1
|
Xing C, Zeng Y, Yang X, Zhang A, Zhai J, Cai B, Shi S, Zhang Y, Zhang Y, Fu TM, Zhu L, Shen H, Ye J, Wang C. Molecular characterization of major oxidative potential active species in ambient PM 2.5: Emissions from biomass burning and ship exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125291. [PMID: 39542165 DOI: 10.1016/j.envpol.2024.125291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Ambient fine particulate matter (PM2.5) can catalyze the generation of reactive oxygen species in vivo, causing hazardous effects on human health. Molecular-level analysis of major oxidative potential (OP) active species is still limited. In this study, we used non-targeted high-resolution mass spectrometry to analyze the water-soluble organic components of ambient PM2.5 samples in winter and summer. Chemical components and back trajectory analysis revealed significant impacts of biomass burning and ship emissions on PM2.5 in winter and summer, respectively. Significance Analysis of the Microarray method and correlation analyses were combined to identify OP (OPDTT and OPOH) active species in characteristic organic compounds emitted from ship and biomass combustion emissions and to explore possible mechanisms. The results showed that the characteristic compounds emitted from ship were mainly organic amine compounds and contained more sulfur-containing components, while the characteristic compounds emitted from biomass burning were mainly oxygen-containing aromatic compounds of CHO and CHON groups. The high toxicity of summer PM2.5 might derive from reduced organic nitrogen compounds (C6H14N2O3S, C6H12N2O3S, C10H9N3O, C6H9N5O3S, and C6H14N4O) emission from ship sources. These reduced organic nitrogen compounds can form complexes with metals, affecting their solubility and reactivity in aerosols. Phenolic hydroxyl compounds were the main contributors to the PM2.5 OP from biomass burning in winter. Semiquinone radicals produced by oxidation of phenolic compounds can further promote the generation of reactive oxygen species through Fenton-like reactions. Our studies based on ambient PM2.5 samples further deepened the understanding of the molecular level of organic compounds emitted from ships and biomass burning, and their association with OP.
Collapse
Affiliation(s)
- Chunbo Xing
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong, 518055, China.
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao Shi
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yin Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Shu X, Cao J, Liu Q, Wang Y, Jiang F, Wu C, Shu J. Global Trends and Hotspots in the Research of the Effects of PM2.5 on Asthma: A Bibliometric and Visualized Analysis. J Epidemiol Glob Health 2024; 14:1720-1736. [PMID: 39625686 DOI: 10.1007/s44197-024-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) has been identified as a significant environmental and public health challenge, particularly due to its association with respiratory diseases like asthma. With the global rise in urbanization and industrialization, PM2.5-related asthma research has grown substantially over the past two decades. This study aims to provide a comprehensive bibliometric analysis to map global research trends, highlight key contributors, and identify emerging hotspots in the relationship between PM2.5 and asthma. METHODS We performed a bibliometric analysis using the Web of Science Core Collection database, covering research from January 2004 to September 2024. The selected studies were analyzed using CiteSpace and VOSviewer to assess publication trends, global collaborations, and research hotspots through visualized networks and co-occurrence analyses. RESULTS A total of 2035 publications were identified, demonstrating a steady increase in research output over the past two decades. The United States and China emerged as dominant contributors, frequently collaborating with countries like Canada, Australia, and South Korea. Key research areas focused on air quality, particulate matter exposure, and asthma exacerbation, with an increasing emphasis on indoor air pollution and long-term exposure risks. Institutional collaborations were led by prominent universities such as the University of California System and Harvard University. Additionally, research on vulnerable populations, particularly children, and the impact of early-life exposure to PM2.5 has gained attention in recent years. CONCLUSIONS The global research landscape on PM2.5 and asthma has expanded significantly, with growing attention to interdisciplinary approaches that combine environmental science and public health. Future studies should focus on the global burden of air pollution, particularly in low- and middle-income countries, and address the long-term health impacts of PM2.5 exposure, especially in vulnerable populations.
Collapse
Affiliation(s)
- Xinchen Shu
- School of Mathematics, University of Birmingham, Birmingham, UK
| | - Jiaxin Cao
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Liu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yixin Wang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
3
|
Feng B, Song J, Wang S, Chao L. The impact of PM 2.5 on lung function and chronic respiratory diseases: insights from genetic evidence. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2049-2054. [PMID: 38904841 DOI: 10.1007/s00484-024-02728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND PM2.5 has been associated with various adverse health effects, particularly affecting lung function and chronic respiratory diseases. However, the genetic causality relationship between PM2.5 exposure and lung function as well as chronic respiratory diseases remains poorly understood. METHOD We conducted a two-sample Mendelian randomization analysis to investigate the causal impact of PM2.5 on lung function and chronic respiratory diseases. Instrumental variables were carefully selected, with significance thresholds (P < 5 × 10- 8), and linkage disequilibrium with an r2 value below 0.001. Additionally, SNPs with an F-statistic exceeding 10 were included to mitigate potential bias stemming from weak instrumental variables. The primary analytical approach employed the Inverse Variance Weighted method, supplemented by the Weighted Median, MR-Egger, Simple Model, and Weighted Model. Furthermore, pleiotropy and heterogeneity were evaluated through the MR-Egger intercept test and Cochrane's Q test, with a sensitivity analysis conducted using the leave-one-out method. RESULTS Eight SNPs significantly associated with PM2.5 exposure were identified as Instrumental variables. Mendelian randomization analysis revealed a significant causal association between PM2.5 exposure and lung function (FEV), with an OR of 0.7284 (95% CI: 0.5799-0.9150). Similarly, PM2.5 exposure demonstrated a substantial causal effect on asthma, with an OR of 1.5280 (95% CI: 1.0470-2.2299). However, no causal association was observed between PM2.5 exposure and chronic obstructive pulmonary disease, with an OR of 1.5176 (95% CI: 0.8294-2.7768). CONCLUSION These findings emphasize the necessity for continued research efforts in environmental health to develop effective strategies for the prevention and management of chronic respiratory diseases.
Collapse
Affiliation(s)
- Bin Feng
- School of health Management, Environmental Health Section, Xinxiang Medical University, Xinxiang Health Technology Supervision Center, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Shouying Wang
- School of health Management, Environmental Health Section, Xinxiang Medical University, Xinxiang Health Technology Supervision Center, Xinxiang, 453003, Henan Province, China.
| | - Ling Chao
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
4
|
Ye J, Hu H, Bu Z, Cao J, Liu W, Su C, Wang X, Zhang Y, Kan H, Ding Z, Qian H, Cao S, Liu C. Spatiotemporal distribution of oxidative potential in PM 2.5 and its key components across six Chinese cities. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135119. [PMID: 38986405 DOI: 10.1016/j.jhazmat.2024.135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Increasing evidence has supported that oxidative potential (OP) serves as a crucial indicator of health risk of exposure to PM2.5 over mass concentration. However, there is a lack of comparative studies across multiple cities, particularly on a fine temporal scale. In this study, we aim to investigate daily variation of ambient PM2.5 OP through simultaneous samplings in six Chinese cities for one year. Results showed that more than 60 % of the sampling days exhibited non-zero ranking difference between volume-normalized oxidative potential (OPv) and mass concentration among the six cities. Key components contributing to OPv inculde Mn, NO3-, and K+, followed by Ca2+, Al, SO42-, Cl-, Fe, and NH4+. Based on these chemical components, we developed a stepwise multivariable linear regression model (R2: 0.71) for OPv prediction. The performance of the model is comparable to both species- and sources-based ones in the literature. These findings suggest that a relatively lower daily-averaged mass concentration of PM2.5 does not necessarily indicate a lower oxidative risk. Future studies and policy developments on health benefits should also consider OPv rather than mass concentration alone. Priority could be given to sources/species that contribute significantly to oxidative potential of ambient PM2.5. SYNOPSIS: This study highlights inclusion of oxidative potential as a complementary metric for air pollution assessment and control.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hao Hu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhongming Bu
- Department of Energy and Environmental System Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Liu
- Institute for Health and Environment, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunxiao Su
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinke Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100086, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Shijie Cao
- School of Architecture, Southeast University, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, China; Global Centre for Clean Air Research (GCARE), University of Surrey, UK
| | - Cong Liu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, China.
| |
Collapse
|
5
|
Yu H, Wang Y, Puthussery JV, Verma V. Sources of acellular oxidative potential of water-soluble fine ambient particulate matter in the midwestern United States. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134763. [PMID: 38843639 DOI: 10.1016/j.jhazmat.2024.134763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Ambient fine particulate matter (PM2.5) is associated with numerous health complications, yet the specific PM2.5 chemical components and their emission sources contributing to these health outcomes are understudied. Our study analyzes the chemical composition of PM2.5 collected from five distinct locations at urban, roadside and rural environments in midwestern region of the United States, and associates them with five acellular oxidative potential (OP) endpoints of water-soluble PM2.5. Redox-active metals (i.e., Cu, Fe, and Mn) and carbonaceous species were correlated with most OP endpoints, suggesting their significant role in OP. We conducted a source apportionment analysis using positive matrix factorization (PMF) and found a strong disparity in the contribution of various emission sources to PM2.5 mass vs. OP. Regional secondary sources and combustion-related aerosols contributed significantly (> 75 % in total) to PM2.5 mass, but showed weaker contribution (43-69 %) to OP. Local sources such as parking emissions, industrial emissions, and agricultural activities, though accounting marginally to PM2.5 mass (< 10 % for each), significantly contributed to various OP endpoints (10-50 %). Our results demonstrate that the sources contributing to PM2.5 mass and health effects are not necessarily same, emphasizing the need for an improved air quality management strategy utilizing more health-relevant PM2.5 indicators.
Collapse
Affiliation(s)
- Haoran Yu
- Department of Civil and Environmental Engineering, University of Alberta, 9211 116th St, Edmonton, AB T6G 1H9, Canada; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Yixiang Wang
- College of Health, Lehigh University, 124 E Morton St, Bethlehem, PA 18015, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Joseph V Puthussery
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130-4899, United States; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
6
|
Yao K, Xu Y, Zheng H, Zhang X, Song Y, Guo H. Oxidative potential associated with reactive oxygen species of size-resolved particles: The important role of the specific sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121122. [PMID: 38733850 DOI: 10.1016/j.jenvman.2024.121122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Oxidative potential (OP) is a predictor of particulate matter (PM) toxicity. Size-resolved PM and its components that influence OP values can be generated from several sources. However, There is little research have attempted to determine the PM toxicity generated from specific sources. This paper studied the OP characterization and reactive oxygen species (ROS) formation of particles from specific sources and their effects on human health. OP associated with ROS of size-resolved particles was analyzed by using dithiothreitol (DTT) method and electron paramagnetic resonance (EPR) spectroscopy technology. And OP and ROS deposition of specific source PM were calculated for health through the Multi-path particle deposition (MPPD) model. The results evidenced that the highest water-soluble OP (OPws) from traffic sources (OPm: 104.50 nmol min-1·ug-1; OPv: 160.15 nmol min-1·m-3) and the lowest from ocean sources (OPm: 22.25 nmol⋅min-1⋅ug-1; OPv: 54.16 nmol min-1·m-3). The OPws allocation in PM from different sources all have a unimodal pattern range from 0.4 to 3.2 μm. ROS (·OH) displayed the uniform trend as PM OPws, indicating that PM< 3.2 is the major contributor to adverse health impacts for size-resolved PM because of its enhanced oxidative activity compared with PM> 3.2. Furthermore, this study predicted the DTT consumption of PM were assigned to different components. Most DTT losses are attributed to the transition metals. For specific sources, transition metals dominates DTT losses, accounting for 38%-80% of DTT losses from different sources, followed by Hulis-C, accounting for 1%-10%. MPPD model calculates that over 66% of pulmonary DTT loss comes by PM< 3.2, and over 71% of pulmonary ROS generation from PM< 3.2. Among these sources of pollution, traffic emissions are the primary contributors to reactive oxygen species (ROS) in environmental particulate matter (PM). Therefore, emphasis should be placed on controlling traffic emissions, especially in coastal areas.
Collapse
Affiliation(s)
- Kaixing Yao
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yihao Xu
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Han Zheng
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Xinji Zhang
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yixuan Song
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Huibin Guo
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| |
Collapse
|
7
|
Novo-Quiza N, Sánchez-Piñero J, Moreda-Piñeiro J, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P. Oxidative potential of the inhalation bioaccessible fraction of PM 10 and bioaccessible concentrations of polycyclic aromatic hydrocarbons and metal(oid)s in PM 10. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31862-31877. [PMID: 38637483 PMCID: PMC11133103 DOI: 10.1007/s11356-024-33331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Atmospheric particulate matter (PM) has been related to numerous adverse health effects in humans. Nowadays, it is believed that one of the possible mechanisms of toxicity could be the oxidative stress, which involves the development of reactive oxygen species (ROS). Different assays have been proposed to characterize oxidative stress, such as dithiothreitol (DTT) and ascorbic acid (AA) acellular assays (OPDTT and OPAA), as a metric more relevant than PM mass measurement for PM toxicity. This study evaluates the OP of the bioaccessible fraction of 65 PM10 samples collected at an Atlantic Coastal European urban site using DTT and AA assays. A physiologically based extraction (PBET) using Gamble's solution (GS) as a simulated lung fluid (SLF) was used for the assessment of the bioaccessible fraction of PM10. The use of the bioaccessible fraction, instead of the fraction assessed using conventional phosphate buffer and ultrasounds assisted extraction (UAE), was compared for OP assessment. Correlations between OPDTT and OPAA, as well as total and bioaccessible concentrations of polycyclic aromatic hydrocarbons (PAHs) and metal(oid)s, were investigated to explore the association between those compounds and OP. A correlation was found between both OP (OPDTT and OPAA) and total and bioaccessible concentrations of PAHs and several metal(oid)s such as As, Bi, Cd, Cu, Ni, and V. Additionally, OPDTT was found to be related to the level of K+.
Collapse
Affiliation(s)
- Natalia Novo-Quiza
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Joel Sánchez-Piñero
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain.
| | - Isabel Turnes-Carou
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- Department of Chemistry, Faculty of Sciences, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), University of A Coruña, Campus de A Coruña, S/N. 15071, A Coruña, Spain
| |
Collapse
|
8
|
Liu J, Ye Z, Christensen JH, Dong S, Geels C, Brandt J, Nenes A, Yuan Y, Im U. Impact of anthropogenic emission control in reducing future PM 2.5 concentrations and the related oxidative potential across different regions of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170638. [PMID: 38316299 DOI: 10.1016/j.scitotenv.2024.170638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated historical and future PM2.5 concentrations and associated OP using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. Considering different future socio-economic pathways and emission scenario assumptions, we quantified how the contribution from various anthropogenic emission sectors will change under these scenarios. Results show that compared to the CESM_SSP2-4.5_CLE scenario (based on moderate radiative forcing and Current Legislation Emission), the CESM_SSP1-2.6_MFR scenario (based on sustainability development and Maximum Feasible Reductions) is projected to yield greater environmental and health benefits in the future. Under the CESM_SSP1-2.6_MFR scenario, annual average PM2.5 concentrations (OP) are expected to decrease to 30 (0.8 nmolmin-1m-3) in almost all regions by 2030, which will be 65 % (67 %) lower than that in 2010. From a long-term perspective, it is anticipated that OP in the Fen-Wei Plain region will experience the maximum reduction (82.6 %) from 2010 to 2049. Largely benefiting from the effective control of PM2.5 in the region, it has decreased by 82.1 %. Crucially, once emission reduction measures reach a certain level (in 2040), further reductions become less significant. This study also emphasized the significant role of secondary aerosol formation and biomass-burning sources in influencing OP during both historical and future periods. In different scenarios, the reduction range of OP from 2010 to 2049 is estimated to be between 71 % and 85 % by controlling precursor emissions involved in secondary aerosol formation and emissions from biomass burning. Results indicate that strengthening the control of anthropogenic emissions in various regions are key to achieving air quality targets and safeguarding human health in the future.
Collapse
Affiliation(s)
- Jiemei Liu
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Zhuyun Ye
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Jesper H Christensen
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Shikui Dong
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Camilla Geels
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Jørgen Brandt
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Foundation for Research and Technology Hellas (FORTH), Thessaloniki, Greece
| | - Yuan Yuan
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Ulas Im
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark.
| |
Collapse
|
9
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
10
|
Feng L, Zhou H, Chen M, Ge X, Wu Y. Computational and experimental assessment of health risks of fine particulate matter in Nanjing and Yangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122497-122507. [PMID: 37971590 DOI: 10.1007/s11356-023-30927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Fine particulate matter (PM2.5) is a major air pollutant in most cities of China, and poses great health risks to local residents. In this study, the health effects of PM2.5 in Nanjing and Yangzhou were compared using computational and experimental methods. The global exposure mortality model (GEMM), including the results of a cohort study in China, was used to estimate the disease-related risks. Premature mortality attributable to PM2.5 exposure were markedly higher in Nanjing than that in Yangzhou at comparable levels of PM2.5 (8191 95% CI, 6975-9994 vs. 6548 95% CI, 5599-8049 in 2015). However, the baseline mortality rate was on a country-level and the age distribution was on a province-level, traditional estimation method could not accurately represent the health burdens of PM2.5 on a city-level. We proposed a refined calculation method which based on the actual deaths of each city and the disease death rates. Conversely, similar concentrations of PM2.5 exposure resulted in higher actual deaths per million population in Yangzhou (1466 95% CI, 1266-1746) than that in Nanjing (1271 95% CI, 1098-1514). Health risks of PM2.5 are associated with the generation of reactive oxygen species, among which hydroxyl radial (·OH) is the most reactive one. We then collected these PM2.5 samples and quantified the induced ·OH. Consistently, average ·OH concentration in 2015 was higher in Yangzhou than that in Nanjing, again indicating that PM2.5 in Yangzhou was more toxic. The combination of computational and experimental methods demonstrated the complex relationship between health risks and PM2.5 concentrations. The refined estimation method could help us better estimate and interpret the risks caused by PM2.5 exposure on a city-level.
Collapse
Affiliation(s)
- Liangyu Feng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Haitao Zhou
- Sheyang Meteorological Bureau, Yancheng, 224300, Jiangsu, China
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Xinlei Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
| | - Yun Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China.
| |
Collapse
|
11
|
He L, Evans S, Norris C, Barkjohn K, Cui X, Li Z, Zhou X, Li F, Zhang Y, Black M, Bergin MH, Zhang J(J. Associations between personal apparent temperature exposures and asthma symptoms in children with asthma. PLoS One 2023; 18:e0293603. [PMID: 37956155 PMCID: PMC10642815 DOI: 10.1371/journal.pone.0293603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Ambient temperature and relative humidity can affect asthma symptoms. Apparent temperature is a measure of temperature perceived by humans that takes into account the effect of humidity. However, the potential link between personal exposures to apparent temperature and asthma symptoms has not been investigated. We conducted a panel study of 37 asthmatic children, aged 5-11 years, during an early spring season (average daily ambient temperature: 14°C, range: 7-18°C). Asthma symptoms were measured 4 times for each participant with a 2-week interval between consecutive measurements using the Childhood Asthma-Control Test (C-ACT). Average, minimum, and maximum personal apparent temperature exposures, apparent temperature exposure variability (TV), and average ambient temperature were calculated for the 12 hours, 24 hours, week, and 2 weeks prior to each visit. We found that a 10°C lower in 1-week and 2-week average & minimum personal apparent temperature exposures, TV, and average ambient temperature exposures were significantly associated with lower total C-ACT scores by up to 2.2, 1.4, 3.3, and 1.4 points, respectively, indicating worsened asthma symptoms. Our results support that personal apparent temperature exposure is potentially a stronger driver than ambient temperature exposures for the variability in asthma symptom scores. Maintaining a proper personal apparent temperature exposure could be an effective strategy for personalized asthma management.
Collapse
Affiliation(s)
- Linchen He
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Shoshana Evans
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Christina Norris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Karoline Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, United States of America
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Marilyn Black
- Underwriters Laboratories, Inc, Marietta, Georgia, United States of America
| | - Michael H. Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, United States of America
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
- Duke Kunshan University, Kunshan, Jiangsu Province, China
| |
Collapse
|
12
|
Diao Q, Qin X, Hu N, Ling Y, Hua Q, Li M, Li X, Zhou H, Liu Y, Zeng H, Liang J, Wu Y, Jiang Y. Long non-coding RNAs mediate the association between short-term PM 2.5 exposure and circulating biomarkers of systemic inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122299. [PMID: 37541382 DOI: 10.1016/j.envpol.2023.122299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Although short-term fine particulate matter (PM2.5) exposure is associated with systemic inflammation, the effect of lncRNA on these association remains unknown. This study aims to investigate whether the plasma lncRNA mediate the effect of short-term PM2.5 exposure on systemic inflammation. In this cross-sectional study, plasma Clara cell protein 16 (CC16), interleukin 6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α) and lncRNA expression levels were measured in 161 adults between March and April in 2018 in Shijiazhuang, China. PM2.5 concentrations were estimated 0-3 days prior to the examination date and the moving averages were calculated. Multiple linear regressions were used to evaluate the associations between PM2.5, the four biomarkers and lncRNA expression levels. Mediation analyses were performed to explore the potential roles of lncRNA expression in these associations. The median concentration of PM2.5 ranged from 39.65 to 60.91 mg/m3 across different lag days. The most significant effects on IL-6 and TNF-α per interquartile range increase in PM2.5 were observed at lag 0-3 days, with increases of 0.70 pg/mL (95% CI: 0.33, 1.07) and 0.21 pg/mL (95% CI: 0.06, 0.36), respectively. While the associations between PM2.5 and IL-8 (0.68 pg/mL, 95% CI: 0.34, 1.02) and CC16 (3.86 ng/mL, 95% CI: 1.60, 6.13) were stronger at lag 0 day. Interestingly, a negative association between PM2.5 and the expression of four novel lncRNAs (lnc-ACAD11-1:1, lnc-PRICKLE1-4:1, lnc-GPR39-7:2, and lnc-MTRNR2L12-3:6) were observed at each lag days. Furthermore, these lncRNAs mediated the effects of PM2.5 on the four biomarkers, with proportions of mediation ranged from 2.27% (95% CI: 1.19%, 9.82%) for CC16 to 35.60% (95% CI: 17.16%, 175.45%) for IL-6. Our findings suggested that plasma lncRNA expression mediat the acute effects of PM2.5 exposure on systematic inflammation. These highlight a need to consider circulating lncRNA expression as biomarkers to reduce health risks associated with PM2.5.
Collapse
Affiliation(s)
- Qinqin Diao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaodi Qin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ningdong Hu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiuhan Hua
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meizhen Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun Li
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yufei Liu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huixian Zeng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jihuan Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yongxian Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Yiguo Jiang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
13
|
Song HJ, Shin DU, Eom JE, Lim KM, Lim EY, Kim YI, Kim HJ, Song JH, Shim M, Choe H, Kim GD, Lee SY, Shin HS. Artemisia gmelinii Extract Attenuates Particulate Matter-Induced Neutrophilic Inflammation in a Mouse Model of Lung Injury. Antioxidants (Basel) 2023; 12:1591. [PMID: 37627586 PMCID: PMC10451698 DOI: 10.3390/antiox12081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.
Collapse
Affiliation(s)
- Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Uk Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Eun Eom
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Young In Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Ha-Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - MyeongKuk Shim
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - HyeonJeong Choe
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
14
|
Borlaza LJS, Uzu G, Ouidir M, Lyon-Caen S, Marsal A, Weber S, Siroux V, Lepeule J, Boudier A, Jaffrezo JL, Slama R. Personal exposure to PM 2.5 oxidative potential and its association to birth outcomes. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:416-426. [PMID: 36369373 DOI: 10.1038/s41370-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes. OBJECTIVES We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration. METHODS 405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders. RESULTS The correlation between PM2.5 mass concentration and [Formula: see text] was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, -64 g, -166 to -11, p = 0.02) and height (-4 mm, -6 to -1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (-53 g, -99 to -8, p = 0.02) and height (-2 mm, -5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with [Formula: see text] was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for [Formula: see text] with any growth parameter. IMPACT PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.
Collapse
Affiliation(s)
| | - Gaëlle Uzu
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France.
| | - Marion Ouidir
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Sarah Lyon-Caen
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anouk Marsal
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Samuël Weber
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Valérie Siroux
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Johanna Lepeule
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anne Boudier
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- Pediatrics, CHU Grenoble-Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Rémy Slama
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France.
| |
Collapse
|
15
|
Santibáñez M, García-Rivero JL, Fernández-Olmo I. Association Between Particulate Matter Oxidative Potential, Oxidative Stress and Inflammation, in Adult Asthmatic Patients. The ASTHMA-FENOP Study. OPEN RESPIRATORY ARCHIVES 2023; 5:100246. [PMID: 37496869 PMCID: PMC10369605 DOI: 10.1016/j.opresp.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Affiliation(s)
- Miguel Santibáñez
- “Global Health” Research Group, Universidad de Cantabria, Santander, Spain
| | - Juan Luis García-Rivero
- Servicio de Neumología, Hospital Universitario Marqués de Valdecilla (HUMV)-IDIVAL, Santander, Spain
| | | | | |
Collapse
|
16
|
Xing C, Wang Y, Yang X, Zeng Y, Zhai J, Cai B, Zhang A, Fu TM, Zhu L, Li Y, Wang X, Zhang Y. Seasonal variation of driving factors of ambient PM 2.5 oxidative potential in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160771. [PMID: 36513240 DOI: 10.1016/j.scitotenv.2022.160771] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 μg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.
Collapse
Affiliation(s)
- Chunbo Xing
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong 518055, China.
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Li
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Oxidative Stress, Environmental Pollution, and Lifestyle as Determinants of Asthma in Children. BIOLOGY 2023; 12:biology12010133. [PMID: 36671825 PMCID: PMC9856068 DOI: 10.3390/biology12010133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Exposure to cigarette smoke, allergens, viruses, and other environmental contaminants, as well as a detrimental lifestyle, are the main factors supporting elevated levels of airway oxidative stress. Elevated oxidative stress results from an imbalance in reactive oxygen species (ROS) production and efficiency in antioxidant defense systems. Uncontrolled increased oxidative stress amplifies inflammatory processes and tissue damage and alters innate and adaptive immunity, thus compromising airway homeostasis. Oxidative stress events reduce responsiveness to corticosteroids. These events can increase risk of asthma into adolescence and prompt evolution of asthma toward its most severe forms. Development of new therapies aimed to restore oxidant/antioxidant balance and active interventions aimed to improve physical activity and quality/quantity of food are all necessary strategies to prevent asthma onset and avoid in asthmatics evolution toward severe forms of the disease.
Collapse
|
18
|
Marsal A, Slama R, Lyon-Caen S, Borlaza LJS, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Gioria Y, Lepeule J, Chartier R, Pin I, Quentin J, Bayat S, Uzu G, Siroux V. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17004. [PMID: 36695591 PMCID: PMC9875724 DOI: 10.1289/ehp11155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM 2.5 ) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM 2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES We estimated the associations of personal exposure to PM 2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N 2 MBW ) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM 2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS In neonates, an interquartile (IQR) increase in OP v DTT (0.89 nmol / min / m 3 ) was associated with a decrease in functional residual capacity (FRC) measured by N 2 MBW [β = - 2.26 mL ; 95% confidence interval (CI): - 4.68 , 0.15]. Associations with PM 2.5 showed similar patterns in comparison with OP v DTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs 7 - 19 ) from AOS tended to be associated with higher OP v DTT (β = 0.09 hPa × s / L ; 95% CI: - 0.06 , 0.24) and OP v AA (IQR = 1.14 nmol / min / m 3 ; β = 0.12 hPa × s / L ; 95% CI: - 0.04 , 0.27) but not with PM 2.5 (IQR = 6.9 μ g / m 3 ; β = 0.02 hPa × s / L ; 95% CI: - 0.13 , 0.16). Results for FRC and Rrs 7 - 19 remained similar in OP models adjusted on PM 2.5 . DISCUSSION Prenatal exposure to OP v DTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.
Collapse
Affiliation(s)
- Anouk Marsal
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lucille Joanna S. Borlaza
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Anne Boudier
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Rhabira Elazzouzi
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Yoann Gioria
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Joane Quentin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
| | - Gaëlle Uzu
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - the SEPAGES cohort study group
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
- RTI International, Research Triangle Park, North Carolina, USA
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| |
Collapse
|
19
|
Li S, Wang G, Geng Y, Wu W, Duan X. Lung function decline associated with individual short-term exposure to PM 1, PM 2.5 and PM 10 in patients with allergic rhinoconjunctivitis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158151. [PMID: 35988632 DOI: 10.1016/j.scitotenv.2022.158151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The susceptibility of allergic rhinoconjunctivitis (ARC) patients to air pollution has yet to be clarified. OBJECTIVES Based on a repeated measurement panel study, we explored the association of short-term PM exposure with lung function in ARC patients and to further identify the susceptible populations. METHODS Personal PM exposure, including PM1, PM2.5 and PM10, was monitored consecutively for three days before outcomes measurements. Lung function indices including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75 % of the vital capacity (FEF25-75) were measured. Serum total immunoglobulin E (IgE), specific-allergen IgE, blood eosinophil and basophils, and the symptoms severe scores were tested in each visit. Linear mixed effect models were applied to estimate the association between PM exposure and lung function. Furthermore, stratified and overlapping grouped populations based on IgE levels were implemented to characterize the modification role and the modulating threshold of IgE at which the association turned significantly negative. RESULTS Short-term PM personal exposure was associated with a significant decrease in lung function in ARC patients, especially for small airway respiratory indexes. The highest estimates occurred in PM1, specifically a 10 μg/m3 increase reduced FEV1/FVC, PEF and FEF25-75 by 1.36 % (95 %CI: -2.29 to -0.43), 0.23 L/s (95 %CI: -0.42 to -0.03) and 0.18 L/s (95 %CI: -0.30 to -0.06), respectively. Notably, PM-induced decreases in lung function were stronger in patients with higher IgE levels (IgE ≥ 100 IU/mL), which were related to higher inflammatory cytokines and symptoms scores. Further, PM-associated lung function declines enhanced robustly and monotonically with increasing IgE concentration. Potential modulating thresholds of IgE occurred at 46.8-59.6 IU/mL for significant PM-lung function associations. CONCLUSION These novel findings estimated the short-term effects of PM on lung function in ARC patients, and the threshold values of IgE for the significant and robust associations.
Collapse
Affiliation(s)
- Sai Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Wang
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yishuo Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Wu
- Department of Otolaryngology-Head and Neck Surgery, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
20
|
Zhou J, Lei R, Xu J, Peng L, Ye X, Yang D, Yang S, Yin Y, Zhang R. The Effects of Short-Term PM 2.5 Exposure on Pulmonary Function among Children with Asthma-A Panel Study in Shanghai, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11385. [PMID: 36141658 PMCID: PMC9517124 DOI: 10.3390/ijerph191811385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Fine particulate matter (PM2.5) has been reported to be an important risk factor for asthma. This study was designed to evaluate the relationship between PM2.5 and lung function among children with asthma in Shanghai, China. From 2016 to 2019, a total of 70 Chinese children aged 4 to 14 in Shanghai were recruited for this panel study. The questionnaire was used to collect baseline information, and the lung function covering forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) were carried out for each child more than twice during follow-up. Meanwhile, the simultaneous daily air atmospheric pollutants and meteorological data were collected. The linear mixed effect (LME) model was used to assess the relationship between air pollutants and lung function. A significantly negative association was found between PM2.5 and lung function in children with asthma. In the single-pollutant model, the largest effects of PM2.5 on lung function were found for lag 0-2, with FVC and FEV1 decreasing by 0.91% [95% confidence interval (CI): -1.75, -0.07] and 1.05% (95% CI: -2.09, 0.00), respectively, for each 10 μg/m3 increase in PM2.5. In the multi-pollution model (adjusted PM2.5 + SO2 + O3), the maximum effects of PM2.5 on FVC and FEV1 also appeared for lag 0-2, with FVC and FEV1 decreasing by 1.57% (95% CI: -2.69, -0.44) and 1.67% (95% CI: -3.05, -0.26), respectively, for each 10 μg/m3 increase in PM2.5. In the subgroup analysis, boys, preschoolers (<6 years old) and hot seasons (May to September) were more sensitive to changes. Our findings may contribute to a better understanding of the short-term exposure effects of PM2.5 on lung function in children with asthma.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200437, China
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Ruoyi Lei
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianming Xu
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Li Peng
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Xiaofang Ye
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Dandan Yang
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Sixu Yang
- Shanghai Typhoon Institute, China Meteorological Administration (CMA), Shanghai 200030, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
| | - Yong Yin
- Department of Respiratory, School of Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Renhe Zhang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200437, China
| |
Collapse
|
21
|
Luo J, Liu H, Hua S, Song L. The Correlation of PM2.5 Exposure with Acute Attack and Steroid Sensitivity in Asthma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2756147. [PMID: 36033576 PMCID: PMC9410784 DOI: 10.1155/2022/2756147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Bronchial asthma is a common chronic inflammatory disease of the respiratory system. Asthma primarily manifests in reversible airflow limitation and airway inflammation, airway remodeling, and persistent airway hyperresponsiveness. PM2.5, also known as fine particulate matter, is the main component of air pollution and refers to particulate matter with an aerodynamic diameter of ≤2.5 μm. PM2.5 can be suspended in the air for an extensive time and, in addition, can contain or adsorb heavy metals, toxic gases, polycyclic aromatic hydrocarbons, bacterial viruses, and other harmful substances. Epidemiological studies have demonstrated that, in addition to increasing the incidence of asthma, PM2.5 exposure results in a significant increase in the incidence of hospital visits and deaths due to acute asthma attacks. Furthermore, PM2.5 was reported to induce glucocorticoid resistance in asthmatic individuals. Although various countries have implemented strict control measures, due to the wide range of PM2.5 sources, complex components, and unknown pathogenic mechanisms involving the atmosphere, environment, chemistry, and toxicology, PM2.5 damage to human health still cannot be effectively controlled. In this present review, we summarized the current knowledge base regarding the relationship between PM2.5 toxicity and the onset, acute attack prevalence, and steroid sensitivity in asthma.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Han Liu
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Lin CM, Huang TH, Chi MC, Guo SE, Lee CW, Hwang SL, Shi CS. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6C high monocytes and lung inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113632. [PMID: 35594827 DOI: 10.1016/j.ecoenv.2022.113632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Exposure to particulate matter (PM) may contribute to lung inflammation and injury. The therapeutic effect of N-acetylcysteine (NAC), a well-known antioxidant, with regards to the prevention and treatment of fine PM (PM2.5)-induced lung injury is poorly understood. This study aimed to determine the effect of PM2.5 on the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli and the production of proinflammatory proteins by stimulating the generation of reactive oxygen species (ROS), and to investigate the therapeutic effect of NAC on PM2.5-induced lung injury. METHODS C57BL/6 mice were exposed to a single administration of PM2.5 (200 μg/100 μl/mouse) or phosphate-buffered saline (control) via intratracheal instillation. The mice were injected intratracheally via a microsprayer aerosolizer with NAC (20 or 40 mg/kg) 1 h before PM2.5 instillation and 24 h after PM2.5 instillation. Total protein, VEGF, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured. Oxidative stress was evaluated by determining levels of malondialdehyde (MDA) and nitrite in BALF. Flow cytometric analysis was used to identify and quantify neutrophils and Ly6Chigh and Ly6Clow monocyte subsets. RESULTS Neutrophil count, total protein, and VEGF content in BALF significantly increased after PM2.5 exposure and reached the highest level on day 2. Increased levels of TNF-alpha, IL-6, nitrite, and MDA in BALF were also noted. Flow cytometric analysis showed increased recruitment of neutrophils and Ly6Chigh, but not Ly6Clow monocytes, into lung alveoli. Treatment with NAC via the intratracheal spray significantly attenuated the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli in PM2.5-treated mice in a dose-dependent manner. Furthermore, NAC significantly attenuated the production of total protein, VEGF, nitrite, and MDA in the mice with PM2.5-induced lung injury in a dose-dependent manner. CONCLUSION PM2.5-induced lung injury caused by the generation of oxidative stress led to the recruitment of neutrophils and Ly6Chigh monocytes, and production of inflammatory proteins. NAC treatment alleviated PM2.5-induced lung injury by attenuating the ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation.
Collapse
Affiliation(s)
- Chieh-Mo Lin
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan
| | - Tzu-Hsiung Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Respiratory Therapy, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Miao-Ching Chi
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Respiratory Care, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Su-Er Guo
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Chiang-Wen Lee
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan
| | - Su-Lun Hwang
- Department of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chang Gung Medical Foundation, Puzi City, Chiayi County, Taiwan; Chronic Disease and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan; Department of Nursing and Graduate Institute of Nursing, College of Nursing, Chang Gung University of Science and Technology, Puzi City, Chiayi County, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County, Taiwan.
| |
Collapse
|
23
|
Yang X, Wang Q, Han F, Dong B, Wen B, Li L, Ruan H, Zhang S, Kong J, Zhi H, Wang C, Wang J, Zhang M, Xu D. Pulmonary Benefits of Intervention with Air Cleaner among Schoolchildren in Beijing: A Randomized Double-Blind Crossover Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7185-7193. [PMID: 34491046 DOI: 10.1021/acs.est.1c03146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We conducted a crossover study employing air cleaner intervention among 125 schoolchildren aged 9-12 years in a boarding school in Beijing, China. The PM concentrations were monitored, and 27 biomarkers were analyzed. We used the linear mixed-effects model to evaluate the association of intervention/time-weighted PM concentrations with biomarkers. The outcomes showed that air cleaner intervention was associated with FeNO, exhaled breath condensate (EBC) IL-1β, and IL-6, which decreased by 12.57%, 10.83%, and 4.33%, respectively. Similar results were observed in the associations with PMs. Lag 1 day PMs had the strongest relationship with biomarkers, and significant changes were observed in biomarkers such as FEV1, FeNO, EBC 8-iso, and MCP-1. Boys showed higher percentage changes than girls, and the related biomarkers were FeNO, EBC 4-HNE, IL-1β, IL-6, and MCP-1. The results showed that biomarkers such as FeNO, EBC IL-6, MCP-1, and 4-HNE could sensitively reflect the early abnormal response of the respiratory system under short-term PM exposure among healthy schoolchildren and indicated that (1) air cleaners exert a protective effect on children's respiratory system. (2) PM had lag and cumulative effect, lag 1 day had the greatest effect. (3) The boys were more sensitive than the girls.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qin Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Air Quality and Health Monitoring, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Feng Han
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Bo Wen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Li Li
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongjie Ruan
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shaoping Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Kong
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Zhi
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jun Wang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Chemistry, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ming Zhang
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dongqun Xu
- Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
24
|
Yu Y, Li A, Li S, Zheng B, Ma J, Liu Y, Kou X, Xue Z. Mechanism of biochanin A alleviating PM 2.5-induced oxidative damage based on an XRCC1 knockout BEAS-2B cell model. Food Funct 2022; 13:5102-5114. [PMID: 35415734 DOI: 10.1039/d1fo04312a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PM2.5 induces oxidative/antioxidant system imbalance and excessive release of reactive oxygen species (ROS) and produces toxic effects and irreversible damage to the genetic material including chromosomes and DNA. Biochanin A (BCA), an isoflavone with strong antioxidant activity, effectively intervenes against PM2.5-induced oxidative damage. The X-ray repair cross-complementary protein 1 (XRCC1)/BER pathway involves DNA damage repair caused by oxidative stress. This paper aims to explore the mechanism of BCA alleviating oxidative DNA damage caused by PM2.5 by establishing the in vitro cell model based on CRISPR/Cas9 technology and combining it with mechanism pathway research. The results showed that PM2.5 exposure inhibited the expression of BER and NER pathway proteins and induced the overexpression of ERCC1. BCA showed an effective intervention in the toxicity of PM2.5 in normal cells, rather than XRCC1 knock-out cells. This laid a foundation for further exploring the key role of XRCC1 in PM2.5-caused oxidative damage and the BER/DNA damage repair pathway.
Collapse
Affiliation(s)
- Yue Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Ang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
25
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Oral cavity response to air pollutant exposure and association with pulmonary inflammation and symptoms in asthmatic children. ENVIRONMENTAL RESEARCH 2022; 206:112275. [PMID: 34710437 DOI: 10.1016/j.envres.2021.112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Exposure to fine particulate matter (PM2.5) and ozone (O3) may lead to inflammation and oxidative damage in the oral cavity, which is hypothesized to contribute to the worsening of airway inflammation and asthma symptoms. In this panel study of 43 asthmatic children aged 5-13 years old, each child had 4 clinic visits with a 2-week interval between two consecutive visits. At each visit, saliva samples were collected and subsequently analyzed for interleukin 6 (IL-6) and eosinophil cationic protein (ECP) as biomarkers of inflammation and malondialdehyde (MDA) as a biomarker of oxidative stress in the oral cavity. At each visit, children were measured for fractional exhaled nitric oxide (FeNO) as a marker of pulmonary inflammation. Asthma symptoms of these children were measured using the Childhood Asthma Control Test (C-ACT). We found that an interquartile range (IQR) increase in 24-h average personal exposure to PM2.5 measured 1 and 2 days prior was associated with increased salivary IL-6 concentration by 3.0% (95%CI: 0.2%-6.0%) and 4.2% (0.7%-8.0%), respectively. However, we did not find a clear association between personal O3 exposure and any of the salivary biomarkers, except for a negative association between salivary MDA and O3 exposure measured 1 day prior. An IQR increase in salivary IL-6 concentration was associated with significantly increased FeNO by 28.8% (4.3%-53.4%). In addition, we found that increasing salivary IL-6 concentrations were associated with decreased individual and total C-ACT scores, indicating the worsening of asthma symptoms. We estimated that 13.2%-22.2% of the associations of PM2.5 exposure measured 1 day prior with FeNO and C-ACT scores were mediated by salivary IL-6. These findings suggest that the induction of inflammation in the oral cavity may have played a role in linking air pollution exposure with the worsening of airway inflammation and asthma symptoms.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA.
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province, China.
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China.
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China.
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA.
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China.
| |
Collapse
|
26
|
Chaya S, Zar HJ, Gray DM. Lung Function in Preschool Children in Low and Middle Income Countries: An Under-Represented Potential Tool to Strengthen Child Health. Front Pediatr 2022; 10:908607. [PMID: 35769219 PMCID: PMC9234953 DOI: 10.3389/fped.2022.908607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The burden of respiratory disease is high in low-middle income countries (LMIC). Pulmonary function tests are useful as an objective measure of lung health and to track progression. Spirometry is the commonest test, but its use is limited in preschool children. Other lung function methods have been developed but their use in LMIC has not been well described. AIM To review the use of preschool lung function testing in children in LMIC, with particular reference to feasibility and clinical applications. METHODS Electronic databases "PubMed", "Scopus"," Web of Science", and "EBSCO host" were searched for publications in low and middle income countries on preschool lung function testing, including spirometry, fractional exhaled nitric oxide (FeNO), oscillometry, interrupter technique, tidal breathing and multiple breath washout (MBW), from 1 January 2011 to 31 January 2022. Papers in English were included and those including only children ≥6 years were excluded. RESULT A total of 61 papers from LMIC in Asia, South America, Africa, Eurasia or the Middle East were included. Of these, 40 included spirometry, 7 FeNO, 15 oscillometry, 2 interrupter technique, and 2 tidal breathing. The papers covered test feasibility (19/61), clinical application (46/61) or epidemiological studies (13/61). Lung function testing was successful in preschool children from LMIC. Spirometry was the most technically demanding and success gradually increased with age. CONCLUSION Preschool lung function testing is under-represented in LMIC for the burden of respiratory disease. These tests have the potential to strengthen respiratory care in LMIC, however access needs to be improved.
Collapse
Affiliation(s)
- Shaakira Chaya
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Diane M Gray
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Liu Y, Zhou L, Wu H, Wang Y, Zhang B. Role of notch signaling pathway in Muc5ac secretion induced by atmospheric PM 2.5 in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113052. [PMID: 34890988 DOI: 10.1016/j.ecoenv.2021.113052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The secretion of Muc5ac is closely related to the pathogenesis, treatment and prognosis of bronchial asthma. Atmospheric PM2.5 entered the airway can irritate and corrode the bronchial wall, affecting the expression and secretion of Muc5ac. However, the underlying mechanism is not clear. In this study, we investigated the role of the Notch signaling pathway in mucin section induced by atmospheric PM2.5 in rats. METHODS Fifty rats were divided randomly into five groups: the control received physiological saline; the health, health Notch signaling pathway inhibition and asthma, asthma Notch signaling pathway inhibition groups received 7.5 mg/kg PM2.5. PM2.5 or saline was instilled into the trachea at 2-day intervals for two doses. IL-1β, TNF-α and Muc5ac levels were detected by ELISA. The mRNA expression levels of Notch signaling pathway genes were detected by real time PCR. The levels of Notch signaling pathway protein were detected by western blot. RESULTS The levels of Muc5ac in the lungs and TNF-α in serum of asthmatic rats exposed to PM2.5 was the highest, and when Notch signaling pathway was inhibited, the levels of Muc5ac in the lungs and tracheas and TNF-α in serum of asthmatic rats exposed to PM2.5 was significantly decreased. Hes1 mRNA expression level in trachea was the lowest in the asthma inhibition group; and inhibiting the Notch signaling pathway could decrease the mRNA and protein levels of Hes1 in rats' lung. The mRNA relative levels of Notch3 and Notch4 in rats' trachea, the protein levels of Notch3 in rats' lung, and the mRNA relative levels of Jagged1 and Jaggeed2 in rats' lung were more consist with the changes of Muc5ac, TNF-α and Hes1. CONCLUSION Notch signaling pathway played an important role in Muc5ac secretion induced by atmospheric PM2.5 of the asthmatic rats' airways. Jagged1 and Jagged2 interacting with Notch3 and Notch4 regulated the expression of Hes1, further regulated TNF-α in the process of PM2.5 inducing the secretion of Muc5ac.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Respiratory Medicine, the First Hospital of Jilin University, Jilin University, Changchun, China; Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Hanlin Wu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yitong Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Bo Zhang
- Department of Pediatric Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
28
|
Negative Ion Purifier Effects on Indoor Particulate Dosage to Small Airways. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010264. [PMID: 35010523 PMCID: PMC8751072 DOI: 10.3390/ijerph19010264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/13/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Indoor air quality is an important health factor as we spend more than 80% of our time indoors. The primary type of indoor pollutant is particulate matter, high levels of which increase respiratory disease risk. Therefore, air purifiers are a common choice for addressing indoor air pollution. Compared with traditional filtration purifiers, negative ion air purifiers (NIAPs) have gained popularity due to their energy efficiency and lack of noise. Although some studies have shown that negative ions may offset the cardiorespiratory benefits of air purifiers, the underlying mechanism is still unclear. In this study, we conducted a full-scale experiment using an in vitro airway model connected to a breathing simulator to mimic inhalation. The model was constructed using computed tomography scans of human airways and 3D-printing technology. We then quantified the effects of NIAPs on the administered dose of 0.5-2.5 μm particles in the small airway. Compared with the filtration purifier, the NIAP had a better dilution effect after a 1-h exposure and the cumulative administered dose to the small airway was reduced by 20%. In addition, increasing the negative ion concentration helped reduce the small airway exposure risk. NIAPs were found to be an energy-efficient air purification intervention that can effectively reduce the small airway particle exposure when a sufficient negative ion concentration is maintained.
Collapse
|
29
|
He L, Norris C, Cui X, Li Z, Barkjohn KK, Teng Y, Fang L, Lin L, Wang Q, Zhou X, Hong J, Li F, Zhang Y, Schauer JJ, Black M, Bergin MH, Zhang JJ. Role of endogenous melatonin in pathophysiologic and oxidative stress responses to personal air pollutant exposures in asthmatic children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145709. [PMID: 33940766 DOI: 10.1016/j.scitotenv.2021.145709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Heightening oxidative stress and inflammation is an important pathophysiological mechanism underlying air pollution health effects in people with asthma. Melatonin can suppress oxidative stress and inflammation in pulmonary and circulatory systems. However, the role of melatonin in the oxidative stress and physiological responses to air pollution exposure has not been examined in children with asthma. METHODS In this panel study of 43 asthmatic children (5-13 years old), each child had 4 clinic visits with a 2-week interval between two consecutive visits. At each visit, urine samples were collected and subsequently analyzed for 6-sulfatoxymelatonin (aMT6s) as a surrogate of circulating melatonin and for malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as two biomarkers of systemic oxidative stress. At each clinic visit, children were measured for pulmonary function and fractional exhaled nitric oxide (FeNO, a marker of pulmonary inflammation). None of the children reported to have taking melatonin supplementation. Concentrations of indoor and ambient PM2.5 and ozone (O3) were combined with individual time-activity data to calculate personal air pollutant exposures. RESULTS We found that interquartile range increases in urinary MDA and 8-OHdG concentrations were associated with significantly increased urinary aMT6s concentrations by 73.4% (95% CI: 52.6% to 97.0%) and 41.7% (22.8% to 63.4%), respectively. Increases in daily personal exposure to O3 and to PM2.5 were each associated with increased urinary aMT6s concentrations. Increasing urinary aMT6s concentrations were associated with decreased FeNO and resonant frequency, indicating improved airway inflammation and lung elasticity, respectively. CONCLUSION The results suggest that systemic oxidative stress heightened by air pollution exposure may stimulate melatonin excretion as a defense mechanism to alleviate the adverse effects.
Collapse
Affiliation(s)
- Linchen He
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Christina Norris
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Xiaoxing Cui
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Karoline K Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Yanbo Teng
- Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Lin Fang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - Lili Lin
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Zhou
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianguo Hong
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | - James J Schauer
- Department of Civil and Environmental Engineering, College of Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Duke Global Health Institute, Duke University, Durham, NC, USA; Duke Kunshan University, Kunshan, Jiangsu Province, China.
| |
Collapse
|