1
|
Wang Y, Zhao J, Xu Y, Miao J, Pan K, Li Y, Chen Y, Liu X, Zhao A, Qin J, Xu T, Fang M. Benzo(a)anthracene Targeting SLC1A5 to Synergistically Enhance PAH Mixture Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18619-18630. [PMID: 39373333 DOI: 10.1021/acs.est.4c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAHs) as mutagenic and carcinogenic pollutants in the environment often occurs in the form of mixtures. Although the mixture effects of PAHs have been previously recognized, the toxicological mechanisms to explain them still remain quite unclear. This study combined metabolomics and chemical proteomics methods to comprehensively understand the mixture effects of a PAH mixture including benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF), benzo(a)pyrene (BaP), and chrysene (CHR). Among them, BaA has shown a strong synergistic effect with other PAHs. Interestingly, BaA alone is not a potent oxidative stress inducer in liver cells but dose-dependently amplifies oxidative damage caused by the PAH mixture. Global metabolomics analysis results revealed damage to the antioxidant glutathione synthesis, which was caused by the glutamine depletion caused by BaA in the mixture. Subsequently, the label-free chemical proteomics and cellular thermal shift analysis (CETSA) demonstrated that the PAH mixture altered the thermal shift of glutamine transporter SLC1A5. Furthermore, Western blotting and the isothermal titration calorimetry (ITC) interaction measurements showed nanomolar KD values between BaA and SLC1A5. Overall, this study showed that BaA synergistically contributed to PAH mixture induced oxidative damage by targeting SLC1A5 to inhibit glutamate transport into cells, resulting in the inhibition of glutathione synthesis.
Collapse
Affiliation(s)
- Yanwei Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Pharmacology, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Jiahui Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yipeng Xu
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Jing Miao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Keyu Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yihan Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Haining, Zhejiang 314400, P.R. China
| | - Yong Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuesong Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ailin Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jingyu Qin
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tengfei Xu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Yu H, Chen Y, Deng J, Cai G, Fu W, Shentu C, Xu Y, Liu J, Zhou Y, Luo Y, Chen Y, Liu X, Wu Y, Xu T. Integrated metabolomics and proteomics analyses to reveal anticancer mechanism of hemp oil extract in colorectal cancer. J Pharm Biomed Anal 2024; 249:116379. [PMID: 39059180 DOI: 10.1016/j.jpba.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
Cannabis sativa L., with a rich history in Chinese folk medicine, includes hemp strains that offer substantial economic and medical benefits due to their non-addictive properties. Hemp has demonstrated various pharmaceutical activities, including anti-inflammatory, antioxidant, and anti-tumor effects. This study explores the potential of hemp oil extract (HOE) in treating colorectal cancer (CRC). Despite its promise, the specific anticancer mechanisms of HOE have not been well understood. To elucidate these mechanisms, we employed mass spectrometry-based metabolomics and proteomics to investigate the global effects of HOE on CRC cells. Additionally, bioinformatics approaches, including bulk RNA-seq and single-cell RNA-seq, were used to identify gene expression differences and cellular heterogeneity. The results were validated using flow cytometry, western blotting, and immunohistochemistry. Our findings reveal that HOE induces significant alterations in purine metabolism pathways, down-regulates c-MYC, and inhibits the expression of cell cycle-related proteins such as CCND1, CDK4, and CDK6, leading to cell cycle arrest in the G1 phase. This comprehensive analysis demonstrates that HOE effectively blocks the cell cycle in the G1 phase, thereby inhibiting colorectal cancer cell proliferation. These findings provide experimental evidence supporting the potential therapeutic use of hemp in medicine.
Collapse
Affiliation(s)
- Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yang Chen
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Xihu University School of Medicine, Hangzhou 310006, China
| | - Jiayin Deng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Guoxin Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Youdong Xu
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jie Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Shandong C.P. Freda Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yingjie Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou 325800, China.
| |
Collapse
|
3
|
Zhang Q, Liu G, Li Y, Yang B, Guo W, Zhang Y, Pan L, Zhang P, Zhang W, Kong D. Thermal proteome profiling reveals the glial toxicity of dencichine via inhibiting proteasome. Food Chem Toxicol 2023; 182:114146. [PMID: 37923194 DOI: 10.1016/j.fct.2023.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Liangyu Pan
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
4
|
Wang Y, Zhao J, Xu Y, Tao C, Tong J, Luo Y, Chen Y, Liu X, Xu T. Uncovering SOD3 and GPX4 as new targets of Benzo[α]pyrene-induced hepatotoxicity through Metabolomics and Chemical Proteomics. Redox Biol 2023; 67:102930. [PMID: 37847980 PMCID: PMC10585396 DOI: 10.1016/j.redox.2023.102930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
Benzo[α]pyrene (Bap) is recognized as a ubiquitous environmental pollutant among the polycyclic aromatic hydrocarbons (PAHs) class. Previous studies have shown that the hepatotoxicity of Bap is mainly caused by its metabolites, although it remains unclear whether Bap itself induces such damage. This study integrated metabolomics and chemical proteomics approaches to comprehensively identify the potential target proteins affected by Bap in liver cells. The results from the metabolomics showed that the significant changed metabolites were related with cellular redox homeostasis. CEllular Thermal Shift Assay (CETSA) showed that Bap induced protein thermal displacement of superoxide dismutase 3 (SOD3) and glutathione peroxidase 4 (GPX4), which are closely related to oxidative homeostasis. Further validation through in vitro CETSA and drug affinity response target stability (DARTS) revealed that Bap directly affected the stability of SOD3 and GPX4 proteins. The binding affinities of Bap to the potential target proteins were further evaluated using molecular docking, while the isothermal titration calorimetry (ITC) interaction measurements indicated nanomolar-level Kd values. Importantly, we found that Bap weakened the antioxidant capacity by destroying the activities of SOD3 and GPX4, which provided a new understanding of the mechanism of hepatotoxicity induced by Bap. Moreover, our provided workflow integrating metabolomics and label-free chemical proteomics, can be regarded as a practical way to identify the targets and inter-mechanisms for the various environmental compounds.
Collapse
Affiliation(s)
- Yanwei Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jiahui Zhao
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yipeng Xu
- Department of Urology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Cimin Tao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jie Tong
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yingjie Luo
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Yong Chen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Xuesong Liu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China
| | - Tengfei Xu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, Wenzhou, Zhejiang, 325899, China.
| |
Collapse
|
5
|
Ma S, Yu H, Wang M, Cui T, Zhao Y, Zhang X, Wang C, Li M, Zhang L, Dong J. Natural product drupacine acting on a novel herbicidal target shikimate dehydrogenase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105480. [PMID: 37532346 DOI: 10.1016/j.pestbp.2023.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023]
Abstract
Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.
Collapse
Affiliation(s)
- Shujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Hualong Yu
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tingru Cui
- Baoding Meteorological Bureau, Baoding 071000, China
| | - Yujing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Caixia Wang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mengmeng Li
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
6
|
Liu H, Cui H, Huang Y, Yang Y, Jiao L, Zhou Y, Hu J, Wan Y. Enzyme-Catalyzed Hydrogen-Deuterium Exchange between Environmental Pollutants and Enzyme-Regulated Endogenous Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6844-6853. [PMID: 37080910 DOI: 10.1021/acs.est.2c08056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can disrupt the homeostasis of endogenous metabolites in organisms, leading to metabolic disorders and syndromes. However, it remains highly challenging to efficiently screen for critical biological molecules affected by environmental pollutants. Herein, we found that enzyme could catalyze hydrogen-deuterium (H-D) exchange between a deuterium-labeled environmental pollutant [D38-bis(2-ethylhexyl) phthalate (D38-DEHP)] and several groups of enzyme-regulated metabolites [cardiolipins (CLs), monolysocardiolipins (MLCLs), phospholipids (PLs), and lysophospholipids (LPLs)]. A high-throughput scanning identified the D-labeled endogenous metabolites in a simple enzyme [phospholipase A2 (PLA2)], enzyme mixtures (liver microsomes), and living organisms (zebrafish embryos) exposed to D38-DEHP. Mass fragmentation and structural analyses showed that similar positions were D-labeled in the CLs, MLCLs, PLs, and LPLs, and this labeling was not attributable to natural metabolic transformations of D38-DEHP or incorporation of its D-labeled side chains. Molecular docking and competitive binding analyses revealed that DEHP competed with D-labeled lipids for binding to the active site of PLA2, and this process mediated H-D exchange. Moreover, competitive binding of DEHP against biotransformation enzymes could interfere with catabolic or anabolic lipid metabolism and thereby affect the concentrations of endogenous metabolites. Our findings provide a tool for discovering more molecular targets that complement the known toxic endpoints of metabolic disruptors.
Collapse
Affiliation(s)
- Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Yangshengtang Co., Ltd., Hangzhou 310007, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Oliveira Pereira EA, Labine LM, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Daphnia magna sub-lethal exposure to phthalate pollutants elicits disruptions in amino acid and energy metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106432. [PMID: 36841068 DOI: 10.1016/j.aquatox.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Phthalic acid esters (PAEs) are a class of chemicals that are usually incorporated as additives in the manufacturing of plastics. PAEs are not covalently bound to the material matrix and can, consequently, be leached into the environment. PAEs have been reported to act as endocrine disruptors, neurotoxins, metabolic stressors, and immunotoxins to aquatic organisms but there is a lack of information regarding the impact of sub-lethal concentrations to target organisms. The freshwater crustacean Daphnia magna, a commonly used model organism in aquatic toxicity, was exposed to four phthalate pollutants: dimethyl phthalate (DMP), diethyl phthalate (DEP), monomethyl phthalate (MMP), and monoethyl phthalate (MEP). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed in a targeted metabolomic approach to quantify polar metabolites extracted from a single Daphnia body. Individual metabolite percent changes and hierarchical clustering heatmap analysis showed unique metabolic profiles for each phthalate pollutant. Metabolite percent changes were mostly downregulated or presented opposing responses for the low and high concentrations tested. Meanwhile, pathway analyses suggest the disruption of related and unique pathways, mostly connected with amino acid and energy metabolism. The pathways aminoacyl-tRNA biosynthesis, arginine biosynthesis, and glutathione metabolism were disrupted by most selected PAEs. Overall, this study indicates that although phthalate pollutants can elicit distinct metabolic perturbations to each PAE, they still impacted related biochemical pathways. These chemical-class based responses could be associated with a common toxic mechanism of action. The reported findings show how targeted metabolomic approaches can lead to a better understanding of sub-lethal exposure to pollutants, revealing metabolomic endpoints do not hold a close relationship with traditional acute toxicity endpoints.
Collapse
Affiliation(s)
- Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Lisa M Labine
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Ave., St. John's, NL A1C 5S7, Canada
| | - André J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada
| | - Myrna J Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
8
|
Zhao H, Li C, Naik MY, Wu J, Cardilla A, Liu M, Zhao F, Snyder SA, Xia Y, Su G, Fang M. Liquid Crystal Monomer: A Potential PPARγ Antagonist. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3758-3771. [PMID: 36815762 DOI: 10.1021/acs.est.2c08109] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are a large family of artificial ingredients that have been widely used in global liquid crystal display (LCD) industries. As a major constituent in LCDs as well as the end products of e-waste dismantling, LCMs are of growing research interest with regard to their environmental occurrences and biochemical consequences. Many studies have analyzed LCMs in multiple environmental matrices, yet limited research has investigated the toxic effects upon exposure to them. In this study, we combined in silico simulation and in vitro assay validation along with omics integration analysis to achieve a comprehensive toxicity elucidation as well as a systematic mechanism interpretation of LCMs for the first time. Briefly, the high-throughput virtual screen and reporter gene assay revealed that peroxisome proliferator-activated receptor gamma (PPARγ) was significantly antagonized by certain LCMs. Besides, LCMs induced global metabolome and transcriptome dysregulation in HK2 cells. Notably, fatty acid β-oxidation was conspicuously dysregulated, which might be mediated through multiple pathways (IL-17, TNF, and NF-kB), whereas the activation of AMPK and ligand-dependent PPARγ antagonism may play particularly important parts. This study illustrated LCMs as a potential PPARγ antagonist and explored their toxicological mode of action on the trans-omics level, which provided an insightful overview in future chemical risk assessment.
Collapse
Affiliation(s)
- Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Mihir Yogesh Naik
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Jia Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Angelysia Cardilla
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Fanrong Zhao
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Shane Allen Snyder
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 637141 Singapore
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
10
|
Li F, Luo T, Rong H, Lu L, Zhang L, Zheng C, Yi D, Peng Y, Lei E, Xiong X, Wang F, Garcia JM, Chen J. Maternal rodent exposure to di-(2-ethylhexyl) phthalate decreases muscle mass in the offspring by increasing myostatin. J Cachexia Sarcopenia Muscle 2022; 13:2740-2751. [PMID: 36263449 PMCID: PMC9745490 DOI: 10.1002/jcsm.13098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Di-(2-ethylhexyl) phthalate (DEHP) and its metabolites can cross the placenta and may cause birth defects and developmental disorders. However, whether maternal DEHP exposure affects skeletal muscle development in the offspring and the pathways involved are unknown. This study investigated the effects of maternal DEHP exposure and the contribution of myostatin (MSTN) to skeletal muscle development in the offspring. METHODS Pregnant wild-type and muscle-specific myostatin knockout (MSTN KO) C57BL/6 mice were randomized to receive vehicle (corn oil) or 250 mg/kg DEHP by gavage every other day until their pups were weaned (postnatal day 21 [PND21]). Body weights of the offspring mice were measured longitudinally, and their hindleg muscles were harvested at PD21. Also, C2C12 cells were treated with mono-2-ethylhexyl phthalate (MEHP), the primary metabolite of DEHP, and proteolysis, protein synthesis, and myogenesis markers were measured. The contribution of myostatin to maternal DEHP exposure-induced muscle wasting in the offspring was determined. RESULTS Maternal DEHP exposure reduced body weight growth, myofibre size, and muscle mass in the offspring compared to controls (Quad: 2.70 ± 0.1 vs. 3.38 ± 0.23, Gastroc: 2.29 ± 0.09 vs. 2.81 ± 0.14, Tibialis: 1.01 ± 0.07 vs. 1.25 ± 0.11, mg/tibial length in mm, all P < 0.01, n = 35). Maternal DEHP exposure significantly increased Myostatin expression (2.45 ± 0.41 vs. 0.03 ± 0.00 DEHP vs. controls, P < 0.01, n = 5), Atrogin-1(2.68 ± 0.65 vs. 0.63 ± 0.01, P < 0.05, n = 5), MuRF1 (1.56 ± 0.51 vs. 0.31 ± 0.01, P < 0.05, n = 5), and Smad2/3 phosphorylation (4.12 ± 0.35 vs. 0.49 ± 0.18, P < 0.05), and decreased MyoD (0.27 ± 0.01 vs. 1.52 ± 0.01, P < 0.05, n = 5), Myogenin (0.25 ± 0.03 vs. 1.95 ± 0.56, P < 0.05, n = 5), and AKT phosphorylation (4.12 ± 0.35 vs. 1.00 ± 0.06, P < 0.05, n = 5), in skeletal muscle of the offspring in MSTNflox/flox , but not in MSTN KO mice. Maternal DEHP exposure resulted in up-regulation of CCAAT/enhancer-binding protein δ (C/EBPδ, 4.12 ± 0.35 vs. 1.00 ± 0.19, P < 0.05, n = 5) in skeletal muscle of the offspring in MSTNflox/flox and MSTN KO mice (4.12 ± 0.35 vs. 4.35 ± 0.28, P > 0.05, n = 5). In vitro, C/EBPδ silencing abrogated the MEHP-induced increases in Myostatin, MuRF-1, and Atrogin-1 and decreases in MyoD and Myogenin expression. CONCLUSIONS Maternal DEHP exposure impairs skeletal muscle development in the offspring by enhancing the C/EBPδ-myostatin pathway in mice.
Collapse
Affiliation(s)
- Fengju Li
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ting Luo
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Center for Disease Control and Prevention of JiangjinChongqingChina
| | - Honghui Rong
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Lu Lu
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Ling Zhang
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chuanfeng Zheng
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Dali Yi
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yi Peng
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Enyu Lei
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaotao Xiong
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Fengchao Wang
- Institute of Combined injury, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jose M. Garcia
- GRECCVA Puget Sound Health Care System and University of WashingtonSeattleWashingtonUSA
| | - Ji‐an Chen
- Department of Health Education, College of Military Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
11
|
Abstract
Knowing that the drug candidate binds to its intended target is a vital part of drug discovery. Thus, several labeled and label-free methods have been developed to study target engagement. In recent years, the cellular thermal shift assay (CETSA) with its variations has been widely adapted to drug discovery workflows. Western blot–based CETSA is used primarily to validate the target binding of a molecule to its target protein whereas CETSA based on bead chemistry detection methods (CETSA HT) has been used to screen molecular libraries to find novel molecules binding to a pre-determined target. Mass spectrometry–based CETSA also known as thermal proteome profiling (TPP) has emerged as a powerful tool for target deconvolution and finding novel binding partners for old and novel molecules. With this technology, it is possible to probe thermal shifts among over 7,000 proteins from one sample and to identify the wanted target binding but also binding to unwanted off-targets known to cause adverse effects. In addition, this proteome-wide method can provide information on the biological process initiated by the ligand binding. The continued development of mass spectrometry labeling reagents, such as isobaric tandem mass tag technology (TMT) continues to increase the throughput of CETSA MS, allowing its use for structure–activity relationship (SAR) studies with a limited number of molecules. In this review, we discussed the differences between different label-free methods to study target engagement, but our focus was on CETSA and recent advances in the CETSA method.
Collapse
Affiliation(s)
- Tuomas Aleksi Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.,Pelago Bioscience AB, Solna, Sweden
| |
Collapse
|
12
|
Cui S, Yu Y, Zhan T, Gao Y, Zhang J, Zhang L, Ge Z, Liu W, Zhang C, Zhuang S. Carcinogenic Risk of 2,6-Di- tert-Butylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RARβ: In Vivo, In Vitro, and In Silico Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:480-490. [PMID: 34927421 DOI: 10.1021/acs.est.1c06866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thousands of contaminants are used worldwide and eventually released into the environment, presenting a challenge of health risk assessment. The identification of key toxic pathways and characterization of interactions with target biomacromolecules are essential for health risk assessments. The adverse outcome pathway (AOP) incorporates toxic mechanisms into health risk assessment by emphasizing the relationship among molecular initiating events (MIEs), key events (KEs), and adverse outcome (AO). Herein, we attempted the use of AOP to decipher the toxic effects of 2,6-di-tert-butylphenol (2,6-DTBP) and its para-quinone metabolite 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTBQ) based on integrated transcriptomics, molecular modeling, and cell-based assays. Through transcriptomics and quantitative real-time PCR validation, we identified retinoic acid receptor β (RARβ) as the key target biomacromolecule. The epigenetic analysis and molecular modeling revealed RARβ interference as one MIE, including DNA methylation and conformational changes. In vitro assays extended subsequent KEs, including altered protein expression of p-Erk1/2 and COX-2, and promoted cancer cell H4IIE proliferation and metastasis. These toxic effects altogether led to carcinogenic risk as the AO of 2,6-DTBP and 2,6-DTBQ, in line with chemical carcinogenesis identified from transcriptome profiling. Overall, our simplified AOP network of 2,6-DTBP and 2,6-DTBQ facilitates relevant health risk assessment.
Collapse
Affiliation(s)
- Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment (MEE), Beijing 100029, China
| | - Tingjie Zhan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yuchen Gao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|
13
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
14
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
15
|
Madeira C, Costa PM. Proteomics in systems toxicology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:55-91. [PMID: 34340774 DOI: 10.1016/bs.apcsb.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins are the ultimate product of gene expression. As they hinge between gene transcription and phenotype, they offer a more realistic perspective of toxicopathic effects, responses and even susceptibility to insult than targeting genes and mRNAs while dodging some inter-individual variability that hinders measuring downstream endpoints like metabolites or enzyme activity. Toxicologists have long focused on proteins as biomarkers but the advent of proteomics shifted risk assessment from narrow single-endpoint analyses to whole-proteome screening, enabling deriving protein-centric adverse outcome pathways (AOPs), which are pivotal for the derivation of Systems Biology informally named Systems Toxicology. Especially if coupled pathology, the identification of molecular initiating events (MIEs) and AOPs allow predictive modeling of toxicological pathways, which now stands as the frontier for the next generation of toxicologists. Advances in mass spectrometry, bioinformatics, protein databases and top-down proteomics create new opportunities for mechanistic and effects-oriented research in all fields, from ecotoxicology to pharmacotoxicology.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|