring a three-dimensional metal-organic framework structure, were first synthesized and characterized by chemical (1H NMR, 13C NMR, MS, IR spectroscopy, and single-crystal XRD) and physicochemical analyses (sensitivity toward friction, impact, electrostatic, and DSC-TGA test). The new 3D EMOFs were found to show high thermostability, highly positive heat of formation, and suitable sensitivities. The Hirshfeld surface was further analyzed in order to explore the effect on sensitivities. Their detonation properties (detonation velocity, detonation pressure, etc.) were calculated by the EXPLO5 program. K2NTT exhibits extremely high decomposition temperatures of up to 361 °C; meanwhile, its detonation performance is comparable to that of TATB and other energetic potassium salts, which makes it a promising heat-resistant explosive.
Collapse
Affiliation(s)
- Yue Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Pingping Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Lishan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Xiaoyi Yi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Piao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Tingwei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
27
|
Ding N, Sun Q, Xu X, Li Y, Zhao C, Li S, Pang S. Can a heavy trinitromethyl group always result in a higher density? Chem Commun (Camb) 2023; 59:1939-1942. [PMID: 36722983 DOI: 10.1039/d2cc07077d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Density is an important property of energetic materials and is believed to increase with the addition of heavy trinitromethyl groups, as shown in previous literature. However, this study determined that the introduction of these groups produced a decrease in density, as evidenced by the lower density of 1-trinitromethyl-4-amino-3,5-dinitropyrazole ((TN-116), 1.899 g cm-3) compared to that of its precursor (4-amino-3,5-dinitropyrazole (LLM-116), 1.900 g cm-3). Mechanistic studies indicated that the reduced density was due to the significantly weaker H-bonding and π-π interactions of TN-116, which produced looser stacking compared to that of LLM-116.
Collapse
Affiliation(s)
- Ning Ding
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Qi Sun
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xudong Xu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaqiong Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. .,Yangtz Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Chaofeng Zhao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shenghua Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. .,Yangtz Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
28
|
Jia MX, Wang QD, Ren XF, Kang GJ. Benchmarking Composite Methods for Thermodynamic Properties of Nitro, Nitrite, and Nitrate Species Relevant to Energetic Materials. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Chen P, Dou H, Zhang J, He C, Pang S. Trinitromethyl Energetic Groups Enhance High Heats of Detonation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4144-4151. [PMID: 36629788 DOI: 10.1021/acsami.2c21047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The introduction of groups with high enthalpies of formation can effectively improve the detonation performance of the compounds. A series of novel energetic compounds (10-13) with high enthalpies of formation, high density, and high nitrogen-oxygen content were designed and synthesized by combining gem-polynitromethyl, 1,2,4-oxadiazole, furoxan, and azo groups. All the new compounds were thoroughly characterized by IR, NMR, elemental analysis, and differential scanning calorimetry. Compounds 10 and 11 were also further characterized with single-crystal X-ray diffraction. Compound 11 has high density (1.93 g cm-3), high enthalpy of formation (993.5 kJ mol-1), high detonation velocity (9411 m s-1), and high heat of detonation (6889 kJ kg-1) and is a potentially excellent secondary explosive.
Collapse
Affiliation(s)
- Peng Chen
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Hui Dou
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Jinya Zhang
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| | - Chunlin He
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 10081, China
| |
Collapse
|
30
|
High-pressure induced structural changes of energetic ionic salts: Dihydroxylammonium 3,3′-dinitro-5,5′-bis-1,2,4-triazole-1,1′-diolate (MAD-X1). Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Cai H, Wang X, Zheng Y, Jiang XX, Zeng J, Feng Y, Chen K. Prediction of erbium-nitrogen compounds as high-performance high-energy-density materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:085701. [PMID: 36537665 DOI: 10.1088/1361-648x/aca861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
To explore high-energy-density materials, intense attention has been focused on how to stabilize the N-N bond in nitrogen-rich compounds. Here, we report several stable phases of erbium-nitrogen compounds ErNxas high-energy-density materials. Specifically, the phase diagrams of stable high-pressure structuresImmm-ErN2,C2-ErN3,P1--ErN4, andP1--ErN6, are theoretically studied by combining first-principles calculation with particle swarm optimization algorithm. In these erbium-nitrogen compounds, the N-N bonds are stabilized as diatomic quasi-molecule N2, helical-like nitrogen chains, armchair nitrogen chains, and armchair-anti-armchair nitrogen chains, respectively. Among them, theP1--ErN6harbors excellent stability at high thermal up to 1000 K. More importantly, theP1--ErN6has outstanding explosive performance with high-energy-density of 1.30 kJ g-1, detonation velocity of 10.87 km s-1, and detonation pressure of 812.98 kbar, which shows its promising application prospect as high-energy-density materials.
Collapse
Affiliation(s)
- Huapeng Cai
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Xin Wang
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yueshao Zheng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Xing-Xing Jiang
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jiang Zeng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Yexin Feng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Keqiu Chen
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
32
|
Xiong J, Chang J, Cai J, Yin P, Pang S. N-Functionalization of 5-Aminotetrazoles: Balancing Energetic Performance and Molecular Stability by Introducing ADNP. Int J Mol Sci 2022; 23:15841. [PMID: 36555483 PMCID: PMC9779898 DOI: 10.3390/ijms232415841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
5-aminotetrazole is one of the most marked high-nitrogen tetrazole compounds. However, the structural modification of 5-aminotetrazole with nitro groups often leads to dramatically decreased molecular stability, while the N-bridging functionalization does not efficiently improve the density and performance. In this paper, we report on a straightforward approach for improving the density of 5-aminotetrazole by introducing 4-amino-3,5-dinitropyrazole. The following experimental and calculated properties show that nitropyrazole functionalization competes well with energetic performance and mechanic sensitivity. All compounds were thoroughly characterized using IR and NMR spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Two energetic compounds (DMPT-1 and DMPT-2) were further confirmed by implementing single-crystal X-ray diffraction studies. Compound DMPT-1 featured a high crystal density of 1.806 g cm-3, excellent detonation velocity (vD = 8610 m s-1), detonation pressure (P = 30.2 GPa), and impact sensitivity of 30 J.
Collapse
Affiliation(s)
- Jin Xiong
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinjie Chang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinxiong Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Yin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
33
|
Li J, Heng P, Wang B, Wang B, Liu N, Wang X. Initial Unimolecular Decomposition of 3,4-bis(3-fluorodinitromethylfuroxan-4-yl) furoxan from Quantum Mechanics and ReaxFF Molecular Dynamics Simulation. FIREPHYSCHEM 2022. [DOI: 10.1016/j.fpc.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Chaplygin DA, Larin AA, Meerov DB, Monogarov KA, Pronkin DK, Pivkina AN, Fershtat LL. (2-Vinyltetrazolyl)furoxans as New Potential Energetic Monomers. Chempluschem 2022; 87:e202200365. [PMID: 36513393 DOI: 10.1002/cplu.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/11/2022] [Indexed: 12/02/2022]
Abstract
A regioselective approach toward the synthesis of a set of new (2-vinyltetrazolyl)furoxans as potential energetic monomers has been realized. All target energetic materials were thoroughly characterized by spectral and analytical methods. Moreover, crystal structures of two representative heterocyclic systems were studied by single-crystal X-ray diffraction. Prepared high-energy substances have high combined nitrogen-oxygen content (63-71 %), high enthalpies of formation and good detonation parameters (D: 6.7-7.8 km s-1; P: 18-28 GPa). Mechanical sensitivities of the synthesized vinyltetrazoles range these explosives from highly sensitive to completely insensitive. Using calculations of molecular electrostatic potentials (ESP), structural factors influencing the impact sensitivity were revealed. Overall, newly synthesized (2-vinyltetrazolyl)furoxans are of interest as promising energetic monomers due to the presence of the vinyl moiety and explosophoric heterocyclic combination, while their performance exceeds that of benchmark explosive TNT.
Collapse
Affiliation(s)
- Daniil A Chaplygin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Alexander A Larin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
| | - Dmitry B Meerov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Konstantin A Monogarov
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Dmitry K Pronkin
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Alla N Pivkina
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow, 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russian Federation
- National Research University Higher School of Economics, 101000, Myasnitskaya str., 20, Moscow, Russian Federation
| |
Collapse
|
35
|
Cai J, Fei T, Li R, Xiong J, Zhang J, Yin P, Pang S. Intramolecular Assembly of Nitrobiazoles and an Ether Bridge: Toward Energetic Materials with Enhanced Energy and Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52951-52959. [PMID: 36378162 DOI: 10.1021/acsami.2c16164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recently, the construction of novel fused-ring frameworks has become one of the most significant innovative approaches to access high-energy and thermostable energetic molecules. In this work, an ether bridge was utilized as a building block to construct energetic fused-ring skeletons for the first time. Two new [5,7,5]-tricyclic N-heterocycle-based backbones, ditriazole-1,3,6-oxadiazepine and pyrazole-triazole-1,3,6-oxadiazepine, were synthesized via a straightforward one-step synthetic route and the energetic performances of their derivatives were further evaluated. Containing an additional oxygen atom, high-density pyrazole-triazole backbone, and high crystal packing coefficient, the asymmetric molecule 2,10,11-trinitro-5H,7H-pyrazolo[1,5-c][1,2,4]triazolo[5,1-e][1,3,6]oxadiazepine (NOB-3) features a high crystal density of 1.825 g cm-3, much superior to those of the symmetrical analogues 2,10-dinitro-5H,7H-bis([1,2,4]triazolo)[1,5-c:5',1'-e][1,3,6]oxadiazepine (NOB-4, d = 1.758 g cm-3) and D (d = 1.634 g cm-3). Meanwhile, the compounds NOB-3 and NOB-4 exhibit better thermal stability than the parent molecule DNBT (Td = 251 °C), and their decomposition temperatures reach up to 303 and 294 °C, respectively. The remarkable overall performance of NOB-3 and NOB-4 strongly suggests them as appropriate candidates for heat-resistant explosives. Our study may give new insights into the close correlation of the structural properties of energetic fused-ring frameworks, and the universality of the asymmetric heterocycles combination strategy for designing advanced high-energy density materials (HEDMs) was emphasized again.
Collapse
Affiliation(s)
- Jinxiong Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Fei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Li
- Jingzhou Municipal Ecological Environment Information and Testing and Evaluation Center, Jingzhou 434000, China
| | - Jin Xiong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinya Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
36
|
Makarenkov AV, Kiselev SS, Kononova EG, Dolgushin FM, Peregudov AS, Borisov YA, Ol’shevskaya VA. Synthesis, Characterization and DFT Study of a New Family of High-Energy Compounds Based on s-Triazine, Carborane and Tetrazoles. Molecules 2022; 27:7484. [PMID: 36364313 PMCID: PMC9656522 DOI: 10.3390/molecules27217484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/21/2024] Open
Abstract
An efficient one-pot synthesis of carborane-containing high-energy compounds was developed via the exploration of carbon-halogen bond functionalization strategies in commercially available 2,4,6-trichloro-1,3,5-triazine. The synthetic pathway first included the substitution of two chlorine atoms in s-triazine with 5-R-tetrazoles (R = H, Me, Et) units to form disubstituted tetrazolyl 1,3,5-triazines followed by the sequential substitution of the remaining chlorine atom in 1,3,5-triazine with carborane N- or S-nucleophiles. All new compounds were characterized by IR- and NMR spectroscopy. The structure of four new compounds was confirmed by single crystal X-ray diffraction analysis. The density functional theory method (DFT B3LYP/6-311 + G*) was used to study the geometrical structures, enthalpies of formation (EOFs), energetic properties and highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO) energies and the detonation properties of synthesized compounds. The DFT calculation revealed compounds processing the maximum value of the detonation velocity or the maximum value of the detonation pressure. Theoretical terahertz frequencies for potential high-energy density materials (HEDMs) were computed, which allow the opportunity for the remote detection of these compounds.
Collapse
Affiliation(s)
- Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Sergey S. Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky Prosp., 119071 Moscow, Russia
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Yurii A. Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| | - Valentina A. Ol’shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova Street, 119334 Moscow, Russia
| |
Collapse
|
37
|
Zelenov VP, Dalinger IL, Anisimov AA, Yu. Suponitsky K, Pivkina AN, Sheremetev AB. New heterocyclic furazano[3,4-d ][1,2,3]triazine system as a platform for energetic compound engineering. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Larin AA, Fershtat LL. Energetic heterocyclic N-oxides: synthesis and performance. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Wu B, Jiang X, Yang Y, Du H, Shi X, Li Z, Pei C. Continuous-Flow Oxidation of Amines Based on Nitrogen-Rich Heterocycles: A Facile and Sustainable Approach for Promising Nitro Derivatives. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Wu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xiue Jiang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yalin Yang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huiying Du
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Xianrui Shi
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
- Xi′an Modern Chemistry Research Institute, Xi′an 710065, P. R. China
| | - Zhaoqian Li
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Chonghua Pei
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
40
|
Yang T, Li X, Deng S, Qi X, Cong H, Cheng HG, Shi L, Zhou Q, Zhuang L. From N-H Nitration to Controllable Aromatic Mononitration and Dinitration-The Discovery of a Versatile and Powerful N-Nitropyrazole Nitrating Reagent. JACS AU 2022; 2:2152-2161. [PMID: 36186553 PMCID: PMC9516713 DOI: 10.1021/jacsau.2c00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Nitroaromatics are tremendously valuable organic compounds with a long history of being used as pharmaceuticals, agrochemicals, and explosives as well as vital intermediates to a wide variety of chemicals. Consequently, the exploration of aromatic nitration has become an important endeavor in both academia and industry. Herein, we report the identification of a powerful nitrating reagent, 5-methyl-1,3-dinitro-1H-pyrazole, from the N-nitro-type reagent library constructed using a practical N-H nitration method. This nitrating reagent behaves as a controllable source of the nitronium ion, enabling mild and scalable nitration of a broad range of (hetero)arenes with good functional group tolerance. Of note, our nitration method could be controlled by manipulating the reaction conditions to furnish mononitrated or dinitrated product selectively. The value of this method in medicinal chemistry has been well established by its efficient late-stage C-H nitration of complex biorelevant molecules. Density functional theory (DFT) calculations and preliminary mechanistic studies reveal that the powerfulness and versatility of this nitrating reagent are due to the synergistic "nitro effect" and "methyl effect".
Collapse
Affiliation(s)
- Tao Yang
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Xiaoqian Li
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Shuang Deng
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Xiaotian Qi
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Hengjiang Cong
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Hong-Gang Cheng
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| | - Liangwei Shi
- CAS
Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qianghui Zhou
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- TaiKang
Center for Life and Medical Sciences, Wuhan
University, 430072 Wuhan, China
- State
Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 345 Lingling
Road, Shanghai 200032, China
| | - Lin Zhuang
- The
Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan 430072, China
- Sauvage
Center for Molecular Sciences, Engineering Research Center of Organosilicon
Compounds & Materials (Ministry of Education), Hubei Key Lab on
Organic and Polymeric OptoElectronic Materials, College of Chemistry
and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan 430072, China
| |
Collapse
|
41
|
Xiong J, Cai J, Lai Q, Yin P, Pang S. Asymmetric assembly of pyrazole and 1,2,3-triazole with a methylene bridge: regioisomerism and energetic properties. Chem Commun (Camb) 2022; 58:10647-10650. [PMID: 36052761 DOI: 10.1039/d2cc02412h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric N-bridged strategy was employed to link two different energetic building blocks. The resulting compounds not only exhibit good crystal density and low sensitivity, but also demonstrate the key features of physiochemical properties and regioisomeric structures that enrich the horizon of regiochemistry of energetic compounds.
Collapse
Affiliation(s)
- Jin Xiong
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jinxiong Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Qi Lai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China. .,Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
42
|
Larin AA, Pivkina AN, Ananyev IV, Khakimov DV, Fershtat LL. Novel family of nitrogen-rich energetic (1,2,4-triazolyl) furoxan salts with balanced performance. Front Chem 2022; 10:1012605. [PMID: 36172000 PMCID: PMC9510683 DOI: 10.3389/fchem.2022.1012605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Nitrogen-rich energetic materials comprised of a combination of several heterocyclic subunits retain their leading position in the field of materials science. In this regard, a preparation of novel high-energy materials with balanced set of physicochemical properties is highly desired. Herein, we report the synthesis of a new series of energetic salts incorporating a (1,2,4-triazolyl) furoxan core and complete evaluation of their energetic properties. All target energetic materials were well characterized with IR and multinuclear NMR spectroscopy and elemental analysis, while compound 6 was further characterized by single-crystal X-ray diffraction study. Prepared nitrogen-rich salts have high thermal stability (up to 232°C), good experimental densities (up to 1.80 g cm−3) and high positive enthalpies of formation (344–1,095 kJ mol−1). As a result, synthesized energetic salts have good detonation performance (D = 7.0–8.4 km s−1; p = 22–32 GPa), while their sensitivities to impact and friction are quite low.
Collapse
Affiliation(s)
- Alexander A. Larin
- N. D. Zelinsky Institute of Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Chemistry, National Research University Higher School of Economics, Moscow, Russia
| | - Alla N. Pivkina
- N.N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Khakimov
- N. D. Zelinsky Institute of Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Chemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Leonid L. Fershtat,
| |
Collapse
|
43
|
Bystrov DM, Pivkina AN, Fershtat LL. An Alliance of Polynitrogen Heterocycles: Novel Energetic Tetrazinedioxide-Hydroxytetrazole-Based Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185891. [PMID: 36144627 PMCID: PMC9505947 DOI: 10.3390/molecules27185891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/05/2022]
Abstract
Energetic materials constitute one of the most important subtypes of functional materials used for various applications. A promising approach for the construction of novel thermally stable high-energy materials is based on an assembly of polynitrogen biheterocyclic scaffolds. Herein, we report on the design and synthesis of a new series of high-nitrogen energetic salts comprising the C-C linked 6-aminotetrazinedioxide and hydroxytetrazole frameworks. Synthesized materials were thoroughly characterized by IR and multinuclear NMR spectroscopy, elemental analysis, single-crystal X-ray diffraction and differential scanning calorimetry. As a result of a vast amount of the formed intra- and intermolecular hydrogen bonds, prepared ammonium and amino-1,2,4-triazolium salts are thermally stable and have good densities of 1.75–1.78 g·cm−3. All synthesized compounds show high detonation performance, reaching that of benchmark RDX. At the same time, as compared to RDX, investigated salts are less friction sensitive due to the formed net of hydrogen bonds. Overall, reported functional materials represent a novel perspective subclass of secondary explosives and unveil further opportunities for an assembly of biheterocyclic next-generation energetic materials.
Collapse
Affiliation(s)
- Dmitry M. Bystrov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Alla N. Pivkina
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 3 Kosygin Str., 119991 Moscow, Russia
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences 47 Leninsky Prosp., 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
44
|
Fershtat LL. Recent advances in the synthesis and performance of 1,2,4,5-tetrazine-based energetic materials. FIREPHYSCHEM 2022. [DOI: 10.1016/j.fpc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Zhilin ES, Ananyev IV, Pivkina AN, Fershtat LL. Renaissance of dinitroazetidine: novel hybrid energetic boosters and oxidizers. Dalton Trans 2022; 51:14088-14096. [PMID: 36040752 DOI: 10.1039/d2dt02445d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-oxygen organic materials constitute an important family of multipurpose high-energy materials. However, the preparation of energetic boosters and oxidizers for various civil and space technologies remains a challenging task and such materials usually require special precautions and fine tunability of their functional properties. To find a balance between energy and safety while retaining the oxidizing ability of target energetic materials, novel hybrid organic compounds comprising furoxan and 3,3-dinitroazetidine scaffolds enriched with additional nitro groups were synthesized. The prepared 3-(3,3-dinitroazetidinoyl)-4-nitrofuroxan and 3,3-dinitro-1-(2,2,2-trinitroethyl)azetidine have high nitrogen-oxygen contents (75-79%), positive oxygen balance to CO (up to +10.3%) and good experimental densities (1.75-1.80 g cm-3). A combination of superior detonation performance (D = 8.3-8.5 km s-1 and P = 32-33 GPa) and moderate mechanical sensitivity enables the application potential of these energetic materials as booster explosives or oxidizers. Additionally, their functional properties remain essentially competitive with other oxygen-rich energetic materials (pentaerythritol tetranitrate, ammonium dinitramide, and tetranitratoethane). Hirshfeld surface calculations supported by energy framework plots were also performed to better understand the relationship between the molecular structure and stability/sensitivity. This work unveils novel directions in the construction of balanced energetic boosters and oxidizers for various applications.
Collapse
Affiliation(s)
- Egor S Zhilin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation.
| | - Ivan V Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, 119991 Moscow, Russia.,National Research University Higher School of Economics 101000, Myasnitskaya str., 20, Moscow, Russia
| | - Alla N Pivkina
- N. N. Semenov Federal Research Centre for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation
| | - Leonid L Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russian Federation. .,National Research University Higher School of Economics 101000, Myasnitskaya str., 20, Moscow, Russia
| |
Collapse
|
46
|
Sheremetev AB. Efficient synthesis of nitrofurazans using HOF • MeCN. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3594-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
47
|
Nitration of N-(fluorodinitroethyl)pyrazoles. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Experimental enthalpies of formation and other physicochemical characteristics of compounds containing C-NO2 and C-N(O)=N-NO2 groups: a comparison. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Bauer J, Benz M, Klapötke TM, Stierstorfer J. Chemistry of 2,5-diaminotetrazole. Dalton Trans 2022; 51:11806-11813. [PMID: 35861528 DOI: 10.1039/d2dt01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,5-Diaminotetrazole is one of the most prominent high-nitrogen tetrazole compounds described in the literature. Interestingly the isomer 2,5-diaminotetrazole is nearly undescribed due to its challenging synthetic routes. 2,5-Diaminotetrazol (1) was successfully synthesized via amination of 5-aminotetrazole followed by various purification steps to separate it from isomeric 1,5-diaminotetrazole. In addition to the extensive characterization of 2,5-DAT further derivates by protonation, methylation and amination of the tetrazole ring were synthesized and characterized. The resulting tri-functionalized, ionic tetrazolium derivatives were combined with energetic anions (nitrate, perchlorate, azide, 5,5'-bistetrazole-1,1'-diolate (BTO2-)) to adjust and tune the properties of each compound. All compounds were intensively characterized including IR and multinuclear NMR spectroscopy, thermal analysis through DTA, X-ray diffraction and sensitivity testing. The purity was verified by CHNO elemental analysis and the energetic properties were calculated using the EXPLO5 code and the calculated enthalpy of formation (CBS-4M).
Collapse
Affiliation(s)
- Josh Bauer
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Maximilian Benz
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
50
|
Stierstorfer J, Benz M, Klapötke TM. 1‐Nitrimino‐5‐azidotetrazole ‒ Extending Energetic Tetrazole Chemistry. Chempluschem 2022; 87:e202200186. [DOI: 10.1002/cplu.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Joerg Stierstorfer
- Ludwig Maximilians Universität München Chemistry and Biochemistry Butenandtstr. 5-13Haus D 81377 München GERMANY
| | - Maximilian Benz
- LMU München: Ludwig-Maximilians-Universitat Munchen Chemistry Butenandtstr. 5-13 81377 München GERMANY
| | - Thomas M Klapötke
- LMU München: Ludwig-Maximilians-Universitat Munchen Chemistry Butenandtstr. 5-13 81477 München GERMANY
| |
Collapse
|