1
|
Zheng X, Li R. Mechanisms of how exogenous CO 2 affects methane production in an optimized high-solid anaerobic digester treating co-substrates of sewage sludge and food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175837. [PMID: 39209165 DOI: 10.1016/j.scitotenv.2024.175837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/04/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The CO2 addition could promote anaerobic digestion, but the exploration on bioconversion mechanisms of exogenous CO2 in high-solid anaerobic digestion (HSAD) system is still insufficient. This study investigated the performance of a CO2-added HSAD treating co-substrates of sewage sludge and food waste (FW). The maximum methane yield of 623.4 mL CH4/g-VSremoved was obtained with FW proportion of 75 %, organic loading of 3.7 g-VS/L/d and intermittent stirring. The CO2 addition could improve the methane yield by 11.8 % under the optimized conditions. Thermodynamic analysis showed that the most energetically favorable reaction for CH4 production was acetoclastic methanogenesis (AM), and the main bioconversion pathway of exogenous CO2 was homoacetogenesis (HA). Significantly higher methanogenic activity was achieved with CO2 addition during acetate decomposition testing, suggesting enhanced AM pathway. The AM methanogens Methanosaeta were also enriched. Therefore, the main mechanism of the enhanced methane production by CO2 addition was the facilitation of coupled HA-AM pathway.
Collapse
Affiliation(s)
- Xinyi Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
2
|
Qiu Y, Zhang J, Tong YW, He Y. Reverse electron transfer: Novel anaerobic methanogenesis pathway regulated through exogenous CO 2 synergized with biochar. BIORESOURCE TECHNOLOGY 2024; 401:130741. [PMID: 38670292 DOI: 10.1016/j.biortech.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Acid accumulation and carbon emission are two major challenges in anaerobic digestion. Syntrophic consortia can employ reverse electron transfer (RET) to facilitate thermodynamically unfavorable redox reactions during acetogenesis. However, the potential mechanisms and regulatory methods of RET remain unclear. This study examines the regulatory mechanisms by which exogenous CO2 affects RET and demonstrates that biochar maximizes CO2 solubility at 25.8 mmol/L to enhance effects further. CO2 synergized with biochar significantly increases cumulative methane production and propionate degradation rate. From the bioenergetic perspective, CO2 decreases energy level to a maximum of -87 kJ/mol, strengthening the thermodynamic viability. The underlying mechanism can be attributed to RET promotion, as indicated by increased formate dehydrogenase and enrichment of H2/formate-producing bacteria with their partner Methanospirillum hungatei. Moreover, the 5 % 13CH4 and methane contribution result show that CO2 accomplishes directed methanogenesis. Overall, this investigation riches the roles of CO2 and biochar in AD surrounding RET.
Collapse
Affiliation(s)
- Yang Qiu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang P, Zhang J, Zhang T, Zhang L, He Y. Zero-valent iron enhanced methane production of anaerobic digestion by reinforcing microbial electron bifurcation coupled with direct inter-species electron transfer. WATER RESEARCH 2024; 255:121428. [PMID: 38493742 DOI: 10.1016/j.watres.2024.121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Zero-valent iron (ZVI) can facilitate methanogens of anaerobic digestion (AD). However, the impact of ZVI on the micro-energetic strategies of AD microorganisms remains uncertain. This study aimed to elucidate the development of an energy conservation model involving direct interspecies electron transfer (DIET) and electron bifurcate (EB) by using four types of ZVI. Overall, the ZVI addition resulted in a substantial increase in methane production (1.26 to 2.18 times higher), and the effect of boron (B) doped ZVI was particularly pronounced. The underlying mechanism may be the formation of energy harvest pathway related to DIET. In detail, B-doped ZVI could enhance its interfacial binding to cytochrome c. Decreased polar solvation energy from 20.473 to 1.509 kJ/mol is beneficial for electron transfer, thereby augmenting the flavin-bounded Cytc activity and DIET process. Besides, ZVI-enhanced EB enzyme activity like HdrA2B2C2-MvhAGD could improve the EB process, which can couple with DIET for electron transfer and energy conservation. Energy analysis based on EB-coupled DIET metabolism pathways demonstrated that the ATP saved in this coupled model theoretically line in 0.25 to 0.5 mol ATP/mol substrate. Overall, this study offers valuable insights into microbial energetic strategies pertaining to the utilization of conductive materials, with the target of enhancing methane recovery efficiency from organic waste.
Collapse
Affiliation(s)
- Pengshuai Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Tengyu Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zhao ZJ, Liu XL, Wang YX, Wang YS, Shen JY, Pan ZC, Mu Y. Material and microbial perspectives on understanding the role of biochar in mitigating ammonia inhibition during anaerobic digestion. WATER RESEARCH 2024; 255:121503. [PMID: 38537488 DOI: 10.1016/j.watres.2024.121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/24/2024]
Abstract
With the increasing adoption of carbon-based strategies to enhance methanogenic processes, there is a growing concern regarding the correlation between biochar properties and its stimulating effects on anaerobic digestion (AD) under ammonia inhibition. This study delves into the relevant characteristics and potential mechanisms of biochar in the context of AD system under ammonia inhibition. The introduction of optimized biochar, distinguished by rich CO bond, abundant defect density, and high electronic capacity, resulted in a significant reduction in the lag period of anaerobic digestion system under 5.0 g/L ammonia stress, approximately by around 63 % compared to the control one. Biochar helps regulate the community structure, promotes the accumulation of acetate-consuming bacteria, in the AD system under ammonia inhibition. More examinations show that biochar promotes direct interspecies electron transfer in AD system under ammonia inhibition, as evidenced by diminished levels of bound electroactive extracellular polymeric substances, increased abundance of electroactive bacteria, and notably, the up-regulation of direct interspecies electron transfer associated genes, including the conductive pili and Cytochrome C genes, as revealed by meta-transcriptomic analysis. Additionally, gene expression related to proteins associated with ammonium detoxification were found to be up-regulated in systems supplemented with biochar. These findings provide essential evidence and insights for the selection and potential engineering of effective biochar to enhance AD performance under ammonia inhibition.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan-Shan Wang
- School of Geographic Sciences, Nantong University, Nantong 226007, China
| | - Jin-You Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Cheng Pan
- Laboratory of Urban Wastewater Treatment Technology in Sichuan Province of Haitian Water Group Co., Ltd, Chengdu 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Yee MO, Ottosen LDM, Rotaru A. Electrical current disrupts the electron transfer in defined consortia. Microb Biotechnol 2024; 17:e14373. [PMID: 38070192 PMCID: PMC10832552 DOI: 10.1111/1751-7915.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 02/03/2024] Open
Abstract
Improving methane production through electrical current application to anaerobic digesters has garnered interest in optimizing such microbial electrochemical technologies, with claims suggesting direct interspecies electron transfer (DIET) at the cathode enhances methane yield. However, previous studies with mixed microbial communities only reported interspecies interactions based on species co-occurrence at the cathode, lacking insight into how a poised cathode influences well-defined DIET-based partnerships. To address this, we investigated the impact of continuous and discontinuous exposure to a poised cathode (-0.7 V vs. standard hydrogen electrode) on a defined consortium of Geobacter metallireducens and Methanosarcina barkeri, known for their DIET capabilities. The physiology of DIET consortia exposed to electrical current was compared to that of unexposed consortia. In current-exposed incubations, overall metabolic activity and cell numbers for both partners declined. The consortium, receiving electrons from the poised cathode, accumulated acetate and hydrogen, with only 32% of the recovered electrons allocated to methane production. Discontinuous exposure intensified these detrimental effects. Conversely, unexposed control reactors efficiently converted ethanol to methane, transiently accumulating acetate and recovering 88% of electrons in methane. Our results demonstrate the overall detrimental effect of electrochemical stimulation on a DIET consortium. Besides, the data indicate that the presence of an alternative electron donor (cathode) hinders efficient electron retrieval by the methanogen from Geobacter, and induces catabolic repression of oxidative metabolism in Geobacter. This study emphasizes understanding specific DIET-based interactions to enhance methane production during electrical stimulation, providing insights for optimizing tailored interspecies partnerships in microbial electrochemical technologies.
Collapse
Affiliation(s)
- Mon Oo Yee
- Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Nature EnergyOdenseDenmark
| | | | | |
Collapse
|
6
|
Piaggio A, Mittapalli S, Calderón-Franco D, Weissbrodt D, van Lier J, de Kreuk M, Lindeboom R. The fate of sulfamethoxazole and trimethoprim in a micro-aerated anaerobic membrane bioreactor and the occurrence of antibiotic resistance in the permeate. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2344-2363. [PMID: 37966187 PMCID: wst_2023_324 DOI: 10.2166/wst.2023.324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
This study investigates the effects, conversions, and resistance induction, following the addition of 150 μg·L-1 of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in a laboratory-scale micro-aerated anaerobic membrane bioreactor (MA-AnMBR). TMP and SMX were removed at 97 and 86%, indicating that micro-aeration did not hamper their removal. These antibiotics only affected the pH and biogas composition of the process, with a significant change in pH from 7.8 to 7.5, and a decrease in biogas methane content from 84 to 78%. TMP was rapidly adsorbed onto the sludge and subsequently degraded during the long solids retention time of 27 days. SMX adsorption was minimal, but the applied hydraulic retention time of 2.6 days was sufficiently long to biodegrade SMX. The levels of three antibiotic-resistant genes (ARGs) (sul1, sul2, and dfrA1) and one mobile genetic element biomarker (intI1) were analyzed by qPCR. Additions of the antibiotics increased the relative abundances of all ARGs and intI1 in the MA-AnMBR sludge, with the sul2 gene folding 15 times after 310 days of operation. The MA-AnMBR was able to reduce the concentration of antibiotic-resistant bacteria (ARB) in the permeate by 3 log.
Collapse
Affiliation(s)
- Antonella Piaggio
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands E-mail:
| | - Srilekha Mittapalli
- NX Filtration, Nanotechnology Research, Josink Esweg 44, 7545 PN, Enschede, The Netherlands
| | - David Calderón-Franco
- Faculty of Applied Science, Department of Biotechnology, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
| | - David Weissbrodt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Jules van Lier
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Merle de Kreuk
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| | - Ralph Lindeboom
- Faculty of Civil Engineering and Geosciences, Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
7
|
Jin Y, Lu Y. Syntrophic Propionate Oxidation: One of the Rate-Limiting Steps of Organic Matter Decomposition in Anoxic Environments. Appl Environ Microbiol 2023; 89:e0038423. [PMID: 37097179 PMCID: PMC10231205 DOI: 10.1128/aem.00384-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Syntrophic propionate oxidation is one of the rate-limiting steps during anaerobic decomposition of organic matter in anoxic environments. Syntrophic propionate-oxidizing bacteria (SPOB) are members of the "rare biosphere" living at the edge of the thermodynamic limit in most natural habitats. Hitherto, only 10 bacterial species capable of syntrophic propionate oxidization have been identified. SPOB employ different metabolisms for propionate oxidation (e.g., methylmalonyl-CoA pathway and C6 dismutation pathway) and show diverse life strategies (e.g., obligately and facultatively syntrophic lifestyle). The flavin-based electron bifurcation/confurcation (FBEB/C) systems have been proposed to help solve the thermodynamic dilemma during the formation of the low-potential products H2 and formate. Molecular ecological approaches, such as DNA stable isotope probing (DNA-SIP) and metagenomics, have been used to detect SPOB in natural environments. Furthermore, the biogeographical pattern of SPOB has been recently described in paddy soils. A comprehensive understanding of SPOB is essential for better predicting and managing organic matter decomposition and carbon cycling in anoxic environments. In this review, we described the critical role of syntrophic propionate oxidation in anaerobic decomposition of organic matter, phylogenetic and metabolic diversity, life strategies and ecophysiology, composition of syntrophic partners, and pattern of biogeographic distribution of SPOB in natural environments. We ended up with a few perspectives for future research.
Collapse
Affiliation(s)
- Yidan Jin
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
9
|
Zhao J, Li Y, Zhang Z. Hydraulic retention time and pressure affect anaerobic digestion process treating synthetic glucose wastewater. BIORESOURCE TECHNOLOGY 2023; 370:128531. [PMID: 36574891 DOI: 10.1016/j.biortech.2022.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
High-pressure anaerobic digestion (HPAD) can directly upgrade biogas (CH4 content to 90 %) within a reactor. Understanding of how HPAD-related microbiomes are constructed by operational parameters (hydraulic retention time (HRT) and pressure) and their interactions within the biochemical process remain underexplored. In this study, an HPAD reactor was operated at five different HRT (from 40 to 13 d), with pressure around 10-13 bar. In HPAD, pressure was the driving force behind CH4 content. Low HRTs (13-20 d) for HPAD led to volatile fatty acids accumulation, which occurred earlier than that in normal-pressure digestion. HRT mainly affected the archaeal community, whereas pressure mostly affected the bacterial community. Hydrogenotrophic methanogen Methanobacterium prevailed at low HRTs (13-20 d). When operating continuous HPAD, attention should be paid to HRT optimization, as low HRTs (e.g., 13 d) impaired the activity of CH4-synthesizing enzyme Methyl-coenzyme M reductase.
Collapse
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Hua X, Han J, Zhou X, Xu Y. Gas pressure intensifying oxygen transfer to significantly improving the bio‐oxidation productivity of whole‐cell catalysis. AIChE J 2022. [DOI: 10.1002/aic.18005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| |
Collapse
|
11
|
Straathof AJ. Modelling of end-product inhibition in fermentation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
13
|
Westerholm M, Calusinska M, Dolfing J. Syntrophic propionate-oxidizing bacteria in methanogenic systems. FEMS Microbiol Rev 2022; 46:fuab057. [PMID: 34875063 PMCID: PMC8892533 DOI: 10.1093/femsre/fuab057] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022] Open
Abstract
The mutual nutritional cooperation underpinning syntrophic propionate degradation provides a scant amount of energy for the microorganisms involved, so propionate degradation often acts as a bottleneck in methanogenic systems. Understanding the ecology, physiology and metabolic capacities of syntrophic propionate-oxidizing bacteria (SPOB) is of interest in both engineered and natural ecosystems, as it offers prospects to guide further development of technologies for biogas production and biomass-derived chemicals, and is important in forecasting contributions by biogenic methane emissions to climate change. SPOB are distributed across different phyla. They can exhibit broad metabolic capabilities in addition to syntrophy (e.g. fermentative, sulfidogenic and acetogenic metabolism) and demonstrate variations in interplay with cooperating partners, indicating nuances in their syntrophic lifestyle. In this review, we discuss distinctions in gene repertoire and organization for the methylmalonyl-CoA pathway, hydrogenases and formate dehydrogenases, and emerging facets of (formate/hydrogen/direct) electron transfer mechanisms. We also use information from cultivations, thermodynamic calculations and omic analyses as the basis for identifying environmental conditions governing propionate oxidation in various ecosystems. Overall, this review improves basic and applied understanding of SPOB and highlights knowledge gaps, hopefully encouraging future research and engineering on propionate metabolism in biotechnological processes.
Collapse
Affiliation(s)
- Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentre, Almas allé 5, SE-75007 Uppsala, Sweden
| | - Magdalena Calusinska
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, rue du Brill 41, L-4422 Belvaux, Luxembourg
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Wynne Jones 2.11, Ellison Place, Newcastle-upon-Tyne NE1 8QH, UK
| |
Collapse
|
14
|
De Crescenzo C, Marzocchella A, Karatza D, Molino A, Ceron-Chafla P, Lindeboom REF, van Lier JB, Chianese S, Musmarra D. Modelling of autogenerative high-pressure anaerobic digestion in a batch reactor for the production of pressurised biogas. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:20. [PMID: 35418101 PMCID: PMC8857836 DOI: 10.1186/s13068-022-02117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
Abstract
Background Pressurised anaerobic digestion allows the production of biogas with a high content of methane and, at the same time, avoid the energy costs for the biogas upgrading and injection into the distribution grid. The technology carries potential, but the research faces practical constraints by a.o. the capital investment needed in high-pressure reactors and sensors and associated sampling limitations. In this work, the kinetic model of an autogenerative high-pressure anaerobic digestion of acetate, as the representative compound of the aceticlastic methanogenesis route, in batch configuration, is proposed to predict the dynamic performance of pressurised digesters and support future experimental work. The modelling of autogenerative high-pressure anaerobic digestion in batch configuration, which is not extensively studied and simulated in the present literature, was developed, calibrated, and validated by using experimental results available from the literature. Results Under high-pressure conditions, the assessment of the Monod maximum specific uptake rate, the half-saturation constant and the first-order decay rate was carried out, and the values of 5.9 kg COD kg COD−1 d−1, 0.05 kg COD m−3 and 0.02 d−1 were determined, respectively. By using the predicted values, excellent fittings of the final pressure, the CH4 molar fraction and the specific methanogenic yield calculation were obtained. Likewise, the variation in the gas–liquid mass transfer coefficient by several orders of magnitude showed negligible effects on the model predictive values in terms of methane molar fraction of the produced biogas, while the final pressure seemed to be slightly influenced. Conclusions The proposed model allowed to estimate the Monod maximum specific uptake rate for acetate, the half-saturation rate for acetate and the first-order decay rate constant, which were comparable with literature values reported for well-studied methanogens under anaerobic digestion at atmospheric pressure. The methane molar fraction and the final pressure predicted by the model showed different responses towards the variation of the gas–liquid mass transfer coefficient since the former seemed not to be affected by the variation of the gas–liquid mass transfer coefficient; in contrast, the final pressure seemed to be slightly influenced. The proposed approach may also allow to potentially identify the methanogens species able to be predominant at high pressure.
Collapse
Affiliation(s)
- Carmen De Crescenzo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Antonia Marzocchella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Despina Karatza
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Antonio Molino
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CR Portici Piazzale Enrico Fermi, 1, 80055, Portici, NA, Italy
| | - Pamela Ceron-Chafla
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Jules B van Lier
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Simeone Chianese
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| |
Collapse
|
15
|
Feng D, Xia A, Huang Y, Zhu X, Zhu X, Liao Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127100. [PMID: 34523483 DOI: 10.1016/j.jhazmat.2021.127100] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/23/2023]
Abstract
Anaerobic digestion (AD) has been considered an energy efficient strategy in treating high concentration organic wastewater rich in volatile fatty acids (VFAs). Continuous stirred tank reactors (CSTRs) have been widely applied in the AD process; however, they may suffer from low efficiency with a relatively short hydraulic retention time (HRT) in wastewater treatment. In this study, carbon cloth was supplemented to investigate the effects on syntrophic degradation of VFA wastewater by increasing organic loading rates (OLRs) under various mixing conditions in CSTRs operating at an HRT of 10 days. The results demonstrated that the methane production rate could be increased by 10.1-23.0% and the chemical oxygen demand (COD) removal efficiency was enhanced up to 14.6% with carbon cloth addition in the unmixed reactor at OLRs between 2.1 and 4.2 g COD/L-d. In contrast, the enhancement effect was only observed under a high OLR of 4.2 g COD/L-d in well-mixed anaerobic digester. Cyclic voltammetry results indicated that an electroactive biofilm was formed on the surface of carbon cloth. The microbial communities revealed that the electroactive biofilms had the highest abundances of exoelectrogen Sedimentibacter and electrotrophic methanogen Methanosaeta species, which were 5.5 and 4.2 times higher than the suspension, respectively.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
16
|
Ren L, Kong X, Su J, Zhao D, Dong W, Liu C, Liu C, Luo L, Yan B. Oriented conversion of agricultural bio-waste to value-added products - A schematic review towards key nutrient circulation. BIORESOURCE TECHNOLOGY 2022; 346:126578. [PMID: 34953993 DOI: 10.1016/j.biortech.2021.126578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Agriculture bio-waste is one of the largest sectors for nutrient circulation and resource recovery. This review intends to summarize the possible scheme through coupling chemical conversion of crop straws to biochar and biological conversion of livestock waste to value-added products thus reaching key nutrient circulation. Chemical conversion of crop straws to biochar was reviewed through summarizing the preparation methods and functional modification of biochar. Then, high-solid two-phase anaerobic conversion of agriculture bio-waste to value-added products and improved performance of bio-conversion through byproduct gases reuse and biochar supplementation were reviewed. Finally, high quality compost production through amendment of biochar and residual digestate was proposed with analysis of reduced nitrogen emission and carbon balance. The biological mechanism of synergistic regulation of carbon and nitrogen loss during bio-conversion with biochar was also reviewed. This will provide a model for synergistic conversion of agricultural wastes to value added products pursuing key nutrient circulation.
Collapse
Affiliation(s)
- Liheng Ren
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoliang Kong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Jian Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Danyang Zhao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjian Dong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chunmiao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chao Liu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Sahoo KK, Datta S, Goswami G, Das D. Two-stage integrated process for bio-methanol production coupled with methane and carbon dioxide sequestration: Kinetic modelling and experimental validation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113927. [PMID: 34638043 DOI: 10.1016/j.jenvman.2021.113927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
The study demonstrates a two-stage integrated process for bio-methanol production using Methylosinus trichosporium NCIMB 11131, coupled with sequestration of methane and carbon dioxide. The first stage involved generation of methanotrophic biomass via sequestration of methane; which was used as biocatalyst to reduce carbon dioxide into methanol in the second stage. Maximum biomass titer of 3.39 g L-1 and productivity of 0.60 g L-1 d-1 were achieved in semi-batch stirred tank reactor with methane concentration in the inlet gas mixture of 2.5% v/v and gas flow rate of 0.5 vvm. Methane fixation rate was estimated to be 0.32 g L-1 d-1. Maximum methanol titer of 0.58 g L-1 was achieved at headspace carbon dioxide concentration of 50% v/v and liquid to headspace volume ratio 10:90. Subsequently, a kinetic model was developed to predict and understand the system behaviour in terms of dynamic profile of growth, methanol formation, concentration of dissolved methane or carbon dioxide in the aqueous phase and headspace carbon dioxide concentration, in response to varying process parameters. The model can serve as a tool for estimation of process parameters and aid in overall production optimization.
Collapse
Affiliation(s)
- Krishna Kalyani Sahoo
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Swagata Datta
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Gargi Goswami
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) University, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Zhao J, Li Y, Dong R. Recent progress towards in-situ biogas upgrading technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149667. [PMID: 34426339 DOI: 10.1016/j.scitotenv.2021.149667] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Yu Li
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| | - Renjie Dong
- College of Engineering, China Agricultural University, Qinghuadonglu No.17, 100083 Beijing, China.
| |
Collapse
|
19
|
Yang HY, Hou NN, Wang YX, Liu J, He CS, Wang YR, Li WH, Mu Y. Mixed-culture biocathodes for acetate production from CO 2 reduction in the microbial electrosynthesis: Impact of temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148128. [PMID: 34098277 DOI: 10.1016/j.scitotenv.2021.148128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
The temperature effect on bioelectrochemical reduction of CO2 to acetate with a mixed-culture biocathode in the microbial electrosynthesis was explored. The results showed that maximum acetate amount of 525.84 ± 1.55 mg L-1 and fastest acetate formation of 49.21 ± 0.49 mg L-1 d-1 were obtained under mesophilic conditions. Electron recovery efficiency for CO2 reduction to acetate ranged from 14.50 ± 2.20% to 64.86 ± 2.20%, due to propionate, butyrate and H2 generation. Mesophilic conditions were demonstrated to be more favorable for biofilm formation on the cathode, resulting in a stable and dense biofilm. At phylum level, the relative abundance of Bacteroidetes phylum in the biofilm remarkably increased under mesophilic conditions, compared with that at psychrophilic and thermophilic conditions. At genus level, the Clostridium, Treponema, Acidithiobacillus, Acetobacterium and Acetoanaerobium were found to be dominated genera in the biofilm under mesophilic conditions, while genera diversity decreased under psychrophilic and thermophilic conditions.
Collapse
Affiliation(s)
- Hou-Yun Yang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Nan-Nan Hou
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China; School of Physics and Materials Engineering, Hefei Normal University, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.
| | - Jing Liu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Chuan-Shu He
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Yi-Ran Wang
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Wei-Hua Li
- Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
20
|
Feng D, Guo X, Lin R, Xia A, Huang Y, Liao Q, Zhu X, Zhu X, Murphy JD. How can ethanol enhance direct interspecies electron transfer in anaerobic digestion? Biotechnol Adv 2021; 52:107812. [PMID: 34364985 DOI: 10.1016/j.biotechadv.2021.107812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/25/2023]
Abstract
Anaerobic digestion (AD) of organic waste to produce biogas is a mature biotechnology commercialised for decades. However, the relatively recent discovery of direct interspecies electron transfer (DIET) brings a new opportunity to improve the efficiency of biogas technology. DIET may replace mediated interspecies electron transfer (MIET) by efficient electron transfer between exoelectrogens and electrotrophic methanogens, thereby enhancing yields and rates of biogas production. Ethanol, as the initial electron donor in the discovery of the DIET pathway, is now a "hot topic" in the literature. Recent studies have indicated that ethanol in AD functions not only as the substrate, but also as the precursor to stimulate DIET by enriching exoelectrogens and electrotrophic methanogens for co-digesting complex organic wastes. This review aims to highlight the state of the art and recent advances in ethanol-based DIET in AD. The DIET associated reactions of ethanol oxidation and carbon dioxide reduction are assessed by thermodynamic analysis to reveal the extent of the potential for improvement of the AD processes that utilizes DIET pathways. Three ethanol-based DIET strategies are discussed: (1) ethanol as the sole substrate supplemented with conductive materials in AD, (2) ethanol co-digestion with complex substrates and (3) ethanol-type fermentation prior to AD. This review aims to chart the pathways for improved AD performance by utilizing ethanol-based DIET in specific treatments of biological wastes.
Collapse
Affiliation(s)
- Dong Feng
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland; Civil, Structural, and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Xu S, Qiao Z, Luo L, Sun Y, Wong JWC, Geng X, Ni J. On-site CO 2 bio-sequestration in anaerobic digestion: Current status and prospects. BIORESOURCE TECHNOLOGY 2021; 332:125037. [PMID: 33840612 DOI: 10.1016/j.biortech.2021.125037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The advantages of anaerobic digestion (AD) technology in organic solid waste treatment for bioenergy recovery are evidenced in worldwide. Recently, more attention has been paid to on-site biogas research, as well as biogenic CO2 sequestration from AD plant, to promote "carbon neutral". Single-phase and two-phase AD system can be incorporated with various CO2 bioconversion technologies through H2 mediated CO2 bioconversion (in-situ and ex-situ biogas upgrading), or other emerging strategies for CO2 fixation without exogenous H2 injection; these include in-situ direct interspecies electron transfer reinforcement, electromethanogenesis, and off-gas reutilization. The existing and potential scenarios for on-site CO2 bio-sequestration within the AD framework are reviewed from the perspectives of metabolic pathways, functional microorganisms, the limitations on reaction kinetics. This review concluded that on-site CO2 bio-sequestration is a promising solution to reduce greenhouse gas emissions and increase renewable energy recovery.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zihao Qiao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Yongqi Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region, China; Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region, China.
| | - Xueyu Geng
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jing Ni
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
22
|
Ceron-Chafla P, Chang YT, Rabaey K, van Lier JB, Lindeboom REF. Directional Selection of Microbial Community Reduces Propionate Accumulation in Glycerol and Glucose Anaerobic Bioconversion Under Elevated pCO 2. Front Microbiol 2021; 12:675763. [PMID: 34220760 PMCID: PMC8242345 DOI: 10.3389/fmicb.2021.675763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Volatile fatty acid accumulation is a sign of digester perturbation. Previous work showed the thermodynamic limitations of hydrogen and CO2 in syntrophic propionate oxidation under elevated partial pressure of CO2 (pCO2). Here we study the effect of directional selection under increasing substrate load as a strategy to restructure the microbial community and induce cross-protection mechanisms to improve glucose and glycerol conversion performance under elevated pCO2. After an adaptive laboratory evolution (ALE) process, viable cell density increased and predominant microbial groups were modified: an increase in Methanosaeta and syntrophic propionate oxidizing bacteria (SPOB) associated with the Smithella genus was found with glycerol as the substrate. A modest increase in SPOB along with a shift in the predominance of Methanobacterium toward Methanosaeta was observed with glucose as the substrate. The evolved inoculum showed affected diversity within archaeal spp. under 5 bar initial pCO2; however, higher CH4 yield resulted from enhanced propionate conversion linked to the community shifts and biomass adaptation during the ALE process. Moreover, the evolved inoculum attained increased cell viability with glucose and a marginal decrease with glycerol as the substrate. Results showed differences in terms of carbon flux distribution using the evolved inoculum under elevated pCO2: glucose conversion resulted in a higher cell density and viability, whereas glycerol conversion led to higher propionate production whose enabled conversion reflected in increased CH4 yield. Our results highlight that limited propionate conversion at elevated pCO2 resulted from decreased cell viability and low abundance of syntrophic partners. This limitation can be mitigated by promoting alternative and more resilient SPOB and building up biomass adaptation to environmental conditions via directional selection of microbial community.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Yu-Ting Chang
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|