1
|
Gyadi T, Bharti A, Basack S, Kumar P, Lucchi E. Influential factors in anaerobic digestion of rice-derived food waste and animal manure: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 413:131398. [PMID: 39236907 DOI: 10.1016/j.biortech.2024.131398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Utilization of organic community wastes towards deriving sustainable renewable energy and adequate disposal of the residual has been an important topic of investigation. Anaerobic digestion and co-digestion of rice-derived food waste and animal manure for sustainable biogas generation is crucial from the view-point of community consumption. This paper presents an extensive review of the important and recent contributions in the related areas. The critical physico-chemical parameters involved in such digestion process are analyzed, including temperature, carbon-nitrogen ratio, microorganisms, pH, substrate characteristics, organic loading rate, hydraulic retention time, volatile fatty acids, ammonia, and light/heavy metal ions. Studies implied that the optimum yield of biogas production could be achieved only when the values of the parameters exist in the specific ranges. Few recent studies highlighted the use of emerging techniques including micro-aerobic system, additives, laser radiation, bio-electrochemical field, among others for efficiency enhancement of the digestion process and optimum yield. The entire study provided a set of important conclusions and future research directives are as well proposed.
Collapse
Affiliation(s)
- Tado Gyadi
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Ajay Bharti
- Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, Arunachal Pradesh, India
| | - Sudip Basack
- Regent Education and Research Foundation, Affiliated: MAKA University of Technology, Kolkata 700 121, India; Department of Civil Engineering, Graphic Era Deemed to be University, Clement City, Dehradun 248002, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Uttar Pradesh, India
| | - Elena Lucchi
- Dipartimento di Ingegneria Civile e Architettura (DICAr), University of Pavia, Via Ferrata 3, Pavia 27100, Italy.
| |
Collapse
|
2
|
Luo L, Wang J, Yan A, Wang J, Wu S, Xu X, Chen W, Liu Z. Is Pyrolysis Treatment a Viable Solution to Detoxify Metal(loid)s in Sewage Sludge toward Land Application? Case Studies of Chromium and Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16186-16195. [PMID: 39189695 DOI: 10.1021/acs.est.4c04266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Metal(loid)s in sewage sludge (SS) are effectively immobilized after pyrolysis. However, the bioavailability and fate of the immobilized metal(loid)s in SS-derived biochar (SSB) following land application remain largely unknown. Here, the speciation and bioavailability evolution of SSB-borne Cr and Zn in soil were systematically investigated by combining pot and field trials and X-ray absorption spectroscopy. Results showed that approximately 58% of Cr existing as Cr(III)-humic complex in SS were transformed into Fe (hydr)oxide-bound Cr(III), while nano-ZnS in SS was transformed into stable ZnS and ferrihydrite-bound species (accounting for over 90% of Zn in SSB) during pyrolysis. All immobilized metal(loid)s, including Cr and Zn, in SSB tended to be slowly remobilized during aging in soil. This study highlighted that SSB acted as a dual role of source and sink of metal(loid)s in soil and posed potential risks by serving a greater role of a metal(loid) source than a sink when applied to uncontaminated soils. Nevertheless, SSB could impede the translocation of metal(loid)s from soil to crop compared to SS, where coexisting elements, including Fe, P, and Zn, played critical roles. These findings provide new insights for understanding the fate of SSB-borne metal(loid)s in soil and assessing the viability of pyrolyzing SS for land application.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jiawen Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Aichu Yan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Songlin Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuehui Xu
- College of Grassland, Resources, and Environment, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Feng J, Burke IT, Chen X, Stewart DI. Evolution of Cu and Zn speciation in agricultural soil amended by digested sludge over time and repeated crop growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54738-54752. [PMID: 39215926 DOI: 10.1007/s11356-024-34784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Metals such as Zn and Cu present in sewage sludge applied to agricultural land can accumulate in soils and potentially mobilise into crops. Sequential extractions and X-ray absorption spectroscopy results are presented that show the speciation changes of Cu and Zn sorbed to anaerobic digestion sludge after mixing with soils over three consecutive 6-week cropping cycles, with and without spring barley (Hordeum vulgare). Cu and Zn in digested sewage sludge are primarily in metal sulphide phases formed during anaerobic digestion. When Cu and Zn spiked sludge was mixed with the soil, about 40% of Cu(I)-S phases and all Zn(II)-S phases in the amended sludge were converted to other phases (mainly Cu(I)-O and outer sphere Zn(II)-O phases). Further transformations occurred over time, and with crop growth. After 18 weeks of crop growth, about 60% of Cu added as Cu(I)-S phases was converted to other phases, with an increase in organo-Cu(II) phases. As a result, Cu and Zn extractability in the sludge-amended soil decreased with time and crop growth. Over 18 weeks, the proportions of Cu and Zn in the exchangeable fraction decreased from 36% and 70%, respectively, in freshly amended soil, to 28% and 59% without crop growth, and to 24% and 53% with crop growth. Overall, while sewage sludge application to land will probably increase the overall metal concentrations, metal bioavailability tends to reduce over time. Therefore, safety assessments for sludge application in agriculture should be based on both metal concentrations present and their specific binding strength within the amended soil.
Collapse
Affiliation(s)
- Jianting Feng
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.
| | - Ian T Burke
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Xiaohui Chen
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Douglas I Stewart
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Doelsch E, Le Bars M, Etschmann B, Formentini T, Legros S, Levard C, Chaurand P, Basile-Doelsch I, Rose J, Brunetti G, Doolette C, Howard DL, Lombi E. Bulk and Mapping Speciation Analyses Unveil the Pattern and Heterogeneity of Cu Species during Organic Waste Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39073989 DOI: 10.1021/acs.est.4c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Organic wastes (OWs) can be a common source of copper (Cu) contamination of agricultural soils. Here we conducted a comprehensive study of 22 raw and treated OWs sampled at 6 different full-scale OW treatment plants. Bulk XANES analysis findings indicated that the Cu oxidation state was subject to changes throughout the OW treatment process, mostly depending on the anaerobic/aerobic conditions prevailing in each treatment stage. These changes were independent of the OW origin (agricultural, urban or industrial). Cu(I) prevailed in raw OWs and digestates (88-100%), whereas Cu(II) dominated in composts (46-100%). Bulk EXAFS analysis confirmed these observations and revealed that Cu(I) species in raw OWs and digestates consisted mainly of Cu(I)-sulfide (76-100%), while Cu(II) species (60-100%) in composts were Cu(II)-citrate, Cu(II)-carbonate and amorphous Cu(II)-phosphate. Interestingly, we observed that anaerobic digestion was conducive to the formation of crystallized Cu(I)-sulfides at the expense of nanosized and poorly crystalline Cu(I)-sulfide species, and that the recalcitrant Cu(I) species in composts was always crystallized Cu(I)-sulfide. XANES imaging analysis revealed Cu(II) species present in low proportions (2-4%) that were not detected using bulk XAS analysis in raw OWs and digestates. This demonstrated the potential of XANES imaging for probing minor species in complex matrices.
Collapse
Affiliation(s)
- Emmanuel Doelsch
- CIRAD, UPR Recyclage et Risque, Montpellier F-34398, France
- Recyclage et Risque, Université de Montpellier, CIRAD, Montpellier 34398, France
| | - Maureen Le Bars
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, CHN, Universitätstrasse 16, Zurich CH-8092, Switzerland
| | - Barbara Etschmann
- School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia
| | - Thiago Formentini
- CIRAD, UPR Recyclage et Risque, Montpellier F-34398, France
- Environmental Engineering Program, Regional University of Blumenau (FURB), Blumenau, SC 89030-000, Brazil
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence 13545, France
| | - Samuel Legros
- Recyclage et Risque, Université de Montpellier, CIRAD, Montpellier 34398, France
- CIRAD, UPR Recyclage et Risque, Saint-Denis, Réunion F-97743, France
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence 13545, France
| | - Perrine Chaurand
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence 13545, France
| | | | - Jérôme Rose
- Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence 13545, France
| | - Gianluca Brunetti
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Casey Doolette
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Daryl L Howard
- Australian Synchrotron, Melbourne, Victoria 3168, Australia
| | - Enzo Lombi
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| |
Collapse
|
5
|
Zhang H, Liu WH, Gao YY, Sun P, Zeng YP, Ma LL, Wu JN, Zhou SG, Cui XQ, Zeng RJ, Wang HF. A novel approach for sludge deep-dewatering via flowing-out enhancement but not relying on cell lysis and bound water release. WATER RESEARCH 2024; 257:121743. [PMID: 38728775 DOI: 10.1016/j.watres.2024.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/14/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Effective deep-dewatering is crucial for wastewater sludge management. Currently, the dominant methods focus on promoting cell lysis to release intracellular water, but these techniques often lead to secondary pollution and require stringent conditions, limiting their practical use. This study explores an innovative method using a commercially available complex quaternary ammonium salt surfactant, known as G-agent. This agent remarkably reduces the sludge water content from 98.6 % to 56.8 % with a low dosage (50 mg/g DS) and under neutral pH conditions. This approach surpasses Fenton oxidation in terms of dewatering efficiency and avoids the necessity for cell lysis and bound water release, thereby reducing the risk of secondary pollution in the filtrate, including heavy metals, nitrogen, phosphorus, and other contaminants. The G-agent plays a significant role in destabilizing flocs and enhancing flocculation during the conditioning and initial dewatering stages, effectively reducing the solid-liquid interfacial affinity of the sludge. In the compression filtration stage, the agent's solidification effect is crucial in forming a robust skeleton that improves pore connectivity within the filter cake, leading to increased water permeability, drainage performance and water flow-out efficiency. This facilitates deep dewatering of sludge without cell lysis. The study reveals that the G-agent primarily improves water flow-out efficiency rather than water flowability, indicating that cell lysis and bound water release are not indispensable prerequisites for sludge deep-dewatering. Furthermore, it presents an encouraging prospect for overcoming the limitations associated with conventional sludge deep-dewatering processes.
Collapse
Affiliation(s)
- Hao Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Hui Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun-Yan Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Ping Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Lin Ma
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang-Nan Wu
- Fujian Haixia Environmental Protection Group Co.,Ltd, Fuzhou 350002, China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi-Qin Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hou-Feng Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Chen R, Xiao T, Dai X, Dong B. Roles of extracellular polymeric substances in the adsorption and removal of norfloxacin during hydrothermal treatment of sewage sludge. WATER RESEARCH 2024; 248:120899. [PMID: 38000225 DOI: 10.1016/j.watres.2023.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Hydrothermal treatment (HT) is promising to remove antimicrobials from sewage sludge (SS); however, the mechanism of antimicrobial degradation during the HT of SS is not fully understood. In this study, the roles of extracellular polymeric substances (EPS) in the removal and transformation of norfloxacin (NOR) during the HT of SS at temperatures of 100 and 160 °C were investigated. The results indicated that the degradation of NOR increased with increasing HT temperature, with maximum NOR removal (52%) achieved at 160 °C. Furthermore, the NOR in sludge showed higher degradation efficiencies than the control as HT temperature was higher than 120 °C. Evident promotion effects of bound-EPS (B-EPS) in sludge were observed on the NOR degradation as HT temperature was higher than 120 °C, leading to the mineralization and deamination of protein-like components in EPS during HT. Beside, the adsorption capacity of NOR during the HT of SS decreased at temperatures higher than 120 °C. The evolution of the spatial structure of B-EPS was predominantly responsible for the adsorption of antimicrobials, a spontaneous process driven mainly by hydrophilic interactions. With the hydrothermal conversion of B-EPS, the electron transfer, and reactive species (3EPS* and ·OH) derived from B-EPS could facilitate the degradation of NOR. In particular, hydrogen bonds between B-EPS and NOR increased the apparent yield of ·OH and accelerated the decarboxylation of NOR during HT at temperatures higher than 120 °C. A toxicity evaluation suggested that HT for NOR degradation could attenuate toxicity, whereas deep oxidation or mineralization would be needed to promote ecosystem safety. These findings provide new insights into the hydrothermal activation of EPS and the interrelated hydrothermal fate of antimicrobials and other toxic pollutants in sludge.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tingting Xiao
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
7
|
Chen R, Dai X, Dong B. Two birds with one stone: The multiple roles of hydrothermal treatment in dewatering municipal sludge and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165072. [PMID: 37364842 DOI: 10.1016/j.scitotenv.2023.165072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Sludge dewatering and resource recovery are key steps in the sustainable treatment of municipal sludge (MS) owing to the high levels of moisture and nutrients. Among the treatment options available, hydrothermal treatment (HT) is promising to efficiently improve dewaterability and recover biofuels, nutrients, and materials from MS. However, hydrothermal conversion at different HT conditions generates multiple products. Integrating the characteristics of dewaterability and value-added products under different HT conditions facilitates the application of HT for the sustainable management of MS. Therefore, a comprehensive review of HT for its multiple roles in MS dewatering and value-added resource recovery is conducted. First, the impact of HT temperature on sludge dewaterability and key mechanisms are summarized. Then, this study elucidates the characteristics of biofuels produced (combustible gases, hydrochars, biocrudes, and H2-rich gases), nutrient recovery (proteins and phosphorus), and value-added materials under a wide range of HT conditions. Importantly, along with the integration and evaluation of HT product characteristics under different HT temperatures, this work proposes a conceptual sludge treatment system that integrates the different value-added products in different HT stages. Furthermore, a critical evaluation of the knowledge gaps in the HT for sludge deep dewatering, biofuels, nutrients, and materials recovery is provided along with recommendations for further research.
Collapse
Affiliation(s)
- Renjie Chen
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, PR China.
| |
Collapse
|
8
|
Miao J, Hao J, Che R, Wang F, Li J, Liu L, Li X, Wang H. A double-edged sword: Reductive soil disinfestation changes the fates of trace metal elements in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162307. [PMID: 36804989 DOI: 10.1016/j.scitotenv.2023.162307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Although the effects of reductive soil disinfestation (RSD) in soil sterilization have been proven in several countries, the potential risks of trace metal elements (TMEs) caused by RSD require further assessment. Here, freshly Cd-spiked soil and historically contaminated greenhouse soil were exposed to RSD and the fates of TMEs, Cd, Co, Cu, Ni, Pb, and Zn, were investigated. All RSD treatments lasted for 21 days and subsamples were collected at different time intervals. Samples were open-air incubated for another 7 days until day 28 to simulate the situation after drainage. The bioavailability and geochemical fractionation of TMEs were investigated based on single and sequential extraction procedures and the environmental risks were assessed. The results showed that RSD increased the relative abundance of Firmicutes and Bacteroidetes, and the content of functional groups, including Fe, Mn, and S compounds respirations increased after RSD, highlighting the possible reductive dissolution of FeMn oxides and precipitation of TMEs. The dissolution decreased the reducible fractions of TMEs and increased the acid-soluble fractions of Co, Ni, Pb, and Zn, in the European Community Bureau of Reference results, reflecting the activation of TMEs in soils. However, the precipitation of sulfate resulted in the stabilization of Cd and Cu in two types of soils, increased their residual fractions, and decreased their acid-soluble fractions and bioavailabilities. After drainage, because the influence caused by precipitation rapidly disappeared and the impact of FeMn oxides dissolution remained, the acid-solubility of TMEs was greater than their initial status in the two soils. Furthermore, as a highly toxic metal, the activation of Cd at 28 days caused the rapid increase of ecological risks, which is particularly concerning. The results suggest that RSD temporarily increases the potential risks of TMEs and that certain measures must be taken.
Collapse
Affiliation(s)
- Jiahe Miao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Department of Civil and Resource Engineering, Dalhousie University, Halifax B3H 4R2, Canada
| | - Jiarong Hao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Liu
- Department of Civil and Resource Engineering, Dalhousie University, Halifax B3H 4R2, Canada
| | - Xinyu Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Haoyu Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
9
|
Zheng X, Ying Z, Feng Y, Wang B, Dou B. CaO-assisted hydrothermal treatment combined with incineration of sewage sludge: Focusing on phosphorus (P) fractions, P-bioavailability, and heavy metals behaviors. CHEMOSPHERE 2022; 308:136391. [PMID: 36096311 DOI: 10.1016/j.chemosphere.2022.136391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Dewatering of sewage sludge (SS) was the prerequisite for saving its drying energy and sustaining its stable combustion. Hydrothermal treatment (HT) has been a promising technology for improving SS dewaterability with high energy efficiency. However, the knowledge of phosphorus (P) transformation and heavy metals (HMs) behaviors in the combined HT and incineration process was still lack. P fractions, P-bioavailability, HMs speciation, and their environmental risk in the ash samples from this combination process were evaluated and compared with those from the co-incineration of SS and CaO. The combination process was superior to the latter one in the light of P and HMs. CaO preferred to enhance the transformation of non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP) initially with enriched P and increased P-bioavailability in the resultant ash samples. The combination process further reduced the values of risk assessment code and individual contamination factor with the increment of the stable F4 fraction in HMs. Significant reduction of potential ecological risk was observed with the lowest global risk index of 43.76 in the combination process. Optimum CaO addition of 6% was proposed in terms of P and HMs. The work here can provide theoretical references for the potential utilization of P from SS to mitigate the foreseeable shortage of P rocks.
Collapse
Affiliation(s)
- Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Shanghai Key Laboratory of Heat Transfer and Multiphase Flow in Power Engineering, Shanghai, 200093, China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, 200092, China.
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
10
|
Zhong M, Yang D, Liu R, Ding Y, Dai X. Effects of hydrothermal treatment on organic compositions, structural properties, dewatering and biogas production of raw and digested sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157618. [PMID: 35901886 DOI: 10.1016/j.scitotenv.2022.157618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The effects of hydrothermal treatment (HTT) under different temperatures and time (120 °C to 250 °C, 10 min to 60 min) on organic matter solubilization and structure changes of secondary sludge (SS) and digested sludge (DS), as well as downstream dewatering and anaerobic digestion were investigated. The results showed that organic matter solubilization increased significantly at 120 °C to 170 °C, then decreased at 200 °C to 250 °C. The organic matter solubilization during HTT showed no obvious difference for two sludge, but for the different organic components. The polysaccharides are easier to be dissolved than protein, which was manifested by the higher dissolution rate at low temperature. The protein was the main soluble component for both of hydrothermal SS and DS, which accounted for 44 % to 64 % of soluble chemical oxygen demand (SCOD). The decrease of residual extracellular polymeric substances (EPS) content and increase of N-acetylglucosamine and DNA concentrations indicated that sludge EPS and cell wall structure were damaged at 170 °C, which contributed to the high organic matter solubilization. Nitrogen balance and molecular weight distribution indicated the concentrations of soluble organic components were the combined result of dissolution and hydrolysis reaction. The hydrolysis and polymerization reaction were intensified at 170 °C to 250 °C, which was verified by the COD balance and molecular weight transformation. The hydrothermal time could further facilitate the organics dissolution and hydrolysis based on the effect of hydrothermal temperature. The EPS structure damage also contributed to the high percentage of free moisture, resulting in enhanced dewaterability. The highest methane production was 298.1 mL CH4/g VSadd for DS hydrothermally treated at 170 °C, which were 125 % and 9.8 % higher than SS and SS-HTT, respectively. This study provided an insight into the general mechanism of HTT and the application of different HTT and AD configurations.
Collapse
Affiliation(s)
- Menghuan Zhong
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Yanyan Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Cheng X, Wei C, Ke X, Pan J, Wei G, Chen Y, Wei C, Li F, Preis S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129267. [PMID: 35716572 DOI: 10.1016/j.jhazmat.2022.129267] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 05/22/2023]
Abstract
Systematically analyzing the problem of heavy metals in the municipal sludge, a meta-analysis of nine metals was undertaken to distinguish the sources and sinks of those with the impact of their accumulation on the environment. Municipal sludge was rich in N, P and K nutrients, was found to contain heavy metals comprising the descending order Zn > Mn > Cu > Cr > Pb > Ni > As > Cd > Hg. The forms, in which heavy metals accumulated in geographical regions, were characterized. The geographical distribution of heavy metals in the sludge showed a significant difference, with higher accumulation in Eastern and Southern regions, however, the risk evaluations showed the higher risk of heavy metals accumulation in Eastern and Western regions. Agricultural, industrial and traffic activities, and storm water pipeline sediments were identified as the main sources of heavy metals in the sludge. The correlation analysis elucidated the role of the total organic carbon in the accumulation of heavy metals in sludge. Municipal sludge is endowed with resource properties due to the detection of heavy metal contents thresholds in household products and its own resource-attributable enrichment behavior, which requires deduction of environmental risks.
Collapse
Affiliation(s)
- Xiaoqian Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jiamin Pan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yao Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Fusheng Li
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sergei Preis
- Department of Materials and Environment Technology, Tallinn University of Technology, Tallinn 19086, Estonia.
| |
Collapse
|
12
|
Hu J, Zhao J, Zheng X, Li S, Lv Q, Liang C. Removal of heavy metals from sewage sludge by chemical leaching with biodegradable chelator methyl glycine diacetic acid. CHEMOSPHERE 2022; 300:134496. [PMID: 35390410 DOI: 10.1016/j.chemosphere.2022.134496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The heavy metals (HMs) contained in sewage sludge are some of the largest obstacles that hamper the usage of sewage sludge in land application (e.g. fertilizer, soil improver). The conventional chelators, e.g., ethylenediaminetetraacetic acid (EDTA), were effective in the remediation of HMs polluted sewage sludge, but suffered from an evident drawback of low biodegradability. Therefore, the applicability of a new biodegradable chelator, methyl glycine diacetic acid (MGDA), to extract HMs from sewage sludge was carried out and compared with EDTA. The experimental parameters affecting the performance of MGDA were optimized. Leaching results showed that in general, MGDA exhibited higher Zn leaching efficiency and similar Cu, Ni and Cr leaching efficiencies with EDTA at same pH and dosage conditions. The maximum Zn, Cu, Ni and Cr leaching efficiencies of MGDA were 94.1% ± 4.5%, 58.2% ± 3.1%, 78.2% ± 2.3% and 54.6% ± 2.5%, respectively. The leaching efficiency plateaued within a reaction time of 4 h, but that of Cu and Ni showed a slightly decreasing trend during hours 4 to 10. In raw sewage sludge, the Zn and Cu were mainly presented in the organically bound fraction, i.e., 45.3 ± 3.2% of total Zn and 48.3 ± 1.4% of total Cu. The addition of MGDA and EDTA caused obvious distribution transformations in Zn and Cu from the organically bound fraction to soluble fraction. According to the reduced partition index calculation, the mobility of Zn, Cu, Ni, and Cr was not significantly lowered after the MGDA treatment. However, the HMs secondary pollution risk of the sludge was reduced due to the drop of the total HMs content after chelator leaching. Findings from this study suggest that MGDA could be a potential environment-friendly alternative for refractory chelators (e.g. EDTA) in the decontamination of HMs from sludge.
Collapse
Affiliation(s)
- Jianlong Hu
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China.
| | - Jixu Zhao
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Xi Zheng
- Beijing General Research Institute of Mining &Metallurgy, Beijing, 100160, PR China
| | - Simeng Li
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Qi Lv
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| | - Cunzhen Liang
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China
| |
Collapse
|
13
|
Wang R, Zou H, Zheng R, Feng X, Xu J, Shangguan Y, Luo S, Wei W, Yang D, Luo W, Duan L, Chen H. Molecular Dynamics Beyond the Monolayer Adsorption as Derived from Langmuir Curve Fitting. Inorg Chem 2022; 61:7804-7812. [PMID: 35522893 DOI: 10.1021/acs.inorgchem.2c00301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Langmuir adsorption model is a classic physical-chemical adsorption model and is widely used to describe the monolayer adsorption behavior at the material interface in environmental chemistry. Traditional adsorption dynamic modeling solely considered the surface physiochemical interaction between the adsorbent and adsorbate. The surface reaction dynamics resulting from the heterogeneous surface and intrinsic electronic structure of absorbents were rarely considered within the reported adsorption experiments. Herein, by employing the chlorine hybrid graphene oxide (GO-Cl) to adsorb Ag+ in an aqueous solution, complicated molecular dynamics significantly deviated from the monolayer adsorption mechanism, as suggested by Langmuir adsorption curve fitting, has been elucidated down to atomic scale. In the time-dependent Ag adsorption experiments, both Ag single atoms and Ag/AgCl nanoparticle heterostructures are observed to be formed sequentially on GO-Cl. These observations indicate that for the surface adsorption dynamics, not only the surface chemical adsorption process involved but also photoreduction and the C-Cl bond cleavage reaction has been heavily engaged within the GO-Cl interface, suggesting a much more complicated vision rather than the monolayered adsorption algorithm as derived from curve fitting. This study uses GO-Cl as a simple example to disclose the complicated adsorption dynamic process underneath Langmuir adsorption curve fitting. It advocates the necessity of imaging the interfacial atomic-scale dynamic structure with high-resolution microscopy techniques in modern adsorption studies, rather than simply explaining the adsorption dynamics relying on the curve fitting results due to the complicated physiochemical reactivity of the adsorbents.
Collapse
Affiliation(s)
- Ranhao Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiyuan Zou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Renji Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaoyan Xu
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Yangzi Shangguan
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Luo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenfei Wei
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhong Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Luo
- Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lele Duan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Chen
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
15
|
Hoang SA, Bolan N, Madhubashani AMP, Vithanage M, Perera V, Wijesekara H, Wang H, Srivastava P, Kirkham MB, Mickan BS, Rinklebe J, Siddique KHM. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118564. [PMID: 34838711 DOI: 10.1016/j.envpol.2021.118564] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 05/22/2023]
Abstract
Land application of sewage sludge is increasingly used as an alternative to landfilling and incineration owing to a considerable content of carbon and essential plant nutrients in sewage sludge. However, the presence of chemical and biological contaminants in sewage sludge poses potential dangers; therefore, sewage sludge must be suitably treated before being applied to soils. The most common methods include anaerobic digestion, aerobic composting, lime stabilization, incineration, and pyrolysis. These methods aim at stabilizing sewage sludge, to eliminate its potential environmental pollution and restore its agronomic value. To achieve best results on land, a comprehensive understanding of the transformation of organic matter, nutrients, and contaminants during these sewage-sludge treatments is essential; however, this information is still lacking. This review aims to fill this knowledge gap by presenting various approaches to treat sewage sludge, transformation processes of some major nutrients and pollutants during treatment, and potential impacts on soils. Despite these treatments, overtime there are still some potential risks of land application of treated sewage sludge. Potentially toxic substances remain the main concern regarding the reuse of treated sewage sludge on land. Therefore, further treatment may be applied, and long-term field studies are warranted, to prevent possible adverse effects of treated sewage sludge on the ecosystem and human health and enable its land application.
Collapse
Affiliation(s)
- Son A Hoang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Urban Infrastructural Engineering, Mientrung University of Civil Engineering, Phu Yen, 56000, Viet Nam
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia.
| | - A M P Madhubashani
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Department of Chemical and Process Engineering, University of Moratuwa, Moratuwa, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Vishma Perera
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya, Sri Lanka
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Prashant Srivastava
- CSIRO, The Commonwealth Scientific and Industrial Research Organisation Land and Water, PMB 2, Glen Osmond, South Australia, 5064, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Bede S Mickan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste- and Water Science, Faculty of Architecture und Civil Engineering, University of Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6001, Australia
| |
Collapse
|
16
|
Zhang C, Liu X, Wang Q, Tang Y, Pavlostathis SG. Comparative assessment of pre- and inter-stage hydrothermal treatment of municipal sludge for increased methane production. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1126-1137. [PMID: 33523520 DOI: 10.1002/wer.1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/01/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal treatment (HT) is a promising technology to enhance anaerobic digestion (AD) of municipal sludge. However, the capacity of pre- and inter-stage HT (i.e., HT-AD and AD-HT-AD, respectively) to enhance the digestibility of municipal sludge has not been sufficiently explored. This study compared the efficacy of pre- and inter-stage HT performed from 90 to 185°C to enhance methane production from a mixture of primary sludge and waste activated sludge using mesophilic (35°C) biochemical methane potential tests. In both configurations, sludge solubilization increased with HT temperature. HT-AD, and to a greater extent AD-HT-AD, increased the release of ammonium nitrogen. Even though HT at 185°C dramatically increased sludge solubilization, the overall specific methane yield with HT at 185°C was lower than or comparable to that at lower HT temperatures in the HT-AD and AD-HT-AD configurations, respectively. Up to 155°C HT, the overall specific methane yield with the HT-AD configuration was higher by 4.9%-8.3% compared to the AD-HT-AD configuration. However, when the HT energy was considered, compared to the control (i.e., AD of sludge without HT), the net energy gain (ΔE) decreased as the HT temperature increased, becoming negative at an HT of 185°C. The AD-HT-AD configuration resulted in a higher overall volatile solids destruction (by 8.1 to 20.1%). In conclusion, for municipal sludge with a relatively high ultimate digestibility, as was the case in this study, HT-AD is preferable as it has a smaller footprint and is easier to operate than the AD-HT-AD configuration. However, given the significantly higher volatile solids destruction in the AD-HT-AD configuration, compared to the HT-AD configuration, AD-HT-AD may be more beneficial considering post-AD sludge handling processes. PRACTITIONER POINTS: Hydrothermal treatment (HT) increased the rate and extent of methane production from municipal sludge mixture. 155°C was the optimal temperature for either pre- or inter-stage HT to increase biogas production. Pre- and inter-stage HT resulted in comparable ultimate methane production. Pre-stage HT is preferable to inter-stage HT (smaller footprint, easier to operate). AD-HT-AD resulted in significantly higher volatile solids destruction compared to the HT-AD configuration.
Collapse
Affiliation(s)
- Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xiaoguang Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|