1
|
Jubb AM, Shelton JL, McDevitt B, Amundson KK, Herzberg AS, Chenault J, Masterson AL, Varonka MS, Jolly G, DeVera CA, Barnhart E, Wilkins MJ, Blondes MS. Produced water geochemistry from hydraulically stimulated Niobrara Formation petroleum wells: Origin of salinity and temporal perspectives on treatment and reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176845. [PMID: 39426534 DOI: 10.1016/j.scitotenv.2024.176845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Produced water (i.e., a mixture of returned injection fluids and geologic formation brines) represents the largest volumetric waste stream associated with petroleum production in the United States. As such, produced water has been the focus of intense study with emphasis on understanding the geologic origin of the fluids, environmental impacts of unintended or intentional release, disposal concerns, and their commodity (e.g., lithium) potential. However, produced water geochemistry from many active petroleum plays remain poorly understood leading to knowledge gaps associated with the origin of brine salinity and parameters (e.g., radium levels) that can impact treatment, disposal, and possible reuse. Here we evaluate the major ion geochemistry, radium concentrations, and stable water isotope composition of ~120 produced water samples collected from 17 producing unconventional petroleum wells in Weld County, Colorado from the Late Cretaceous Niobrara Formation. This sample set encompasses eight produced water time series from four new wells across production days 0 to ~365 and from four established wells across production days ~1000 to ~1700. Additionally, produced water from nine other established Niobrara Formation wells were sampled at discrete time points ranging from day 458 to day 2256, as well as hydraulic fracturing input fluids. These results expand the available Niobrara Formation produced water geochemical data, previously limited to a few wells sampled within the first year of production, allowing for the heterogeneity of major ions and radium to be evaluated. Specific highlights include: (i) observations that boron and bromide concentrations are higher in produced waters from new wells compared to older, established wells, suggesting the role of input fluids contributing to fluid geochemistry; and (ii) barium and radium concentrations vary between the producing benches of the Niobrara Formation with implications for treating radiological hazards in produced waters from this formation. Furthermore, we explore the geochemical relationships between major ion ratios and stable water isotope composition to understand the origin of salinity in Niobrara Formation brines from the Denver-Julesburg Basin. These findings are discussed with perspective toward potential treatment and reuse of Niobrara produced water prior to disposal.
Collapse
Affiliation(s)
- Aaron M Jubb
- U.S. Geological Survey, Reston, Virginia 20192, USA.
| | - Jenna L Shelton
- U.S. Geological Survey, National Cooperative Geologic Mapping Program, Indianapolis, Indiana 46202, USA
| | | | - Kaela K Amundson
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | | | | | | | | - Glenn Jolly
- U.S. Geological Survey, Reston, Virginia 20192, USA
| | | | | | - Michael J Wilkins
- Colorado State University, Department of Soil & Crop Sciences, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
2
|
Kashani M, Engle MA, Kent DB, Gregston T, Cozzarelli IM, Mumford AC, Varonka MS, Harris CR, Akob DM. Illegal dumping of oil and gas wastewater alters arid soil microbial communities. Appl Environ Microbiol 2024; 90:e0149023. [PMID: 38294246 PMCID: PMC10880632 DOI: 10.1128/aem.01490-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024] Open
Abstract
The Permian Basin, underlying southeast New Mexico and west Texas, is one of the most productive oil and gas (OG) provinces in the United States. Oil and gas production yields large volumes of wastewater with complex chemistries, and the environmental health risks posed by these OG wastewaters on sensitive desert ecosystems are poorly understood. Starting in November 2017, 39 illegal dumps, as defined by federal and state regulations, of OG wastewater were identified in southeastern New Mexico, releasing ~600,000 L of fluid onto dryland soils. To evaluate the impacts of these releases, we analyzed changes in soil geochemistry and microbial community composition by comparing soils from within OG wastewater dump-affected samples to unaffected zones. We observed significant changes in soil geochemistry for all dump-affected compared with control samples, reflecting the residual salts and hydrocarbons from the OG-wastewater release (e.g., enriched in sodium, chloride, and bromide). Microbial community structure significantly (P < 0.01) differed between dump and control zones, with soils from dump areas having significantly (P < 0.01) lower alpha diversity and differences in phylogenetic composition. Dump-affected soil samples showed an increase in halophilic and halotolerant taxa, including members of the Marinobacteraceae, Halomonadaceae, and Halobacteroidaceae, suggesting that the high salinity of the dumped OG wastewater was exerting a strong selective pressure on microbial community structure. Taxa with high similarity to known hydrocarbon-degrading organisms were also detected in the dump-affected soil samples. Overall, this study demonstrates the potential for OG wastewater exposure to change the geochemistry and microbial community dynamics of arid soils.IMPORTANCEThe long-term environmental health impacts resulting from releases of oil and gas (OG) wastewater, typically brines with varying compositions of ions, hydrocarbons, and other constituents, are understudied. This is especially true for sensitive desert ecosystems, where soil microbes are key primary producers and drivers of nutrient cycling. We found that releases of OG wastewater can lead to shifts in microbial community composition and function toward salt- and hydrocarbon-tolerant taxa that are not typically found in desert soils, thus altering the impacted dryland soil ecosystem. Loss of key microbial taxa, such as those that catalyze organic carbon cycling, increase arid soil fertility, promote plant health, and affect soil moisture retention, could result in cascading effects across the sensitive desert ecosystem. By characterizing environmental changes due to releases of OG wastewater to soils overlying the Permian Basin, we gain further insights into how OG wastewater may alter dryland soil microbial functions and ecosystems.
Collapse
Affiliation(s)
- Mitra Kashani
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Mark A. Engle
- Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Douglas B. Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, California, USA
| | | | - Isabelle M. Cozzarelli
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Adam C. Mumford
- U.S. Geological Survey, Maryland-Delaware-D.C. Water Science Center, Baltimore, Maryland, USA
| | - Matthew S. Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Cassandra R. Harris
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| | - Denise M. Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, Virginia, USA
| |
Collapse
|
3
|
Mallants D, Kirby J, Golding L, Apte S, Williams M. Modelling the attenuation of flowback chemicals for a soil-groundwater pathway from a hypothetical spill accident. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150686. [PMID: 34600996 DOI: 10.1016/j.scitotenv.2021.150686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 05/12/2023]
Abstract
Flowback water from shale gas operations contains formation-derived compounds, including trace metals, radionuclides, and organics. While accidental releases from storage tanks with flowback water are low-probability events if multiple containment barriers are put in place, they cannot be entirely excluded. Here the natural attenuation potential of deep unsaturated zones and groundwater was explored using predictive modelling involving a hypothetical leak from a storage tank. Actual chemical concentrations from flowback water at two shale gas wells with contrasting salinity (12,300 and 105,000 ppm TDS) in the Beetaloo Sub-basin (Northern Territory, Australia) served as input to the one-dimensional HYDRUS model for simulating chemical transport through the unsaturated zone, with groundwater at 50 and 100 m depth, respectively. Subsequent chemical transport in groundwater involved the use of a three-dimensional analytical transport model. For a total of 63 chemicals the long-term attenuation from dilution and dispersion in unsaturated sediments and groundwater was calculated. Predicted environmental concentrations for aquatic receptors were compared with no-effect levels of individual chemicals to derive risk quotients (RQ) and identify chemicals of no concern to ecosystem health (i.e. RQ <1). Except for salinity and radium-228 in one of the two wells, RQ < 1 for all other chemicals. The initial approach considered testing of toxicity to individual chemicals only. When direct toxicity assessments (DTAs) were used to account for effects of chemical mixtures, the required DTA-derived safe dilution factor for 95% species protection was 1.8 to 2.5 times higher than the dilution factor accounting for dispersion and dilution only. Accounting for biodegradation, sorption and radioactive decay decreased chemical concentrations in unsaturated sediments to safe levels using the DTA for all chemicals. The study highlighted the importance of incorporating DTA in chemical risk assessments involving complex chemical mixtures. Improved understanding of fate and transport of flowback chemicals will help effectively manage water-quality risks associated with shale gas extraction.
Collapse
Affiliation(s)
- Dirk Mallants
- CSIRO, Waite Road Gate 4, Urrbrae, SA 5064, Australia.
| | - Jason Kirby
- CSIRO, Waite Road Gate 4, Urrbrae, SA 5064, Australia
| | - Lisa Golding
- CSIRO, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Simon Apte
- CSIRO, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Mike Williams
- CSIRO, Waite Road Gate 4, Urrbrae, SA 5064, Australia
| |
Collapse
|