1
|
Dees J, Oke K, Goldstein H, McCoy ST, Sanchez DL, Simon AJ, Li W. Cost and Life Cycle Emissions of Ethanol Produced with an Oxyfuel Boiler and Carbon Capture and Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5391-5403. [PMID: 36943504 PMCID: PMC10077580 DOI: 10.1021/acs.est.2c04784] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Decarbonization of transportation fuels represents one of the most vexing challenges for climate change mitigation. Biofuels derived from corn starch have offered modest life cycle greenhouse gas (GHG) emissions reductions over fossil fuels. Here we show that capture and storage of CO2 emissions from corn ethanol fermentation achieves ∼58% reduction in the GHG intensity (CI) of ethanol at a levelized cost of 52 $/tCO2e abated. The integration of an oxyfuel boiler enables further CO2 capture at modest cost. This system yields a 75% reduction in CI to 15 gCO2e/MJ at a minimum ethanol selling price (MESP) of $2.24/gallon ($0.59/L), a $0.31/gallon ($0.08/L) increase relative to the baseline no intervention case. The levelized cost of carbon abatement is 84 $/tCO2e. Sensitivity analysis reveals that carbon-neutral or even carbon-negative ethanol can be achieved when oxyfuel carbon capture is stacked with low-CI alternatives to grid power and fossil natural gas. Conservatively, fermentation and oxyfuel CCS can reduce the CI of conventional ethanol by a net 44-50 gCO2/MJ. Full implementation of interventions explored in the sensitivity analysis would reduce CI by net 79-85 gCO2/MJ. Integrated oxyfuel and fermentation CCS is shown to be cost-effective under existing U.S. policy, offering near-term abatement opportunities.
Collapse
Affiliation(s)
- John Dees
- Energy
and Resources Group, University of California,
Berkeley, 345 Giannini Hall, Berkeley, California 94720, United States
| | - Kafayat Oke
- Department
of Chemical and Petroleum Engineering, University
of Calgary, 750 Campus Dr NW, Calgary, AB T2N 4H9, Canada
| | - Hannah Goldstein
- Lawrence
Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Sean T. McCoy
- Department
of Chemical and Petroleum Engineering, University
of Calgary, 750 Campus Dr NW, Calgary, AB T2N 4H9, Canada
| | - Daniel L. Sanchez
- Environmental
Science, Policy, and Management (ESPM), University of California, Berkeley, 130 Mulford Hall #3114, Berkeley, California 94720, United States
| | - A. J. Simon
- Lawrence
Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Wenqin Li
- Lawrence
Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
2
|
Wang Y, Baral NR, Yang M, Scown CD. Co-Processing Agricultural Residues and Wet Organic Waste Can Produce Lower-Cost Carbon-Negative Fuels and Bioplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2958-2969. [PMID: 36747467 PMCID: PMC9948286 DOI: 10.1021/acs.est.2c06674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Scalable, low-cost biofuel and biochemical production can accelerate progress on the path to a more circular carbon economy and reduced dependence on crude oil. Rather than producing a single fuel product, lignocellulosic biorefineries have the potential to serve as hubs for the production of fuels, production of petrochemical replacements, and treatment of high-moisture organic waste. A detailed techno-economic analysis and life-cycle greenhouse gas assessment are developed to explore the cost and emission impacts of integrated corn stover-to-ethanol biorefineries that incorporate both codigestion of organic wastes and different strategies for utilizing biogas, including onsite energy generation, upgrading to bio-compressed natural gas (bioCNG), conversion to poly(3-hydroxybutyrate) (PHB) bioplastic, and conversion to single-cell protein (SCP). We find that codigesting manure or a combination of manure and food waste alongside process wastewater can reduce the biorefinery's total costs per metric ton of CO2 equivalent mitigated by half or more. Upgrading biogas to bioCNG is the most cost-effective climate mitigation strategy, while upgrading biogas to PHB or SCP is competitive with combusting biogas onsite.
Collapse
Affiliation(s)
- Yan Wang
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
- Life-Cycle,
Economics, and Agronomy Division, Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nawa R. Baral
- Life-Cycle,
Economics, and Agronomy Division, Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Minliang Yang
- Life-Cycle,
Economics, and Agronomy Division, Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Corinne D. Scown
- Energy
& Biosciences Institute, University
of California, Berkeley, Berkeley, California 94720, United States
- Life-Cycle,
Economics, and Agronomy Division, Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Energy
Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Stewart D, Cortés-Peña YR, Li Y, Stillwell AS, Khanna M, Guest JS. Implications of Biorefinery Policy Incentives and Location-Specific Economic Parameters for the Financial Viability of Biofuels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2262-2271. [PMID: 36730787 PMCID: PMC9933530 DOI: 10.1021/acs.est.2c07936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Cellulosic biofuels are part of a portfolio of solutions to address climate change; however, their production remains expensive and federal policy interventions (e.g., Renewable Fuel Standard) have not spurred broad construction of cellulosic biorefineries. A range of state-level interventions have also been enacted, but their implications for the financial viability of biorefineries are not well understood. To address this gap, this study evaluated the efficacy of 20 state-level tax incentives from 14 states and their interactions with other location-specific economic parameters (e.g., state income tax rates, electricity prices). To characterize implications of location-specific policies and parameters on biorefinery cash flows, we developed a new BioSTEAM Location-Specific Evaluation (BLocS) module for the open-source software BioSTEAM. Leveraging BLocS and BioSTEAM, we characterized the minimum ethanol selling price (MESP) for a cellulosic biorefinery (using corn stover as feedstock) and two conventional biorefineries (using corn or sugarcane as feedstock) for comparison. Among state-specific scenarios, nonincentivized MESPs for the corn stover biorefinery ranged from 0.74 $·L-1 (4.20 $·gallon gasoline equivalent [gge]-1) [0.69-0.79 $·L-1; 3.91-4.48 $·gge-1; Oklahoma] to 1.02 $·L-1 (5.78 $·gge-1) [0.95-1.09 $·L-1; 5.39-6.18 $·gge-1; New York], while the tax incentive-induced MESP reduction ranged from negligible (Virginia) to 5.78% [5.43-6.20%; Iowa]. Ultimately, this work can inform the design of policy incentives for biorefineries under specific deployment contexts.
Collapse
Affiliation(s)
- Dalton
W. Stewart
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Yoel R. Cortés-Peña
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Yalin Li
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Institute
for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, 1101 W. Peabody Drive, Urbana, Illinois 61801, United States
| | - Ashlynn S. Stillwell
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Madhu Khanna
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Institute
for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, 1101 W. Peabody Drive, Urbana, Illinois 61801, United States
- Department
of Agricultural and Consumer Economics, University of Illinois Urbana−Champaign, 326 Mumford Hall, 1301 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Jeremy S. Guest
- Department
of Civil & Environmental Engineering, University of Illinois Urbana−Champaign, 205 N. Mathews Avenue, Urbana, Illinois 61801, United States
- DOE
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Institute
for Sustainability, Energy, and Environment, University of Illinois Urbana−Champaign, 1101 W. Peabody Drive, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Scown CD. Prospects for carbon-negative biomanufacturing. Trends Biotechnol 2022; 40:1415-1424. [PMID: 36192249 DOI: 10.1016/j.tibtech.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023]
Abstract
Biomanufacturing has the potential to reduce demand for petrochemicals and mitigate climate change. Recent studies have also suggested that some of these products can be net carbon negative, effectively removing CO2 from the atmosphere and locking it up in products. This review explores the magnitude of carbon removal achievable through biomanufacturing and discusses the likely fate of carbon in a range of target molecules. Solvents, cleaning agents, or food and pharmaceutical additives will likely re-release their carbon as CO2 at the end of their functional lives, while carbon incorporated into non-compostable polymers can result in long-term sequestration. Future research can maximize its impact by focusing on reducing emissions, achieving performance advantages, and enabling a more circular carbon economy.
Collapse
Affiliation(s)
- Corinne D Scown
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Life-Cycle, Economics and Agronomy Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Energy and Biosciences Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Comparing in planta accumulation with microbial routes to set targets for a cost-competitive bioeconomy. Proc Natl Acad Sci U S A 2022; 119:e2122309119. [PMID: 35858445 PMCID: PMC9335188 DOI: 10.1073/pnas.2122309119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The establishment of a carbon-negative bioeconomy that eliminates the need for crude oil will require a range of bioproducts. Accumulating value-added bioproducts directly in bioenergy crops can be an important strategy for enabling economically competitive biorefineries that produce a range of renewable fuels and replacements for petrochemicals. However, microbial chassis may have advantages over plants for some products. To date, there has been no systematic analysis aimed at comparing microbial production routes with in planta accumulation to establish breakeven targets for yields and accumulation rates. In this study, we provide generalizable insights into these breakeven points by exploring four bioproducts (4-hydroxybenzoic acid [4-HBA], 2-pyrone-4,6-dicarboxylic acid [PDC], muconic acid, and catechol) currently produced both in plants and by microbial hosts. Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.
Collapse
|
6
|
Osorio-Tejada J, Tran NN, Hessel V. Techno-environmental assessment of small-scale Haber-Bosch and plasma-assisted ammonia supply chains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154162. [PMID: 35240177 DOI: 10.1016/j.scitotenv.2022.154162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/08/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Haber-Bosch (HB) process, the main method for ammonia (NH3) production, contributes to near 2% of the global carbon emissions because the hydrogen input is obtained from fossil sources. NH3 production is concentrated in a few countries, adding emissions due to global distribution. Distributed plants next to farmers and fed by renewable energy can reduce these impacts, as well as NH3 storage, shortage risks, and price volatility. Distributed plants cannot reach low NH3 production costs as centralised plants, but they can be promoted by the environmental benefits of its products lifecycles. Therefore, life cycle assessments of NH3 production pathways and specific modelling for NH3 transport in Australia were performed, from cradle-to-site, to identify the influence of storage, transport, and energy sources in their environmental profiles. The carbon footprint of centralised production was up to 2.96 kg.CO2-eq/kg.NH3, from which 29.3% corresponded to transport. Local production demonstrated substantial avoided transport impacts and that CO2-eq can reach reductions over 100% when including co-product credits such as oxygen and carbon black. Local plants using electrolysers to supply mini-HB loops obtained rates of 0.12, -0.52, and -1.57 kg.CO2-eq/kg.NH3 using electricity from solar, wind, and biogas (other than manure) sources, respectively. The alternative using high temperature plasma reactor instead of electrolyser obtained its best rate of -0.65 kg.CO2-eq/kg using biogas different from manure. At farm electrolyser-based plants using novel non-thermal plasma reactors, considering potential energy yields and simplified NH3 separation technology, could reach a rate of -1.07 kg.CO2-eq/kg.NH3, using solar energy. Among the assessed pathways, the most notable impact was on freshwater eutrophication in the electrolyser-based plants generating reductions up to 290%, due to oxygen credits. Despite these results, the use of solar energy raises concerns on land use and terrestrial ecotoxicity due to the area needed for solar farms and the manufacture of their components.
Collapse
Affiliation(s)
| | - Nam N Tran
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| | - Volker Hessel
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Dong YN, Chen WC, Zhang LL, Sun BC, Chu GW, Chen JF. Sulfur recycle in biogas production: Novel Higee desulfurization process using natural amino acid salts. CHEMOSPHERE 2022; 297:134215. [PMID: 35248597 DOI: 10.1016/j.chemosphere.2022.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this work, a desulfurization method using natural amino acid salts (AAS), which can be green prepared by biological fermentation, is proposed to remove H2S from raw biogas. Biogas purification and fertilizer production can be simultaneously achieved to close sulfur recycle. The reaction kinetic characteristics of H2S absorption with three kinds of AAS, including potassium β-alaninate (PA), potassium sarcosinate (PS) and potassium l-prolinate (PP) are first studied. Kinetic parameters including orders of reaction, rate constants, pre-exponential factors and activation energies are given. AAS absorbent exhibits good potential for biogas desulfurization. Higee (high gravity) technology is utilized to intensify H2S removal. The effects of operating conditions on H2S removal efficiency are investigated and PP shows the best desulfurization performance. The phytotoxicity of AAS and amino acid salt sulfide (AASS) is assessed by the germination index of mungbean seeds. PP and its salt sulfide (PPS) show relatively low phytotoxicity and their allowable agricultural feeding concentrations are below 0.08 M and 0.04 M, respectively. The desulfurization method demonstrates a green route for biogas purification to achieve sulfur recycle.
Collapse
Affiliation(s)
- Yu-Ning Dong
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Wen-Cong Chen
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Liang-Liang Zhang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Bao-Chang Sun
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Guang-Wen Chu
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jian-Feng Chen
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, PR China
| |
Collapse
|
8
|
|
9
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
10
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
11
|
Zahed MA, Movahed E, Khodayari A, Zanganeh S, Badamaki M. Biotechnology for carbon capture and fixation: Critical review and future directions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112830. [PMID: 34051533 DOI: 10.1016/j.jenvman.2021.112830] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
To mitigate the growing threat of climate change and develop novel technologies that can eliminate carbon dioxide, the most abundant greenhouse gas derived from the flue gas stream of the fossil fuel-fired power stations, is momentous. The development of carbon capture and sequestration-based technologies may play a significant role in this regard. Carbon fixation mostly occurs by photosynthesizing plants as well as photo and chemoautotrophic microbes that turn the atmospheric carbon dioxide into organic materials via their enzymes. Biofuel can offer a sustainable solution for carbon mitigation. The pragmatic implementation of biofuel production processes is neither cost-effective nor has been proven safe over the long term. Searching for ways to enhance biofuel generation by the employment of genetic engineering is vital. Carbon biosequestration can help to curb the greenhouse effect. In addition, new genomic approaches, which are able to use gene-splicing biotechnology techniques and recombinant DNA technology to produce genetically modified organisms, can contribute to improvement in sustainable and renewable biofuel and biomaterial production from microorganisms. Biopolymers, Biosurfactants, and Biochars are suggested as sustainable future trends. This study aims to pave the way for implementing biotechnology methods to capture carbon and decrease the demand and consumption of fossil fuels as well as the emissions of greenhouse gases. Having a better image of microorganisms' potential role in carbon capture and storage can be prolific in developing powerful techniques to reduce CO2 emissions.
Collapse
Affiliation(s)
- Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran.
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Arezoo Khodayari
- Department of Civil and Environmental Engineering, California State University, Los Angeles, USA
| | - Saba Zanganeh
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| | - Maryam Badamaki
- Faculty of Biological Sciences, Kharazmi University, 14911 - 15719, Tehran, Iran
| |
Collapse
|
12
|
Shen X, Yan F, Li C, Qu F, Wang Y, Zhang Z. Biogas Upgrading via Cyclic CO 2 Adsorption: Application of Highly Regenerable PEI@nano-Al 2O 3 Adsorbents with Anti-Urea Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5236-5247. [PMID: 33779159 DOI: 10.1021/acs.est.0c07973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid amine adsorbents are among the most promising CO2 adsorption technologies for biogas upgrading due to their high selectivity toward CO2, low energy consumption, and easy regeneration. However, in most cases, these adsorbents undergo severe chemical inactivation due to urea formation when regenerated under a realistic CO2 atmosphere. Herein, we demonstrated a facile and efficient synthesis route, involving the synthesis of nano-Al2O3 support derived from coal fly ash with a CO2 flow as the precipitant and the preparation of polyethylenimine (PEI)-impregnated Al2O3-supported adsorbent. The optimal 55%PEI@2%Al2O3 adsorbent showed a high CO2 uptake of 139 mg·g-1 owing to the superior pore structure of synthesized nano-Al2O3 support and exhibited stable cyclic stability with a mere 0.29% decay per cycle even under the realistic regenerated CO2 atmosphere. The stabilizing mechanism of PEI@nano-Al2O3 adsorbent was systematically demonstrated, namely, the cross-linking reaction between the amidogen of a PEI molecule and nano-Al2O3 support, owing to the abundant Lewis acid sites of nano-Al2O3. This cross-linking process promoted the conversion of primary amines into secondary amines in the PEI molecule and thus significantly enhanced the cyclic stability of PEI@nano-Al2O3 adsorbents by markedly inhibiting the formation of urea compounds. Therefore, this facile and efficient strategy for PEI@nano-Al2O3 adsorbents with anti-urea properties, which can avoid active amine content dilution from PEI chemical modification, is promising for practical biogas upgrading and various CO2 separation processes.
Collapse
Affiliation(s)
- Xuehua Shen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feng Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China
| | - Chunyan Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingqing Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China
| |
Collapse
|
13
|
Scown CD, Baral NR, Yang M, Vora N, Huntington T. Technoeconomic analysis for biofuels and bioproducts. Curr Opin Biotechnol 2021; 67:58-64. [PMID: 33477090 DOI: 10.1016/j.copbio.2021.01.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 12/01/2022]
Abstract
Technoeconomic analysis (TEA) is an approach for conducting process design and simulation, informed by empirical data, to estimate capital costs, operating costs, mass balances, and energy balances for a commercial scale biorefinery. TEA serves as a useful method to screen potential research priorities, identify cost bottlenecks at the earliest stages of research, and provide the mass and energy data needed to conduct life-cycle environmental assessments. Recent studies have produced new tools and methods to enable faster iteration on potential designs, more robust uncertainty analysis, and greater accessibility through the use of open-source platforms. There is also a trend toward more expansive system boundaries to incorporate the impact of policy incentives, use-phase performance differences, and potential impacts on global market supply.
Collapse
Affiliation(s)
- Corinne D Scown
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Energy & Biosciences Institute, University of California, Berkeley, CA 94720, United States.
| | - Nawa Raj Baral
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Minliang Yang
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Nemi Vora
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Tyler Huntington
- Life-cycle, Economics, and Agronomy Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|