1
|
Pichon L, Rekik H, Arab H, Drogui P, El Khakani MA. High photothermal conversion efficiency of RF sputtered Ti 4O 7 Magneli phase thin films and its linear correlation with light absorption capacity. Sci Rep 2024; 14:30981. [PMID: 39730757 DOI: 10.1038/s41598-024-82091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
RF-sputtering is used to deposit Ti4O7-Magneli-phase films onto various substrates at deposition temperatures (Ts) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the Ti4O7 films are shown to change significantly with Ts. A Ts of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-Ti4O7-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm. The Ti4O7 films deposited at Ts = 450-500 °C also exhibited the highest optical absorption over all the broad (200-1500) nm range. The absorbed sunlight (AM1.5) was efficiently converted into heat by raising the temperature of the Ti4O7 films up to ~ 54 °C. Thus, the external photothermal efficiency (ηext) of the Ti4O7 films, was found to be as high as ~ 74%. This is the highest ηext reported so far for sputtered-Ti4O7 coatings (just ~ 450 nm-thick), highlighting their significant potential for photothermal applications such as desalination, deicing and/or smart windows. Finally, the ηext of the Ti4O7 coatings is demonstrated, for the first time, to be linearly correlated to their integrated light absorption coefficient. This fundamental relationship paves the way towards the design and optimization of highly efficient solar-thermal conversion devices.
Collapse
Affiliation(s)
- L Pichon
- Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada
| | - H Rekik
- Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique, 490, Rue de la Couronne, Quebec, G1K 9A9, Canada
| | - H Arab
- Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique, 490, Rue de la Couronne, Quebec, G1K 9A9, Canada
| | - P Drogui
- Centre-Eau Terre Environnement, Institut National de la Recherche Scientifique, 490, Rue de la Couronne, Quebec, G1K 9A9, Canada
| | - M A El Khakani
- Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.
| |
Collapse
|
2
|
Xiao H, Jiang B, Zhang Z, Zhu C, Chen J, Wang Y, Dong Y, Hao Y, Liu Y, Li Y, Xiao X, He G, Zhou Y, Luo X. New insight of electrogenerated H 2O 2 into oxychlorides inhibition and decontamination promotion: From radical to nonradical pathway during anodic oxidation of high Cl --laden wastewater process. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136948. [PMID: 39721481 DOI: 10.1016/j.jhazmat.2024.136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Anodic oxidation (AO) has been extensively hailed as a robust and promising technology for pollutant degradation, but the parasitic formation of oxychlorides (ClOx-) would induce a seriously over-evaluated electrochemical COD removal performance and dramatical biotoxicity increasement of the AO-treated Cl--laden effluents. Herein, we shed new light on the roles of H2O2 high-efficiently electrogenerated in three-dimensional (3D) reactor in inhibiting ClOx- production and promoting pollutant degradation, which has been overlooked in previous literature. Total yield of ClOx- in phenol simulated wastewater containing 30 mM Cl- was dropped from 25 mM and 24.3 mM to only 0.26 mM and 0.23 mM within 120 min after treating by 3D H2O2-involing systems with Ti/Ru-IrO2 and BDD anode, respectively. Meanwhile, the COD removal of 3D Ti/Ru-IrO2-based system was increased by 57 % (85 % removal at 0.011 kWh g-1 COD), comparable to that of 3D BDD-based system (90 % removal at 0.008 kWh g-1 COD), the energy consumption of which were far less than those of conventional 2D and 3D electro-Fenton systems (0.08-0.2 kWh g-1 COD). During degradation process of Cl--bearing phenol by 3D AO-H2O2 systems, the anodically produced species (Cl•, Cl2•-, ClO-) were rapidly quenched by the in-situ electrogenerated H2O2 and then successfully transformed into 1O2. The radical pathway of reaction between H2O2 and Cl•/Cl2•- had a more obviously thermodynamical advantage (∆G = 11.5 kJ mol-1) than nonradical pathway between H2O2 and ClO- (∆G = 171 kJ mol-1) based on DFT analysis. And the steady-state concentration of 1O2 was 8.8 × 10-9 M and 4.2 × 10-10 M in 3D Ti/Ru-IrO2 and BDD-based system, respectively, which collectively took responsibility for the termination of ClOx- production and promotion of organic pollutant degradation. This work provides a technical feasibility in the practical utilization of AO technology to wastewater treatment without toxic oxychloride by-products.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Zhitong Zhang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Chenxi Zhu
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Jing Chen
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghong Wang
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yinghao Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yongjie Hao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yijie Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xiaoyu Xiao
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Genhe He
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Yanbo Zhou
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China
| | - Xubiao Luo
- School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
3
|
Rekik H, Pichon L, Teymoorian T, Arab H, Sauvé S, El Khakani MA, Drogui P. Efficient electro-oxidation-based degradation of per- and polyfluoroalkyl (PFAS) persistent pollutants by using plasma torch synthesized pure-Magnéli phase-Ti 4O 7 anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122929. [PMID: 39427626 DOI: 10.1016/j.jenvman.2024.122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Pure Magnéli-phase Ti4O7 were prepared by means of a Plasma Torch (PT) coating method and integrated into an advanced electro-catalytic oxidation (AEO) process in order to degrade perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) persistent pollutants present in waters. The X-ray diffraction analysis confirmed the polycrystalline nature of the pure Magnéli phase PT-Ti4O7 coatings (∼100 μm thick)). The Raman spectra of the PT-Ti4O7 coatings also exhibited the two characteristic peaks (at 138 and 183 cm-1) of the PT-Ti4O7 Magnéli phase. Scanning electron microscopy revealed the nanostructured hierarchical morphology of the PT-Ti4O7 thus conferring them high surface area. The PT-Ti4O7 anodes are shown to achieve higher degradation efficiencies towards PFOA and PFOS in comparison with the conventional boron-doped diamond anodes. By investigating several AEO parameters (including current density, treatment time, nature of the anode material), we were able to optimise the AEO process. Thus, for both PFOA and PFOS (at an initial concentration of 500 ppb in synthetic wastewaters), degradation efficiencies as high as 96.6% and 99.7% were achieved, respectively, with a current density of 20 mA/cm2, a treatment time of 120 min and PT-Ti4O7 mesh-type anodes. PFOA and PFOS can be degraded by both direct anodic electrochemical oxidation (•OH radicals) and indirect electrochemical oxidation via mediators, such as persulphate acid (H2S2O8) generated by sulphate anodic oxidation. The degradation of both compounds followed pseudo-first-order kinetics. The reaction rate constant (k) for PFOS removal was 4.63 × 10-2 min-1, whereas 2.76 × 10-2 min-1 was recorded for PFOA removal. Subsequently, we have used the above optimal AEO operating conditions to treat real wastewater effluents (containing 17 types of PFAS molecules with a total content of 8500 ppb) and achieved a degradation rate of 39.1%-87.4% for eight of the 17 PFAS compounds. The degradation rate was found to be dependent on the chemical structure and chain length of each PFOA/PFOS component.
Collapse
Affiliation(s)
- Hela Rekik
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Loick Pichon
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada
| | - Termeh Teymoorian
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Hamed Arab
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Sébastien Sauvé
- Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - My Ali El Khakani
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications (EMT), 1650, Boulevard Lionel-Boulet, Varennes, J3X 1P7, QC, Canada.
| | - Patrick Drogui
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement (ETE), 490 rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
4
|
Wang S, Wang C, Feng C, Zheng W, Dong H, Guan X. Electrochemically producing high-valent iron-oxo species for phenolics-laden high chloride wastewater pretreatment. WATER RESEARCH 2024; 261:122068. [PMID: 39003879 DOI: 10.1016/j.watres.2024.122068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have shown great promise for treating industrial wastewater contaminated with phenolic compounds. However, the presence of chloride in the wastewater leads to the production of undesirable chlorinated organic and inorganic byproducts, limiting the application of EAOPs. To address this challenge, we investigated the potential of incorporating Fe(II) and Fe(III) into the EAOPs with a boron-doped diamond (BDD) anode under near-neutral conditions. Our findings revealed that both Fe(II) and Fe(III) facilitated the generation of high-valent iron-oxo species (Fe(IV) and Fe(V)) in the anodic compartment, thereby reducing the oxidation contribution of reactive chlorine species. Remarkably, the addition of 1000 μM Fe(II) under high chloride conditions resulted in over a 2.8-fold increase in the oxidation rate of 50 μM phenolic contaminants at pH 6.5. Furthermore, 1000 μM Fe(II) contributed to a reduction of more than 66% in the formation of chlorinated byproducts, consequently enhancing the biodegradability of the treated water. Additionally, transitioning from batch mode to continuous flow mode further amplified the positive effects of Fe(II) on the EAOPs. Overall, this study presents a modified electrochemical approach that simultaneously enhanced the degradation of phenolic contaminants and improved the biodegradability of wastewater with high chloride concentrations.
Collapse
Affiliation(s)
- Shuchang Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6, Canada
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hongyu Dong
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Institute of Eco-Chongming, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.
| |
Collapse
|
5
|
Lu W, Chen N, Feng C, Sirés I, An N, Mu H. Exploring the viability of peracetic acid-mediated antibiotic degradation in wastewater through activation with electrogenerated HClO. WATER RESEARCH 2024; 261:122007. [PMID: 38996730 DOI: 10.1016/j.watres.2024.122007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical advanced oxidation processes (EAOPs) face challenging conditions in chloride media, owing to the co-generation of undesirable Cl-disinfection byproducts (Cl-DBPs). Herein, the synergistic activation between in-situ electrogenerated HClO and peracetic acid (PAA)-based reactive species in actual wastewater is discussed. A metal-free graphene-modified graphite felt (graphene/GF) cathode is used for the first time to achieve the electrochemically-mediated activation of PAA. The PAA/Cl- system allowed a near-complete sulfamethoxazole (SMX) degradation (kobs =0.49 min-1) in only 5 min in a model solution, inducing 32.7- and 8.2-fold rise in kobs as compared to single PAA and Cl- systems, respectively. Such enhancement is attributed to the occurrence of 1O2 (25.5 μmol L-1 after 5 min of electrolysis) from the thermodynamically favored reaction between HClO and PAA-based reactive species. The antibiotic degradation in a complex water matrix was further considered. The SMX removal is slightly susceptible to the coexisting natural organic matter, with both the acute cytotoxicity (ACT) and the yield of 12 DBPs decreasing by 29.4 % and 37.3 %, respectively. According to calculations, HClO accumulation and organic Cl-addition reactions are thermodynamically unfavored. This study provides a scenario-oriented paradigm for PAA-based electrochemical treatment technology, being particularly appealing for treating wastewater rich in Cl- ion, which may derive in toxic Cl-DBPs.
Collapse
Affiliation(s)
- Wang Lu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China; Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Secció de Química Física, Facultat de Química, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Ning An
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Haotian Mu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
6
|
Yang K, Ma J, Li W, He W, Zu D, Yang W, Zhang Z, Yang Z. Energy-efficient treatment of refractory industrial effluent using flow-through electrochemical processes: Oxidation mechanisms and reduction of chlorinated byproducts. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134737. [PMID: 38805813 DOI: 10.1016/j.jhazmat.2024.134737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
While flow-through anodic oxidation (FTAO) technique has demonstrated high efficiency to treat various refractory waste streams, there is an increasing concern on the secondary hazard generation thereby. In this study, we developed an integrated system that couples FTAO and cathodic reduction processes (termed FTAO-CR) for sustainable treatment of chlorine-laden industrial wastewater. Among four common electrode materials (i.e., Ti4O7, β-PbO2, RuO2, and SnO2-Sb), RuO2 flow-through anode exhibited the best pollutant removal performance and relatively low ClO3 and ClO4 yields. Because of the significant scavenging effect of Cl- in real wastewater treatment, the direct electron transfer process played a dominant role in contaminant degradation for both active and nonactive anodes though active species (i.e., active chlorine) were involved in the subsequent transformation of the organic matter. A continuous FTAO-CR system was then constructed for simultaneous COD removal and organic and inorganic chlorinated byproduct control. The quality of the treated effluent could meet the national discharge permit limit at low energy cost (∼4.52 kWh m3 or ∼0.035 kWh g1-COD). Results from our study pave the way for developing novel electrochemical platforms for the purification of refractory waste streams whilst minimizing the secondary pollution.
Collapse
Affiliation(s)
- Kui Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Wei Li
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Weiting He
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoyuan Zu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wenjian Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
7
|
Zhao Y, Wang A, Ren S, Zhang Y, Zhang N, Song Y, Zhang Z. Activated carbon fiber as an efficient co-catalyst toward accelerating Fe 2+/Fe 3+ cycling for improved removal of antibiotic cefaclor via electro-Fenton process using a gas diffusion electrode. ENVIRONMENTAL RESEARCH 2024; 249:118254. [PMID: 38301762 DOI: 10.1016/j.envres.2024.118254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
The electro-Fenton (EF) based on gas-diffusion electrodes (GDEs) reveals promising application prospective towards recalcitrant organics degradation because such GDEs often yields superior H2O2 generation efficiency and selectivity. However, the low efficiency of Fe2+/Fe3+ cycle with GDEs is always considered to be the limiting step for the EF process. In this study, activated carbon fiber (ACF) was firstly employed as co-catalyst to facilitate the performance of antibiotic cefaclor (CEC) decomposition in EF process. It was found that the addition of ACF co-catalyst achieved a rapid Fe2+/Fe3+ cycling, which significantly enhanced Fenton's reaction and hydroxyl radicals (•OH) generation. X-ray photoelectron spectroscopy (XPS) results indicated that the functional groups on ACF surface are related to the conversion of Fe3+ into Fe2+. Moreover, DMSO probing experiment confirmed the enhanced •OH production in EF + ACF system compared to conventional EF system. When inactive BDD and Ti4O7/Ti anodes were paired to EF system, the addition of ACF could significantly improve mineralization degree. However, a large amount of toxic byproducts, including chlorate (ClO3-) and perchlorate (ClO4-), were generated in these EF processes, especially for BDD anode, due to their robust oxidation capacity. Higher mineralization efficiency and less toxic ClO4- generation were obtained in the EF + ACF process with Ti4O7/Ti anode. This presents a novel alternative for efficient chloride-containing organic removal during wastewater remediation.
Collapse
Affiliation(s)
- Yue Zhao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Ni Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
8
|
Ren L, Li Y, Guo Y, Yang K, Yi Q, Wang X, Wu Z, Wang Z. Electrochemical oxidation of reverse osmosis concentrate using a pilot-scale reactive electrochemical membrane filtration system: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133315. [PMID: 38150763 DOI: 10.1016/j.jhazmat.2023.133315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Scale-up treatment of real wastewater holds the key to promoting the practical application of electrochemical filtration technology. This work used a pilot-scale Ti/Pd reactive electrochemical membrane (REM) system (12 REM modules with a total REM area of 0.144 m2) to treat high-salinity reverse osmosis concentrate (ROC) from a chemical industry park. The pilot-scale Ti/Pd REM system demonstrated effective electrochemical degradation of ROC wastewater, achieving removal efficiencies of 82.3 ± 1.9% for COD and 46.7 ± 5.6% for TN at a membrane flux of 90 L/(m2·h) and a cell voltage of 5 V, with an energy consumption of 0.045 kWh/g-COD. Singlet oxygen (1O2) and reactive chlorine species were identified as the two primary reactive oxygen species generated in the Ti/Pd REM system. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis indicated that the pilot-scale Ti/Pd REM treatment effectively oxidized humic acid-like substance and unsaturated aromatic compounds. Overall, the Ti/Pd REM technology shows a promising application potential for the treatment of high-salinity ROC from the chemical industry.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yun Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kui Yang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Qiuying Yi
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Zhang K, Wang R, Wang H, Li M, Zhao P, Wang Y, Wang B, Shi H, Zhang W, Gao S, Huang Q. Electrooxidation of chlorophene and dichlorophen by reactive electrochemical membrane: Key determining factors of removal efficiency. ENVIRONMENTAL RESEARCH 2024; 241:117612. [PMID: 37951380 DOI: 10.1016/j.envres.2023.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/20/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.
Collapse
Affiliation(s)
- Kehao Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ruifeng Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hailong Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Mingliang Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou, 450001, China
| | - Pengbo Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yaye Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Wei Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| |
Collapse
|
10
|
Wei R, Pei S, Yu Y, Zhang J, Liu Y, You S. Water Flow-Driven Coupling Process of Anodic Oxygen Evolution and Cathodic Oxygen Activation for Water Decontamination and Prevention of Chlorinated Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17404-17414. [PMID: 37920955 DOI: 10.1021/acs.est.3c02256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Electrochemical advanced oxidation process (EAOP) is a promising technology for decentralized water decontamination but is subject to parasitic anodic oxygen evolution and formation of toxic chlorinated byproducts in the presence of Cl-. To address this issue, we developed a novel electrolytic process by water flow-driven coupling of anodic oxygen evolution reaction (OER) and cathodic molecular oxygen activation (MOA). When water flows from anode to cathode, O2 produced from OER is carried by water through convection, followed by being activated by atomic hydrogen (H*) on Pd cathode to produce •OH. The water flow-driven OER/MOA process enables the anode to be polarized at low potential (1.7 V vs SHE) that is lower than that of conventional EAOP whose •OH is produced from direct water oxidation (>2.3 V vs SHE). At a flow rate of 30 mL min-1, the process could achieve 94.8% removal of 2,4-dichlorophenol (2,4-DCP) and 71.5% removal of chemical oxygen demand (COD) within 45 min at an anode potential of 1.7 V vs SHE and cathode potential of -0.5 V vs SHE. To achieve the comparable 2,4-DCP removal performance, 4.3-fold higher energy consumption was needed for the conventional EAOP with titanium suboxide anode (anode potential of 2.9 V vs SHE), but current efficiency declined by 3.5 folds. Unlike conventional EAOP, chlorate and perchlorate were not detected in the OER/MOA process, because low anode potential <2.0 V vs SHE was thermodynamically unfavorable for the formation of chlorinated byproducts by anodic oxidation, indicated by theoretical calculations and experimental data. This study provides a proof-in-concept demonstration of water flow-driven OER/MOA process, representing a paradigm shift of electrochemical technology for water decontamination and prevention of chlorinated byproducts, making electrochemical water decontamination more efficient, more economic, and more sustainable.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuzhao Pei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
11
|
Tian F, Qiao J, Zheng W, Lei Y, Jiang S, Liu Y. Flow-through electrochemical organophosphorus degradation and phosphorus recovery: The essential role of chlorine radical. ENVIRONMENTAL RESEARCH 2023; 236:116867. [PMID: 37573819 DOI: 10.1016/j.envres.2023.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Phosphorus scarcity and the deleterious ecological impact of the release of organophosphorus pesticides have emerged as critical global issues. Previous research has shown the ability of electrochemistry to induce the precipitation of calcium phosphate from phosphorus-laden wastewater to recover the phosphorus. The current study presents a flow-through electrochemical system consisting of a column-shaped electrochemical reactor, a tubular stainless-steel (SS) cathode, and a titanium suboxides (TiSO) anode. This system simultaneously oxidizes tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and recycles phosphates. The influence of current density, flow rate, and initial calcium ions concentration were examined under continuous flow operation. To enhance the electrochemical reactor's performance, we elevated the current density from 5 to 30 mA cm-2, which caused the phosphorus recovery efficiency to increase from 37% to 72% within 120 min, accompanied by an enhancement of the THPS mineralization efficiency from 57% to 90%. These improvements were likely due to the higher yield of reactive species chloride species (Cl•) formed at the TiSO anode and the higher local pH at the cathode. By investigating the formation of Cl• at the TiSO anode, we found that THPS mineralization exceeded 75% in the presence of NaCl at a current density of 20 mA cm-2. The demonstrated performance of the flow-through electrochemical system should enable the utilization of anodic oxidation-cathodic precipitation for the recovery of phosphorus from organophosphorus-contaminated wastewater.
Collapse
Affiliation(s)
- Fengguo Tian
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jianzhi Qiao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wentian Zheng
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yang Lei
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, 318000, China.
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
12
|
Yang K, Abu-Reesh IM, He Z. Formation of oxidation byproducts during electrochemical treatment of simulated produced water. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132469. [PMID: 37690199 DOI: 10.1016/j.jhazmat.2023.132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Electrochemical oxidation (EO) can effectively remove recalcitrant organic contaminants from produced water (PW) but the formation of toxic oxidation byproducts (OBPs) is an unintended consequence. This study has rigorously investigated the OBPs formation during the EO treatment of a simulated PW containing phenol - a common organic contaminant existing in PW, as a model contaminant. In the absence of ammonia, free chlorine was generated from Cl- oxidation to serve as the main oxidant for phenol oxidation. During the EO process, 2,4,6-trichlorophenol and 2,6-dichlorobenzoquinone were identified as the critical intermediates that led to the formation of carbonaceous OBPs (C-OBPs). Some C-OBPs like chloroform (TCM), chloral hydrate (CH), and trichloroacetic acid (TCAA) reached their peak concentrations of 15 - 180 μM that were then reduced to 1 - 115 μM via volatilization and/or electrochemical reduction. When ammonia was present, nitrogenous OBPs (N-OBPs) were formed with the peak levels of 1 - 10 μM at the chlorination breakpoint (when ammonia was completely removed) that were subsequently reduced below 1 uM via volatilization and/or hydrolysis. It was observed that ammonia significantly decreased the formation of both C-OBPs and chlorate due to the consumption of free chlorine. A higher current density accelerated OBPs formation rates with different effects on volatile and non-volatile OBPs. The results of this study will enhance our understanding of OBPs formation precursors and mechanisms during electrochemical process and help develop strategies for proper control of OBPs to achieve safer electrochemical wastewater treatment.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
13
|
Wu L, Garg S, Xie J, Zhang C, Wang Y, Waite TD. Electrochemical Removal of Metal-Organic Complexes in Metal Plating Wastewater: A Comparative Study of Cu-EDTA and Ni-EDTA Removal Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12476-12488. [PMID: 37578119 DOI: 10.1021/acs.est.3c02550] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cu and Ni complexes with ethylenediaminetetraacetic acid (Cu/Ni-EDTA), which are commonly present in metal plating industry wastewaters, pose a serious threat to both the environment and human health due to their high toxicity and low biodegradability. In this study, the treatment of solutions containing either or both Cu-EDTA and Ni-EDTA using an electrochemical process is investigated under both oxidizing and reducing electrolysis conditions. Our results indicate that Cu-EDTA is decomplexed as a result of the cathodic reduction of Cu(II) with subsequent electrodeposition of Cu(0) at the cathode when the cathode potential is more negative than the reduction potential of Cu-EDTA to Cu(0). In contrast, the very negative reduction potential of Ni-EDTA to Ni(0) renders the direct reduction of EDTA-complexed Ni(II) at the cathode unimportant. The removal of Ni during the electrolysis process mainly occurs via anodic oxidation of EDTA in Ni-EDTA, with the resulting formation of low-molecular-weight organic acids and the release of Ni2+, which is subsequently deposited as Ni0 on the cathode. A kinetic model incorporating the key reactions occurring in the electrolysis process has been developed, which satisfactorily describes EDTA, Cu, Ni, and TOC removal. Overall, this study improves our understanding of the mechanism of removal of heavy metals from solution during the electrochemical advanced oxidation of metal plating wastewaters.
Collapse
Affiliation(s)
- Lei Wu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Luo Y, Khoshyan A, Al Amin M, Nolan A, Robinson F, Fenstermacher J, Niu J, Megharaj M, Naidu R, Fang C. Ultrasound-enhanced Magnéli phase Ti 4O 7 anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160836. [PMID: 36521599 DOI: 10.1016/j.scitotenv.2022.160836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Per-and polyfluoroalkyl substances (PFAS) remediation is still a challenge. In this study, we propose a hybrid system that combines electrochemical treatment with ultrasound irradiation, aiming for an enhanced degradation of PFAS. Equipped with a titanium suboxide (Ti4O7) anode, the electrochemical cell is able to remove perfluorooctanoic acid (PFOA) effectively. Under the optimal conditions (50 mA/cm2 current density, 0.15 M Na2SO4 supporting electrolyte, and stainless steel/Ti4O7/stainless steel electrode configuration with a gap of ∼10 mm), the electrochemical process achieves ∼100 % PFOA removal and 43 % defluorination after 6 h. Applying ultrasound irradiation (130 kHz) alone offers a limited PFOA removal, with 33 % PFOA removal and 5.5 % defluorination. When the electrochemical process is combined with ultrasound irradiation, we observe a significant improvement in the remediation performance, with ∼100 % PFOA removal and 63.5 % defluorination, higher than the sum of 48.5 % (43 % achieved by the electrochemical process, plus 5.5 % by the ultrasound irradiation), implying synergistic removal/oxidation effects. The hybrid system also consistently shows the synergistic defluorination during degradation of other PFAS and the PFAS constituents in aqueous film forming foam (AFFF). We attribute the synergistic effect to an activated/cleaned electrode surface, improved mass transfer, and enhanced production of radicals.
Collapse
Affiliation(s)
- Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ashkan Khoshyan
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Al Amin
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annette Nolan
- Ramboll Australia, The Junction, NSW 2291, Australia
| | | | | | - Junfeng Niu
- Suzhou institute of North China Electric Power University, Jiangsu 215000, PR China
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
15
|
Kumar A, Barbhuiya NH, Singh SP. Magnéli phase titanium sub-oxides synthesis, fabrication and its application for environmental remediation: Current status and prospect. CHEMOSPHERE 2022; 307:135878. [PMID: 35932919 DOI: 10.1016/j.chemosphere.2022.135878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Sub-stoichiometric titanium oxide, also called titanium suboxides (TSO), had been a focus of research for many decades with a chemical composition of TinO2n-1 (n ≥ 1). It has a unique oxygen-deficient crystal structure which provides it an outstanding electrical conductivity and high corrosion resistance similar to ceramic materials. High electrical conductivity and ability to sustain in adverse media make these phases a point of attention for researchers in energy storage and environmental remediation applications. The Magnéli phase-based reactive electroconductive membranes (REM) and electrodes have demonstrated the electrochemical oxidation of pollutants in the water in flow-through and flow by configuration. Additionally, it has also shown its potential for visible light photochemical degradation as well. This review attempts to summarize state of the art in various Magnéli phases materials synthesis routes and their electrochemical and photochemical ability for environmental application. The manuscript introduces the Magnéli phase, its crystal structure, and catalytic properties, followed by the recent development in synthesis methods from diverse titanium sources, notably TiO2 through thermal reduction. The various fabrication methods for Magnéli phase-base REMs and electrodes have also been summarized. Furthermore, the article discussed the environmental remediations via electrochemical and photochemical advanced oxidation processes. Additionally, the hybrid technology with REMs and electrodes is used to counter membrane biofouling and develop electrochemical sensing devices for the pollutants. The Magnéli phase materials have a bright future for both electrochemical and photochemical advanced oxidation of emerging contaminants in water and wastewater treatment.
Collapse
Affiliation(s)
- Ashish Kumar
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Najmul H Barbhuiya
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai, 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
16
|
Mechanistic study of electrooxidation of coexisting chloramphenicol and natural organic matter: Performance, DFT calculation and removal route. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Yang K, Lin H, Feng X, Jiang J, Ma J, Yang Z. Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti 4O 7 reactive electrochemical ceramic membrane: Matrix effects and implications for byproduct formation. WATER RESEARCH 2022; 224:119047. [PMID: 36103779 DOI: 10.1016/j.watres.2022.119047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The inevitably high energy consumption of traditional electrochemical processes to treat low-conductivity water has limited their wider application. Herein, we present an energy-efficient alternative, i.e., a Ti4O7 reactive electrochemical ceramic membrane (Ti4O7-REM) system with a superior mass transfer ability. For the removal of 10-200 μM norfloxacin (NOR) from low-conductivity (178-832 μS cm-1) water, the Ti4O7-REM system increased the kinetics rate constant by 4.3-34.0 times, thus decreasing the energy cost by 80.5-97.3% compared with a flow-by system. The rapid NOR removal was related to the enhanced direct electron transfer process in the Ti4O7-REM system, which allowed for higher resistance to HCO3- scavenging and a favorable reaction between NOR and the active sites. Meanwhile, this mechanism likely contributed to the less formation of inorganic chlorinated product, ClO3-, in the presence of Cl-. Although organic chlorinated byproducts were not detected during NOR degradation in the Ti4O7-REM system, Cl- influenced the speciation of the intermediates. A single-pass Ti4O7-REM system demonstrated 94-97% removal of trace antibiotics from real water samples in 30 s. The additional energy consumption (<0.02 kWh m-3) using a Ti4O7-REM system only contributed to 5.0-6.4% of the total in a typical tertiary wastewater treatment plant. Based on the above results, we can conclude that the convection-enhanced REM technique is viable for the purification of low-conductivity natural waters.
Collapse
Affiliation(s)
- Kui Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xingwei Feng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
18
|
Ma Q, Gao J, Potts C, Tong X, Tao Y, Zhang W. Electrochemical Aging and Halogen Oxides Formation on Multiwalled Carbon Nanotubes and Fe 3O 4@g-C 3N 4 Coated Conductive Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
19
|
Lu X, Zhou X, Qiu W, Wang Z, Wang Y, Zhang H, Yu J, Wang D, Gu J, Ma J. Kinetics and mechanism of the reaction of hydrogen peroxide with hypochlorous acid: Implication on electrochemical water treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129420. [PMID: 35816805 DOI: 10.1016/j.jhazmat.2022.129420] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Reduction of HOCl to Cl- by in-situ electrochemical synthesis or ex-situ addition of H2O2 is a feasible method to minimize Cl-DBPs and ClOx- (x = 2, 3, and 4) formation in electrochemical oxidative water treatment systems. This work has investigated the kinetics and mechanism of the reaction between H2O2 and HOCl. The kinetics study showed the species-specific second order rate constants for HOCl with H2O2 (k1), HOCl with HO2- (k2) and OCl- with H2O2 (k3) are 195.5 ± 3.3 M-1s-1, 4.0 × 107 M-1s-1 and 3.5 × 103 M-1s-1, respectively. The density functional theory calculation showed k2 is the most advantageous thermodynamically pathway because it does not need to overcome a high energy barrier. The yields of 1O2 generation from the reaction of H2O2 with HOCl were reinvestigated by using furfuryl alcohol (FFA) as a probe, and an average of 92.3% of 1O2 yields was obtained at pH 7-12. The second order rate constants of the reaction of 1O2 with 13 phenolates were determined by using the H2O2/HOCl system as a quantitative 1O2 production source. To establish a quantitative structure activity relationship, quantum chemical descriptors were more satisfactory than empirical Hammett constants. The potential implications in electrochemical oxidative water treatment were discussed at the end.
Collapse
Affiliation(s)
- Xiaohui Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoqun Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Yishi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Haochen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxin Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China
| | - Da Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jia Gu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
20
|
Li C, Wang Y, Wang Y, Wang Z, Huang Q. Electrochemical oxidation combined with UV irradiation for synergistic removal of perfluorooctane sulfonate (PFOS) in water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129091. [PMID: 35569375 DOI: 10.1016/j.jhazmat.2022.129091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The effect of electrochemical degradation on Magnéli phase Ti4O7 anode combined with UV irradiation on the removal of PFOS was systematically evaluated in the present study. A synergistic effect of electrolysis and UV irradiation rather than a simple additive effect for PFOS degradation was demonstrated experimentally and theoretically. The short wavelength irradiation within 400 nm is the main contribution to enhance the electrochemical degradation of PFOS, while the initial pH of the solution has little effect on the PFOS degradation. The increase of current density accelerates the removal of PFOS either by electrolysis treatment or the joint process. The time-dependent density functional theory (TD-DFT) calculation indicates that the synergistic effect of the electrolysis and UV irradiation is most likely due to the involvement of the excited PFOS induced under UV irradiation in the electrochemical reaction. This study provides the first mechanistic explanation for the electrochemical degradation of PFOS enhanced by UV irradiation.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Yifei Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Yaye Wang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu, Nanjing 210023, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States.
| |
Collapse
|
21
|
Xiao H, Yan W, Zhao Z, Tang Y, Li Y, Yang Q, Luo S, Jiang B. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. WATER RESEARCH 2022; 221:118732. [PMID: 35716411 DOI: 10.1016/j.watres.2022.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Deliberate addition of mildly oxidative chlorate (ClO3-), so-called "chemical oxygen demand (COD) remover", into wastewater in China or electrochemical production of ClO3- from Cl- induces the false COD reduction, which would bring about false appearance of effluents meeting the COD discharge standards. In this study, an easy sulfite-based reduction method was developed for the first time to remove ClO3- from the water samples before COD determination to eliminate this interference of ClO3-. In this reaction system, keeping the reaction temperature of sulfite reducing ClO3- at 60 °C was crucial for fast ClO3- removal rate, fixed molar [sulfite]ini/[chlorate]ini ratio value and the synchronous exhaustion of sulfite and ClO3-, which were of great significance for the real application of this improved COD determination method. The ClO3- interference on COD determination could be successfully eliminated after 20 min reduction of ClO3- by sulfite at pHini 4.0∼6.0 with the molar [sulfite]ini/[chlorate]ini ratio value in the range of 5∼6 when concentration of ClO3- was below 5 mM. Despite of the involvement of SO4·- in the sulfite reducing ClO3- system, the degradation of organic matters by SO4·- could be greatly impeded due to the lessened dissolved oxygen for SO4·- production at high reaction temperature and the scavenging of SO4·- by sulfite. In this reaction system, ClO2, ClO2- and ClO- were also generated and could be further reduced by sulfite stoichiometrically via oxygen transfer process with Cl- as the final product. In general, this study pioneered an effective, fast and convenient method for COD determination of the ClO3--laden wastewaters and evaluating the real electrochemical wastewater treatment performance in terms of COD removal.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zekun Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
22
|
Guo J, Liao L, Li Y, Liang J, Wang Y, Ying D, Jia J. Enhanced wastewater treatment via direct electrocatalytic activation of hydrogen peroxide in divided cells with flow-through electrode and bipolar membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Xu J, Liu Y, Li D, Li L, Zhang Y, Chen S, Wu Q, Wang P, Zhang C, Sun J. Insights into the electrooxidation of florfenicol by a highly active La-doped Ti4O7 anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Xie J, Zhang C, David Waite T. Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA). WATER RESEARCH 2022; 216:118319. [PMID: 35339051 DOI: 10.1016/j.watres.2022.118319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
While flow anodic oxidation systems can efficiently generate hydroxyl radicals (·OH) and significantly enhance direct electron transfer (DET) processes that result in the oxidation of target contaminants via the charge percolating network of flow anode particles, challenges remain in constructing a flow anodic oxidation system that can be operated continuously with stable performance. Here we incorporate an ultrafiltration (UF) membrane module into the flow anodic oxidation system and achieve the continuous defluorination of perfluorooctanoic acid (PFOA) for 12 days with high efficiency (94.1%) and reasonable energy consumption (38.1 Wh mg-1) compared to other advanced oxidation processes by using a mixture of conducting TixO2x-1 and Pd/CNT particles as the flow anode. The results indicate that DET, ·OH mediated oxidation and adsorption processes play critical roles in the degradation of PFOA during the flow anodic oxidation processes. The synergistic effect of the TixO2x-1 and Pd/CNT particles enhances the defluorination efficiency by 3.2 times at 4.5 V vs Ag/AgCl compared to the control experiment (no flow anode particles present) and promotes the release of F- into solution while other intermediate products remain adsorbed to the surface of the Pd/CNT particles. Although the Pd/CNT particles were oxidized after the long-term operation, no obvious Pd ion leakage into solution was observed. Results of this study support the feasibility of continuous operation of a flow anode/UF system with stable performance and pave the way for the translation of this advanced oxidation technology to practical application.
Collapse
Affiliation(s)
- Jiangzhou Xie
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P R China.
| |
Collapse
|
25
|
Xu B, Chen Z, Zhang G, Wang Y. On-Demand Atomic Hydrogen Provision by Exposing Electron-Rich Cobalt Sites in an Open-Framework Structure toward Superior Electrocatalytic Nitrate Conversion to Dinitrogen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:614-623. [PMID: 34914357 DOI: 10.1021/acs.est.1c06091] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalytic nitrate (NO3-) reduction to N2 via atomic hydrogen (H*) is a promising approach for advanced water treatment. However, the reduction rate and N2 selectivity are hindered by slow mass transfer and H* provision-utilization mismatch, respectively. Herein, we report an open-framework cathode bearing electron-rich Co sites with extraordinary H* provision performance, which was validated by electron spin resonance (ESR) and cyclic voltammetry (CV) tests. Benefiting from its abundant channels, NO3- has a greater opportunity to be efficiently transferred to the vicinity of the Co active sites. Owing to the enhanced mass transfer and on-demand H* provision, the nitrate removal efficiency and N2 selectivity of the proposed cathode were 100 and 97.89%, respectively, superior to those of noble metal-based electrodes. In addition, in situ differential electrochemical mass spectrometry (DEMS) indicated that ultrafast *NO2- to *NO reduction and highly selective *NO to *N2O or *N transformation played crucial roles during the NO3- reduction process. Moreover, the proposed electrochemical system can achieve remarkable N2 selectivity without the additional Cl- supply, thus avoiding the formation of chlorinated byproducts, which are usually observed in conventional electrochemical nitrate reduction processes. Environmentally, energy conservation and negligible byproduct release ensure its practicability for use in nitrate remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhixuan Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
26
|
Su Y, Muller KR, Yoshihara-Saint H, Najm I, Jassby D. Nitrate Removal in an Electrically Charged Granular-Activated Carbon Column. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16597-16606. [PMID: 34874719 DOI: 10.1021/acs.est.1c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate removal from groundwater remains a challenge. Here, we report on the development of a flow-through, electrically charged, granular-activated carbon (GAC)-filled column, which effectively removes nitrate. In this system, the GAC functioned as an anode, while a titanium sheet acted as a cathode. The high removal rate of nitrate was achieved through a combination of electrosorption and electrochemical transformation to N2. The column could be readily regenerated in situ by reversing the polarity of the applied potential. We demonstrate that in the presence of chloride, the mechanism responsible for the observed nitrate removal involves a combination of electroadsorption of nitrate to the anodically charged GAC, electroreduction of nitrate to ammonium, and the oxidation of ammonium to N2 gas by reactive chlorine and other oxidative radicals (with nearly 100% N2 selectivity). Given the ubiquitous presence of chloride in groundwater, this method represents a ready, green, and sustainable treatment process with significant potential for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Katherine R Muller
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Hira Yoshihara-Saint
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Issam Najm
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
27
|
Baptista-Pires L, Norra GF, Radjenovic J. Graphene-based sponges for electrochemical degradation of persistent organic contaminants. WATER RESEARCH 2021; 203:117492. [PMID: 34365195 DOI: 10.1016/j.watres.2021.117492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Graphene-based sponges doped with atomic nitrogen and boron were applied for the electrochemical degradation of persistent organic contaminants in one-pass, flow-through mode, and in a low-conductivity supporting electrolyte. The B-doped anode and N-doped cathode was capable of >90% contaminant removal at the geometric anodic current density of 173 A m-2. The electrochemical degradation of contaminants was achieved via the direct electron transfer, the anodically formed O3, and by the OH• radicals formed by the decomposition of H2O2 produced at the cathode. The identified transformation products of iopromide show that the anodic cleavage of all three C-I bonds at the aromatic ring was preferential over scissions at the alkyl side chains, suggesting a determining role of the π- π interactions with the graphene surface. In the presence of 20 mM sodium chloride (NaCl), the current efficiency for chlorine production was <0.04%, and there was no chlorate and perchlorate formation, demonstrating a very low electrocatalytic activity of the graphene-based sponge anode towards chloride. Graphene-based sponges were produced using a low-cost, bottom-up method that allows easy introduction of dopants and functionalization of the reduced graphene oxide coating, and thus tailoring of the material for the removal of specific contaminants.
Collapse
Affiliation(s)
- Luis Baptista-Pires
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Giannis-Florjan Norra
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
28
|
Ko JS, Le NQ, Schlesinger DR, Zhang D, Johnson JK, Xia Z. Novel niobium-doped titanium oxide towards electrochemical destruction of forever chemicals. Sci Rep 2021; 11:18020. [PMID: 34504266 PMCID: PMC8429446 DOI: 10.1038/s41598-021-97596-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Electrochemical advanced oxidative processes (EAOP) are a promising route to destroy recalcitrant organic contaminants such as per- and polyfluoroalkyl substances (PFAS) in drinking water. Central to EAOP are catalysis-induced reactive free radicals for breaking the carbon fluorine bonds in PFAS. Generating these reactive species electrochemically at electrodes provides an advantage over other oxidation processes that rely on chemicals or other harsh conditions. Herein, we report on the performance of niobium (Nb) doped rutile titanium oxide (TiO2) as a novel EAOP catalytic material, combining theoretical modeling with experimental synthesis and characterization. Calculations based on density functional theory are used to predict the overpotential for oxygen evolution at these candidate electrodes, which must be high in order to oxidize PFAS. The results indicate a non-monotonic trend in which Nb doping below 6.25 at.% is expected to reduce performance relative to TiO2, while higher concentrations up to 12.5 at.% lead to increased performance, approaching that of state-of-the-art Magnéli Ti4O7. TiO2 samples were synthesized with Nb doping concentration at 10 at.%, heat treated at temperatures from 800 to 1100 °C, and found to exhibit high oxidative stability and high generation of reactive oxygen free radical species. The capability of Nb-doped TiO2 to destroy two common species of PFAS in challenge water was tested, and moderate reduction by ~ 30% was observed, comparable to that of Ti4O7 using a simple three-electrode configuration. We conclude that Nb-doped TiO2 is a promising alternative EAOP catalytic material with increased activity towards generating reactive oxygen species and warrants further development for electrochemically destroying PFAS contaminants.
Collapse
Affiliation(s)
- Jesse S Ko
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Nam Q Le
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | | | - Dajie Zhang
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - James K Johnson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Zhiyong Xia
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA.
| |
Collapse
|
29
|
|
30
|
Lin H, Peng H, Feng X, Li X, Zhao J, Yang K, Liao J, Cheng D, Liu X, Lv S, Xu J, Huang Q. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies. WATER RESEARCH 2021; 190:116790. [PMID: 33508906 DOI: 10.1016/j.watres.2020.116790] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study for the first time investigated the advanced treatment of bio-treated landfill leachate effluent using a novel reactive electrochemical membrane (REM) technology at the laboratory and pilot scales. At the laboratory scale, RuO2-Ir-REM, Ti4O7-REM, and β-PbO2-REM featured similar properties in pore size and water flux. Although RuO2-Ir-REM holds more reactive sites than the other two REMs, β-PbO2-REM and Ti4O7-REM featured higher oxidation ability than RuO2-Ir-REM, causing their high yield of hydroxyl radical. Consequently, β-PbO2-REM and Ti4O7-REM performed better than RuO2-Ir-REM, which removed total organic carbon and ammonia nitrogen by 70%-76% and 100%, respectively, after 45 minutes of treatment. Fluorescence spectroscopy analysis showed that humic acid-like substances were oxidized by the REM treatment. Using the β-PbO2-REM in the lab-scale setup with the solutions circulated, we observed a greater removal of chemical oxygen demand (COD) at a higher applied current or a faster water flux. The pilot system with four large size of β-PbO2-REMs modules in series was developed based on the lab-scale setup, which steadily treated landfill leachate in compliance with the disposal regulations of China, at an energy consumption of 3.6 kWh/m3. Also, a single-pass REM can effectively prevent the transformation of chloride to chlorate and perchlorate. Our study showed REM technology is a powerful and promising process for the advanced treatment of landfill leachate.
Collapse
Affiliation(s)
- Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Hanjun Peng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xingwei Feng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaojing Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jinbo Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jianbo Liao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721, United States.
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA 30223, United States
| |
Collapse
|