1
|
Lin Z, Xiao Z, Liu Y, Wang Y, Chen S, Zhang J, Chen Y, Zhang X, Zhang G, Li D, Lv W, Chen P, Liu G. Insights into copper(I) phenylacetylide with in-situ transformation of oxygen and enhanced visible-light response for water decontamination: Cu-O bond promotes exciton dissociation and charge transfer. J Colloid Interface Sci 2024; 671:1-14. [PMID: 38788420 DOI: 10.1016/j.jcis.2024.05.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The widespread contamination of hexavalent chromium (Cr(VI)), pharmaceuticals and personal care products (PPCPs), and dyes is a growing concern. necessitating the development of convenient and effective technologies for their removal. Copper(I) phenylacetylide (PhC2Cu) has emerged as a promising photocatalyst for environmental remediation. In this study, we introduced a functional Cu-O bond into PhC2Cu (referred to as OrPhC2Cu) by creatively converting the adsorbed oxygen on the surface of PhC2Cu into a Cu-O bond to enhance the efficiency of Cr(VI) photoreduction, PPCPs photodegradation, and dyes photodegradation through a facile vacuum activating method. The incorporation of the Cu-O bond optimized the electron structure of OrPhC2Cu, facilitating exciton dissociation and charge transfer. The exciton dissociation behavior and charge transfer mechanism were systematically investigated for the first time in the OrPhC2Cu system by photoelectrochemical tests, fluorescence and phosphorescence (PH) techniques, and density functional theory (DFT) calculations. Remarkably, the enhanced visible-light response of OrPhC2Cu improved photon utilization and significantly promoted the generation of reactive species (RSs), leading to the highly efficient Cr(VI) photoreduction (98.52% within 25 min) and sulfamethazine photodegradation (94.65% within 60 min), with 3.91 and 5.23 times higher activity compared to PhC2Cu. Additionally, the photocatalytic efficiency of OrPhC2Cu in degrading anionic dyes surpassed that of cationic dyes. The performance of the OrPhC2Cu system in treating electroplating effluent or natural water bodies suggests its potential for practical applications.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Liu
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yishun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuyue Chen
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jinfan Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yingyi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ge Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Daguang Li
- School of Light Chemical Industry and Materials, Shunde Polytechnic, Foshan 528333, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhou L, Zhou J, Dong Y, Wu Y, Xi Z, Lu Z, Lei J, Zhang J, Liu Y. Insight on photocatalytic synchronous oxidation and reduction for pollutant removal: Chemical energy conversion between macromolecular organic pollutants and heavy metal. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135236. [PMID: 39038377 DOI: 10.1016/j.jhazmat.2024.135236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Collaborative treatment of pollutants is a promising approach for wastewater treatment. In this work, a covalent organic framework material (COFs) with an imine structure was synthesised by the Schiff base reaction, and photochemical tests showed good photochemical effects. It was used to explore the photocatalytic treatment of co-existing pollutants (heavy metal ions and antibiotics) and the performance of treating co-existing wastewater was investigated. The degradation performance of levofloxacin (LVX) and Cr(VI) was improved in the coexisting pollutants system, with the LVX degradation being 4.2 times more effective than that of the LVX solitary system. Moreover, this phenomenon was also observed in LVX/Ag(I), LVX/Fe(III), sulfadiazine/Cr(VI), norfloxacin/Cr(VI) and tetracycline/Cr(VI) systems. The analysis of active species suggesting that the synergistic promotion of photocatalytic oxidation-reduction systems was not only promoting from the improvement of simple charge separation, but it was also found that high-valent metal species can act directly in the oxidative decomposition of antibiotics. The interaction of pollutants and intermediates were rationally exploited and confirmed by control experiments and theoretical calculation. This conclusion helps us to re-examine the underlying mechanisms of photocatalytic synchronous oxidation and reduction reactions, simultaneously beneficial for the development of mixed pollutant control processes.
Collapse
Affiliation(s)
- Liang Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Jie Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yicen Dong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yangjie Wu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhangying Xi
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zixuan Lu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Juying Lei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yongdi Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
3
|
Chen Z, Zheng H, Zhang J, Jiang Z, Bao C, Yeh CH, Lai NC. Covalent organic frameworks derived Single-Atom cobalt catalysts for boosting oxygen reduction reaction in rechargeable Zn-Air batteries. J Colloid Interface Sci 2024; 670:103-113. [PMID: 38759265 DOI: 10.1016/j.jcis.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
The design and development of high-performance and long-life Pt-free catalysts for the oxygen reduction reaction (ORR) is of great important with respect to metal-air batteries and fuel cells. Herein, a new low-cost covalent organic frameworks (COFs)-derived CoNC single-atoms catalyst (SAC) is fabricated and compared with the engineered nanoparticle (NP) counterpart for ORR activity. The ORR performance of the SAC catalyst (CoSA@NC) surpasses the NP counterpart (CoNP-NC) under the same operation condition. CoSA@NC also achieves improved long-term durability and better methanol tolerance compared with the Pt/C. The zinc-air battery assembled by the CoSA@NC cathode delivers a higher power density and energy density than that of commercial Pt/C catalyst. Molecular dynamics (MD) is performed to explain the spontaneous evolution from clusters to single-atom metal configuration and density functional theory (DFT) calculations find that CoSA@NC possesses lower d-band center, resulting in weaker interaction between the surface and the O-containing intermediates. Consequently, the reductive desorption of OH*, the rate-determine step, is further accelerated.
Collapse
Affiliation(s)
- Zhenghao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinhui Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Cheng Bao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Chen-Hao Yeh
- Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan.
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
4
|
Cao D, Guan J, Du J, Sun Q, Ma J, Li J, Liu J, Sheng G. Halogen-functionalized covalent organic frameworks for photocatalytic Cr(VI) reduction under visible light. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134956. [PMID: 38917630 DOI: 10.1016/j.jhazmat.2024.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Covalent organic frameworks (COFs) are a type of novel organic catalysts which show great potential in the treatment of environmental contaminations. Herein, we synthesized three isoreticular halogen-functionalized (F, Cl and Br) porphyrin COFs for visible-light (420 nm ≤ λ ≤ 780 nm) photocatalytic reduction of Cr(VI) to Cr(III). Halogen substituents with tunable electronegativity can regulate the band structure and modulate the charge carrier kinetics of COFs. In the absence of any sacrificial reagent, the isoreticular COFs exhibited good photocatalytic reduction activity of Cr(VI). Particularly, the TAPP-2F showed nearly 100 % conversion efficiency and the highest reaction rate constants (k) on account of the strong electronegativity of F substituent. Experimental results and theoretical calculations showed that the conduction band (CB) potentials of COFs became more negative and charge carrier separation increased with the enhancement of electronegativity (Br < Cl < F), which could provide sufficient driving force for the photoreduction of Cr(VI) to Cr(III). The halogen substituents strategy for regulating the electronic structure of COFs can provide opportunities for designing efficient photocatalysts for environmental remediation. Meanwhile, the mechanistic insights reported in this study help to understand the photocatalytic degradation pathways of heavy metals.
Collapse
Affiliation(s)
- Dong Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jian Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingcheng Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ji Ma
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Guoping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Hou Y, Zhou P, Liu F, Tong K, Lu Y, Li Z, Liang J, Tong M. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat Commun 2024; 15:7350. [PMID: 39187567 PMCID: PMC11347572 DOI: 10.1038/s41467-024-51878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
Owing to their capability to produce reactive oxygen species (ROS) under solar irradiation, covalent organic frameworks (COFs) with pre-designable structure and unique architectures show great potentials for water purification. However, the sluggish charge separation, inefficient oxygen activation and poor structure stability in COFs restrict their practical applications to decontaminate water. Herein, via a facile one-pot synthetic strategy, we show the direct conversion of reversible imine linkage into rigid thiazole linkage can adjust the π-conjugation and local charge polarization of skeleton to boost the exciton dissociation on COFs. The rigid linkage can also improve the robustness of skeleton and the stability of COFs during the consecutive utilization process. More importantly, the thiazole linkage in COFs with optimal C 2p states (COF-S) effectively increases the activities of neighboring benzene unit to directly modulate the O2-adsorption energy barrier and improve the ROS production efficiency, resulting in the excellent photocatalytic degradation efficiency of seven toxic emerging contaminants (e.g. degrading ~99% of 5 mg L-1 paracetamol in only 7 min) and effective bacterial/algal inactivation performance. Besides, COF-S can be immobilized in continuous-flow reactor and in enlarged reactor to efficiently eliminate pollutants under natural sunlight irradiation, demonstrating the feasibility for practical application.
Collapse
Affiliation(s)
- Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Peng Zhou
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Ke Tong
- School of Environmental Science and Engineering, TianGong University, Tianjin, 300387, P. R. China
| | - Yanyu Lu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Zhengmao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Jialiang Liang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China.
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China.
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
6
|
Song L, Gao W, Jiang S, Yang Y, Chu W, Cao X, Sun B, Cui L, Zhang CY. One-Dimensional Covalent Organic Framework with Improved Charge Transfer for Enhanced Electrochemiluminescence. NANO LETTERS 2024; 24:6312-6319. [PMID: 38752550 DOI: 10.1021/acs.nanolett.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present a dimensional regulating charge transfer strategy to achieve an enhanced electrochemiluminescence (ECL) by constructing a one-dimensional pyrene-based covalent organic framework (1D-COF). The dual-chain-like edge architecture in 1D-COF facilitates the stabilization of aromatic backbones, the enhancement of electronic conjugations, and the decrease of energy loss. The 1D-COF generates enhanced anodic (92.5-fold) and cathodic (3.2-fold) signals with tripropylamine (TPrA) and K2S2O8 as the anodic and cathodic coreactants, respectively, compared with 2D-COF. The anodic and cathodic ECL efficiencies of 1D-COF are 2.08- and 3.08-fold higher than those of 2D-COF, respectively. According to density functional theory (DFT), the rotational barrier energy (ΔE) of 1D-COF enhances sharply with the increase of dihedral angle, suggesting that the architecture in 1D-COF restrains the intramolecular spin of aromatic chains, which facilitates the decrease of nonradiative transitions and the enhancement of ECL. Furthermore, 1D-COF can be used to construct an ECL biosensor for sensitive detection of dopamine.
Collapse
Affiliation(s)
- Linlin Song
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenqiang Gao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Su Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Yuncong Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Wenqi Chu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xueting Cao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Bing Sun
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Chen X, Sheng Y, Che J, Reymick OO, Tao N. Integration of covalent organic frameworks and molecularly imprinted polymers for selective extraction of flavonoid naringenin from grapefruit ( Citrus × paradisi Macf.) peels. Food Chem X 2024; 21:101107. [PMID: 38292684 PMCID: PMC10825234 DOI: 10.1016/j.fochx.2023.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Grapefruit (Citrus × paradisi Macf.) peel, a by-product of the citrus-processing industry, possesses an important economic value due to the richness of bioactive compounds. In this study, boron-linked covalent organic frameworks integrated with molecularly imprinted polymers (CMIPs) were developed via a facile one-pot bulk polymerization approach for the selective extraction of naringenin from grapefruit peel extract. The obtained CMIPs possessed a three-dimensional network structure with uniform pore size distribution, large surface areas (476 m2/g), and high crystallinity. Benefiting from the hybrid functional monomer APTES-MAA, the acylamino group can coordinate with the boronate ligands of the boroxine-based framework to form B-N bands, facilitating the integration of imprinted cavities with the aromatic skeleton. The composite materials exhibited a high adsorption capacity of 153.65 mg/g, and a short adsorption equilibrium time of 30 min for naringenin, together with favorable selectivity towards other flavonoid analogues. Additionally, the CMIPs captured the template molecules through π-π* interaction and hydrogen bonding, as verified by FT-IR and XPS. Furthermore, they had good performance when employed to enrich naringenin in grapefruit peels extract compared with the common adsorbent materials including AB-8, D101, cationic exchange resin, and active carbon. This research highlights the potential of CMIPs composite materials as a promising alternative adsorbent for naringenin extraction from grapefruit peel.
Collapse
Affiliation(s)
- Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Yingying Sheng
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | - Jinxin Che
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| | | | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, PR China
| |
Collapse
|
8
|
Li Z, Hou Y, Shen Y, Liu F, Tong M. Efficient As(III) removal from water by ZrO 2 modified covalent organic framework under visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133063. [PMID: 38043430 DOI: 10.1016/j.jhazmat.2023.133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Adsorption-oxidation is a promising technique to decontaminate As(III) polluted water. In present study, ZrO2-modified covalent organic framework (ZrO2-COF) was fabricated and used to remove arsenic from water under visible light irradiation. The results showed that ZrO2-COF (0.2 g/L) could efficiently capture As(III) (5 mg/L) from water and then oxidize the adsorbed As(III) into less toxic As(V) under visible light irradiation (60 min), achieving the complete decontamination of As(III) polluted water. Based on characterization results and theoretical calculations, we found that in ZrO2-COF composite, ZrO2 served as sites for adsorption of As(III)/the latter transformed As(V), while COF worked as photocatalytic center for As(III) oxidation. Effective As(III) removal could also be achieved by ZrO2-COF under visible light irradiation in complex water chemistry conditions including wide solution pH range (3-11), broad solution ion strength range (1-100 mM), the copresence of natural organic matter (0.1-1 mg/L humic acid) and various coexisting ions in solutions, as well as in real water samples. In addition, we found that ZrO2-COF had excellent reuse performance in 4 consecutive cycles. Our results showed that under visible light irradiation, ZrO2-COF composites could be a promising technique for efficient As(III) removal from water.
Collapse
Affiliation(s)
- Zhengmao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Yutao Shen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing 100871, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China.
| |
Collapse
|
9
|
Feng X, Lin Y, Gan L, Zhao K, Zhao X, Pan Q, Fu G. Enhancement of Mass Transfer Process for Photocatalytic Reduction in Cr(VI) by Electric Field Assistance. Int J Mol Sci 2024; 25:2832. [PMID: 38474082 DOI: 10.3390/ijms25052832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The removal of Cr(VI), a highly-toxic heavy metal, from industrial wastewater is a critical issue in water treatment research. Photocatalysis, a promising technology to solve the Cr(VI) pollution problem, requires urgent and continuous improvement to enhance its performance. To address this need, an electric field-assisted photocatalytic system (PCS) was proposed to meet the growing demand for industrial wastewater treatment. Firstly, we selected PAF-54, a nitrogen-rich porous organic polymer, as the PCS's catalytic material. PAF-54 exhibits a large adsorption capacity (189 mg/g) for Cr(VI) oxyanions through hydrogen bonding and electrostatic interaction. It was then coated on carbon paper (CP) and used as the photocatalytic electrode. The synergy between capacitive deionization (CDI) and photocatalysis significantly promotes the photoreduction of Cr(VI). The photocatalytic performance was enhanced due to the electric field's influence on the mass transfer process, which could strengthen the enrichment of Cr(VI) oxyanions and the repulsion of Cr(III) cations on the surface of PAF-54/CP electrode. In addition, the PCS system demonstrates excellent recyclability and stability, making it a promising candidate for chromium wastewater treatment.
Collapse
Affiliation(s)
- Xi Feng
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Yonghui Lin
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Letian Gan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Kaiyuan Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xiaojun Zhao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Guohua Fu
- Management School, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Samajdar S, Golda A S, Lakhera SK, Ghosh S. Recent progress in chromium removal from wastewater using covalent organic frameworks - A review. CHEMOSPHERE 2024; 350:141028. [PMID: 38142883 DOI: 10.1016/j.chemosphere.2023.141028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Covalent organic frameworks (COFs) offer a pivotal solution to urgently address heavy metal removal from wastewater due to their exceptional attributes such as high adsorption capacity, tunable porosity, controllable energy band structures, superior photocatalytic performance, and high stability-reusability. Despite these advantages, COFs encounter certain challenges, including inefficient utilization of visible light, rapid recombination of photogenerated carriers, and limited access to active sites due to close stacking. To enhance the photocatalytic and adsorptive performance of COF-based catalysts, various modification strategies have been reported, with a particular focus on molecular design, structural regulation, and heterostructure engineering. This review comprehensively explores recent advancements in COF-based photocatalytic and adsorptive materials for chromium removal from wastewater, addressing kinetics, mechanisms, and key influencing factors. Additionally, it sheds light on the influence of chemical composition and functional groups of COFs on the efficiency of hexavalent chromium [Cr (VI)] removal.
Collapse
Affiliation(s)
- Soumita Samajdar
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiny Golda A
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India.
| | - Srabanti Ghosh
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Liao Q, Sun Q, Xu H, Wang Y, Xu Y, Li Z, Hu J, Wang D, Li H, Xi K. Regulating Relative Nitrogen Locations of Diazine Functionalized Covalent Organic Frameworks for Overall H 2 O 2 Photosynthesis. Angew Chem Int Ed Engl 2023; 62:e202310556. [PMID: 37632257 DOI: 10.1002/anie.202310556] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Nitrogen-heterocycle-based covalent organic frameworks (COFs) are considered promising candidates for the overall photosynthesis of hydrogen peroxide (H2 O2 ). However, the effects of the relative nitrogen locations remain obscured and photocatalytic performances of COFs need to be further improved. Herein, a collection of COFs functionalized by various diazines including pyridazine, pyrimidine, and pyrazine have been judiciously designed and synthesized for photogeneration of H2 O2 without sacrificial agents. Compared with pyrimidine and pyrazine, pyridazine embedded in TpDz tends to stabilize endoperoxide intermediate species, leading toward the more efficient direct 2e- oxygen reduction reaction (ORR) pathway. Benefiting from the effective electron-hole separation, low charge transfer resistance, and high-efficiency ORR pathway, an excellent production rate of 7327 μmol g-1 h-1 and a solar-to-chemical conversion (SCC) value of 0.62 % has been achieved by TpDz, which ranks one of the best COF-based photocatalysts. This work might shed fresh light on the rational design of functional COFs targeting photocatalysts in H2 O2 production.
Collapse
Affiliation(s)
- Qiaobo Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Qiannan Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Haocheng Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yandong Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yang Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Ziyu Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jinwu Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Huijun Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
12
|
Yang D, Deng R, Chen M, Liu T, Luo L, He Q, Chen Y. Biochar-based microporous nanosheets-mediated nanoconfinement for high-efficiency reduction of Cr(VI). JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132283. [PMID: 37591172 DOI: 10.1016/j.jhazmat.2023.132283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
Biochar-based materials have been widely used to remove Cr(VI). However, current strategies mainly focus on slow adsorption through electrostatic and functional group properties, ignoring the confinement catalytic fast kinetics caused by inherent porous properties. Herein, we designed a confinement strategy to achieve high-efficiency Cr(VI) reduction by encapsulating the catalytic reaction of Cr(VI) and oxalic acid (OA) in the micropore of PCRN-3-10-2-800. The results showed that the removal rate constant of the PCRN-3-10-2-800/OA system was 14.3 and 146.8 times higher than that of the BC-800/OA system (low porosity) and PCRN-3-10-2-800 alone (adsorption), which was highest removal rate constant in the current reported materials under the same system. The structure-activity relationship indicated that the catalytic activity of Cr(VI) depended on the micropore characteristics of the catalyst. Density functional theory calculations confirmed that nanoscale space could enhance Cr(VI) adsorption and reduce the energy barrier of the rate-determining step. The electron paramagnetic resonance spectrum demonstrated the rapid conversion of Cr(VI) to Cr(III). Furthermore, the PCRN-3-10-2-800/OA system showed good applicability and high efficiency for Cr(VI) removal (nearly 100% in 5 min) in industrial electroplating wastewater treatment. This work first proposes a nanoconfinement-induced heavy metal reduction strategy and guides biochar's universality design in wastewater treatment.
Collapse
Affiliation(s)
- Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
13
|
Hou Y, Liu F, Nie C, Li Z, Tong M. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11675-11686. [PMID: 37486062 DOI: 10.1021/acs.est.3c03711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As novel photocatalysts, covalent organic frameworks (COFs) have potential for water purification. Insufficient exciton dissociation and low charge mobility in COFs yet restricted their photocatalytic activity. Excitonic dissociation and charge transfer in COFs could be optimized via regulating the donor-acceptor (D-A) interactions through adjusting the number of donor units within COFs, yet relevant research is lacking. By integrating the 1,2,4-triazole or bis-1,2,4-triazole unit with quinone, we fabricated COF-DT (with a single donor unit) and COF-DBT (with double donor units) via a facile sonochemical method and used to decontaminate emerging contaminants. Due to the stronger D-A interactions than COF-DT, the exciton binding energy was lower for COF-DBT, facilitating the intermolecular charge transfer process. The degradation kinetics of tetracycline (model contaminant) by COF-DBT (k = (12.21 ± 1.29) × 10-2 min-1) was higher than that by COF-DT (k = (5.11 ± 0.59) × 10-2 min-1) under visible-light irradiation. COF-DBT could efficiently photodegrade tetracycline under complex water chemistry conditions and four real water samples. Moreover, six other emerging contaminants, both Gram-negative and Gram-positive strains, could also be effectively eliminated by COF-DBT. High tetracycline degradation performance achieved in a continuous-flow system and in five reused cycles in both laboratory and outdoor experiments with sunlight irradiation showed the stability and the potential for the practical application of COF-DBT.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
15
|
Ivanova B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. Int J Mol Sci 2023; 24:6306. [PMID: 37047279 PMCID: PMC10094044 DOI: 10.3390/ijms24076306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Mass spectrometric innovations in analytical instrumentation tend to be accompanied by the development of a data-processing methodology, expecting to gain molecular-level insights into real-life objects. Qualitative and semi-quantitative methods have been replaced routinely by precise, accurate, selective, and sensitive quantitative ones. Currently, mass spectrometric 3D molecular structural methods are attractive. As an attempt to establish a reliable link between quantitative and 3D structural analyses, there has been developed an innovative formula [DSD″,tot=∑inDSD″,i=∑in2.6388.10-17×Ii2¯-Ii¯2] capable of the exact determination of the analyte amount and its 3D structure. It processed, herein, ultra-high resolution mass spectrometric variables of paracetamol, atenolol, propranolol, and benzalkonium chlorides in biota, using mussel tissue and sewage sludge. Quantum chemistry and chemometrics were also used. Results: Data on mixtures of antibiotics and surfactants in biota and the linear dynamic range of concentrations 2-80 ng.(mL)-1 and collision energy CE = 5-60 V are provided. Quantitative analysis of surfactants in biota via calibration equation ln[D″SD] = f(conc.) yields the exact parameter |r| = 0.99991, examining the peaks of BAC-C12 at m/z 212.209 ± 0.1 and 211.75 ± 0.15 for tautomers of fragmentation ions. Exact parameter |r| = 1 has been obtained, correlating the theory and experiments in determining the 3D molecular structures of ions of paracetamol at m/z 152, 158, 174, 301, and 325 in biota.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
16
|
Liu C, He X, Xu Q, Chen M. A general way to realize the bi-directional promotion effects on the photocatalytic removal of heavy metals and organic pollutants in real water by a novel S-scheme heterojunction: Experimental investigations, QSAR and DFT calculations. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130551. [PMID: 37055965 DOI: 10.1016/j.jhazmat.2022.130551] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 12/03/2022] [Indexed: 06/19/2023]
Abstract
Heavy metals (HMs) often coexist with organic pollutants (OPs) in real surface water. Is it possible to find a general way that the removal of one from these two pollutants will promote the elimination of another pollutant? Herein, the bi-directional promotion effects (BPEs) on synchronous removal of Cr(VI) (i.e., hexavalent chromium) and OPs were achieved by a SnNb2O6/CuInS2 S-scheme heterojunction. Specifically, the apparent rate constants are 0.161 min-1 [(Cr(VI)] and 0.019 min-1 [Tetracycline hydrochloride (TCH)] in coexisting Cr(VI)/TCH system (which are 3.74 and 1.58 times, respectively, compared to the mono-pollutant system), indicating OPs indeed can act as hole scavengers (electron donors) to consume plenty of photoinduced holes and enable more photoexcited electrons to attend to Cr(VI) photoreduction. More significantly, OPs (i.e., TCH, atrazine and 4-chlorophenol) with different molecular structures possess different adiabatic ionization potentials (AIPs), in an inversely linear relationship with BPEs, i.e., the lower AIP value is, the higher electron-donating ability is, the better BPEs present. Finally, TCH and its degradation intermediates toxicity was forecasted via quantitative structure-activity relationship, demonstrating the toxicity decrease of TCH during the photocatalytic process. This work provides a general strategy for simultaneous removal of contaminants, contributing to wastewater purification.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qixuan Xu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
17
|
Wang S, Chen Z, Cai Y, Wu XL, Wang S, Tang Z, Hu B, Li Z, Wang X. Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. ENVIRONMENTAL FUNCTIONAL MATERIALS 2023. [DOI: doi.org/10.1016/j.efmat.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
18
|
Jia A, Zhao Y, Liu Z, Zhang F, Shi C, Liu Z, Hong M, Li Y. New insight into enhanced transport of multi-component porous covalent-organic polymers with alkyl chains as injection agents for levofloxacin removal in saturated sand columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160773. [PMID: 36509275 DOI: 10.1016/j.scitotenv.2022.160773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/19/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Levofloxacin (LEV) is prone to be retained in aquifers due to its strong adsorption affinity onto sand, thus posing a threat to groundwater quality. In-situ injection technology for remediating LEV-contaminated soil and groundwater is still challenging owing to the lack of appropriate remedial agents. Herein, two novel multi-component porous covalent-organic polymers (namely, SLEL-1 and SLEL-2) with alkyl chains were constructed through Schiff-base reactions to adsorb LEV from an aqueous solution, in which the kinetics, isotherms, influenced factors were investigated. Plausible adsorption mechanisms were proposed through characterization and experimental analysis, including pore filling effect, π-π electron-donor-acceptor (EDA) interaction, hydrogen bonding force, hydrophobic-hydrophobic interaction as well as electrostatic force. In addition, response surface methodology (RSM) revealed the treatment optimization and reciprocal relationship within multi-variables. Furthermore, taking advantage of favorable dispersion and outstanding competitive behavior, SLEL-1 was established as an in-situ adsorptive agent in dynamic saturated columns on a laboratory scale to investigate the removal of LEV from water-bearing stratum. Overall, the findings of this work provided an insight into the fabrication of SLELs as long-term mobile and reusable adsorptive agents for practical in-situ applications in the future.
Collapse
Affiliation(s)
- Aiyuan Jia
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhi Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Fangyuan Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Can Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Zhisheng Liu
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, PR China
| | - Mei Hong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| | - Yangxue Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefang Road, Changchun 130021, PR China; Chongqing Research Institute, Jilin University, Chongqing 401123, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
19
|
Li X, Zhang L, Niu S, Dong Z, Lyu C. Quantitatively regulating the ketone structure of triazine-based covalent organic frameworks for efficient visible-light photocatalytic degradation of organic pollutants: Tunable performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130366. [PMID: 36434920 DOI: 10.1016/j.jhazmat.2022.130366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
As promising visible-light-responsive photocatalysts, triazine-based covalent organic frameworks (CTFs) still suffer from broad bandgap and high electron-hole recombination. As such, different contents of electron-rich ketone group were introduced to CTFs (X % keto-CTF), aiming to clarify the mechanism of quantitatively regulating ketone for enhanced visible-light photocatalytic performance of CTFs. As ketone content increased, the bandgap narrowed, electron-hole recombination decreased, charge transfer and quantum yield increased. As a result, keto-CTF outperformed other keto-CTFs in visible-light photocatalytic degradation of tetracycline, and apparent rate constant of TC (kobs) was 3.69 times higher than that of CTF. Importantly, ketone tuning induced varied types and concentrations of reactive species. Integrated with quantitative structure-activity relationships (QSARs) analysis and density functional theory (DFT) calculations, this study unravels how ketone content regulates bandgap structure of CTF, affects the contribution of varied reactive species, and quantitatively enhances the photocatalytic performance of CTFs. It also provides novel insights into the precise design and synthesis of CTFs-based catalyst structures for high-efficient visible-light photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Xinran Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Lu Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Shu Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Zhaojun Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China.
| |
Collapse
|
20
|
Meng D, Xue J, Zhang Y, Liu T, Chen C, Song W, Zhao J. Covalent organic frameworks editing for efficient metallaphotoredox catalytic carbon–oxygen cross coupling of aryl halides with alcohols. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01535h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cross-coupling by dual metal/photoredox catalysis is attractive for producing valuable chemical building blocks, where the photoredox catalysts lay the foundations for an efficient and sustainable operation.
Collapse
Affiliation(s)
- Di Meng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yufan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tianjiao Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Song
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Brillas E, Manuel Peralta-Hernández J. Removal of paracetamol (acetaminophen) by photocatalysis and photoelectrocatalysis. A critical review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Hou Y, Liu F, Zhang B, Tong M. Thiadiazole-Based Covalent Organic Frameworks with a Donor-Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16303-16314. [PMID: 36305749 DOI: 10.1021/acs.est.2c06056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As novel metal-free photocatalysts, covalent organic frameworks (COFs) have great potential to decontaminate pollutants in water. Fast charge recombination in COFs yet inhibits their photocatalytic performance. We found that the intramolecular charge transfer within COFs could be modulated via constructing a donor-acceptor (D-A) structure, leading to the improved photocatalytic performance of COFs toward pollutant degradation. By integrating electron donor units (1,3,4-thiadiazole or 1,2,4-thiadiazole ring) and electron acceptor units (quinone), two COFs (COF-TD1 and COF-TD2) with robust D-A characteristics were fabricated as visible-light-driven photocatalysts to decontaminate paracetamol. With the readily excited electrons in 1,3,4-thiadiazole rings, COF-TD1 exhibited efficient electron-hole separation through a push-pull electronic effect, resulting in superior paracetamol photodegradation performance (>98% degradation in 60 min) than COF-TD2 (∼60% degradation within 120 min). COF-TD1 could efficiently photodegrade paracetamol in complicated water matrices even in river water, lake water, and sewage wastewater. Diclofenac, bisphenol A, naproxen, and tetracycline hydrochloride were also effectively degraded by COF-TD1. Efficient photodegradation of paracetamol in a scaled-up reactor could be achieved either by COF-TD1 in a powder form or that immobilized onto a glass slide (to further ease recovery and reuse) under natural sunlight irradiation. Overall, this study provided an effective strategy for designing excellent COF-based photocatalysts to degrade emerging contaminants.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
23
|
Construction of benzothiadiazole-based D-A covalent organic frameworks for photocatalytic reduction of Cr (VI) and synergistic elimination of organic pollutants. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Li Y, Chen Z, Zhan G, Yuan B, Wang L, Li J. Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Zhang F, Li X, Dong X, Hao H, Lang X. Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
26
|
Zhang B, Liu F, Nie C, Hou Y, Tong M. Photocatalytic degradation of paracetamol and bisphenol A by chitosan supported covalent organic framework thin film with visible light irradiation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128966. [PMID: 35472551 DOI: 10.1016/j.jhazmat.2022.128966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Covalent Organic Frameworks (COFs) have attracted extensive attention for the photocatalytic degradation of emerging organic contaminants. The difficulty in separation and recovery after use yet would hinder the practical application of COFs in powder form. In present study, COFs in film form were fabricated via using chitosan as the film-substrate to support COFs (CSCF). We found that CSCF could effectively degrade two types of emerging organic contaminants under visible light irradiation. Particularly, CSCF could effectively degrade 99.8% of paracetamol (PCT) and 94.0% of bisphenol A (BPA) within 180 min under visible light irradiation. •O2- and h+ played dominant roles during the photocatalytic degradation process. Hydroxylation and cleavage were the main degradation processes. CSCF exhibited good photocatalytic degradation performance in a broad range of ionic strengths, in the presence of common coexisting ions including Cl-, NO3- and SO42-, in a wide range of pH (5-11), and in real water samples including tap water, river water and lake water. Moreover, CSCF could be easily collected after use and exhibited excellent degradation performance in five successive cycles. CSCF has potential applications to treat water with either PCT or BPA contamination. This study provided a new insight into the practical application of COFs.
Collapse
Affiliation(s)
- Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
27
|
Sheng X, Ding X, You D, Peng M, Dai Z, Hu X, Shi H, Yang L, Shao P, Luo X. Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. ENVIRONMENTAL RESEARCH 2022; 211:113007. [PMID: 35227673 DOI: 10.1016/j.envres.2022.113007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
The maximum targeted capture silver from contaminated water is urgently necessary for sustainable development. Herein, the perfluorination conjugated microporous polymer adsorbent (F-CMP) has been fabricated by Sonogashira-Hagihara coupling reaction and employed to remove Ag(I) ions. Characterizations of NMR, XPS and FT-IR indicate the successful synthesis of F-CMP adsorbent. The influence factors of F-CMP on Ag(I) adsorption behavior are studied, and the adsorption capacity of Ag(I) reaches 251.3 mg/g. The experimental results of isothermal adsorption and kinetic adsorption are consistent with the Freundlich model and pseudo-second-order isothermal adsorption model, which follows a multilayer adsorption behavior on the uniform surface of the adsorbent, and the chemical adsorption becomes the main rate-limiting step. Combined with DFT calculation, the adsorption mechanism of Ag(I) by F-CMP is elucidated. The peaks shift of sp before and after adsorption is larger than that of F1s, suggesting that the -CC- on the F-CMP becomes the dominant chelation site of Ag(I). Furthermore, F-CMP exhibits specific adsorption for Ag(I) in polymetallic complex water, with the maximum selectivity coefficient of 31.5. Our study may provide a new possibility of perfluorinated CMPs for effective capture of Ag(I) ions to address environmental issues.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xuan Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Deng You
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Mingming Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhenxi Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xingyu Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
28
|
Li W, Wang Q, Cui F, Jiang G. Covalent organic framework with sulfonic acid functional groups for visible light-driven CO 2 reduction. RSC Adv 2022; 12:17984-17989. [PMID: 35765318 PMCID: PMC9204709 DOI: 10.1039/d2ra02660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a covalent organic framework (TpPa-SO3H) photocatalyst with sulfonic acid function groups was synthesized using a solvothermal method. The morphologies and structural properties of the as-prepared composites were characterized by X-ray diffraction, infrared spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption measurements, and field emission scanning electron microscopy. An electrochemical workstation was used to test the photoelectric performance of the materials. The results show that TpPa-SO3H has -SO3H functional groups and high photocatalytic performance for CO2 reduction. After 4 h of visible-light irradiation, the amount of CO produced is 416.61 μmol g-1. In addition, the TpPa-SO3H photocatalyst exhibited chemical stability and reusability. After two testing cycles under visible light irradiation, the amount of CO produced decreased slightly to 415.23 and 409.15 μmol g-1. The XRD spectra of TpPa-SO3H were consistent before and after the cycles. Therefore, TpPa-SO3H exhibited good photocatalytic activity. This is because the introduction of -SO3H narrows the bandgap of TpPa-SO3H, which enhances the visible light response range and greatly promotes the separation of photogenerated electrons.
Collapse
Affiliation(s)
- Wanrong Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Qian Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Fuzhi Cui
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Guofang Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
29
|
Tao L, Zhang H, Li G, Liao C, Jiang G. Photocatalytic degradation of pharmaceuticals by pore-structured graphitic carbon nitride with carbon vacancy in water: Identification of intermediate degradants and effects of active species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153845. [PMID: 35176390 DOI: 10.1016/j.scitotenv.2022.153845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals are increasingly used in daily life and have been massively discharged to the aquatic environment. The removal of pharmaceuticals from water by various nanomaterials including graphitic carbon nitride (g-C3N4) has received extensive attention. Herein, we synthesized a carbon-defective carbon nitride with pore structure through a simple thermal polymerization method for photodegradation of lidocaine, mepivacaine and ropivacaine (typical amide local anesthetics). The results showed that the degradation process conformed to the pseudo-first-order reaction kinetics, and the degradation rate constant of organic pollutants using CCN-600 (i.e., g-C3N4 synthesized at 600 °C) reached 5.05 × 10-2 min-1, about 2.5 times higher than that of the prototype g-C3N4 (2.09 × 10-2 min-1). The capture experiment of active species and the electron paramagnetic resonance (EPR) test demonstrated that superoxide radical (O2-) played a major role in the degradation process. Based on the possible photodegraded intermediate products identified, the degradation pathways were deduced. This study provides not only a new strategy for fabrication of pore-structured g-C3N4 with carbon vacancy, but also a reference method for the treatment of pharmaceuticals in water bodies.
Collapse
Affiliation(s)
- Le Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Jafarzadeh M. Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr (VI). ACS APPLIED MATERIALS & INTERFACES 2022; 14:24993-25024. [PMID: 35604855 DOI: 10.1021/acsami.2c03946] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been a direct correlation between the rate of industrial development and the spread of pollution on Earth, particularly in the last century. The organic and inorganic pollutants generated from industrial activities have created serious risks to human life and the environment. The concept of sustainability has emerged to tackle the environmental issues in developing chemical-based industries. However, pollutants have continued to be discharged to water resources, and finding appropriate techniques for the removal and remedy of wastewater is in high demand. Chromium is one of the high-risk heavy metals in industrial wastewaters that should be removed via physical adsorption and/or transformed into less hazardous chemicals. Photocatalysis as a sustainable process has received considerable attention as it utilizes sunlight irradiation to remedy Cr(VI) via a cost-effective process. Numerous photocatalytic systems have been developed up to now, but metal-organic frameworks (MOFs) have gained growing attention because of their unique versatilities and facile structural modulations. A variety of MOF-based photocatalysts have been widely employed for the photoreduction of Cr(VI). Here, we review the recent progress in the design of MOF photocatalysts and summarize their performance in photoreduction reactions.
Collapse
|
31
|
Ni L, Wang T, Wang K, Ma J, Wang Y. Novel Control Strategy for Membrane Biofouling by Surface Loading of Aerobically and Anaerobically Applicable Photocatalytic Optical Fibers Based on a Z-Scheme Heterostructure Zr-MOFs/rGO/Ag 3PO 4 Photocatalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6608-6620. [PMID: 35476428 DOI: 10.1021/acs.est.1c08031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The high replacement cost of modified membranes in antibiofouling application is inevitable. Here, surface-loaded photocatalytic optical fibers (POFs) were developed as antibiofouling strategies to replace membrane modification. To prepare aerobically and anaerobically applicable POFs, novel visible light-driven zirconium-based metal-organic framework/reduced graphene oxide/Ag3PO4 (Zr-MOFs/rGO/Ag3PO4) Z-scheme heterojunctions were constructed and coated on optical fibers. After loading the POFs on the membrane surface, the antibiofouling capability of the POFs was demonstrated during membrane filtration of bacteria and foulants under visible light irradiation. The disinfection efficiencies of the POFs against Escherichia coli and Staphylococcus aureus reached 95.7 and 92.4%, respectively, by aerobic treatment and 90.3 and 85.5%, respectively, by anaerobic treatment. For the inactivated bacteria, cell membrane and membrane-associated functions were destroyed, accompanied by antioxidant enzyme decomposition, loss of cell respiration and adenosine triphosphate (ATP) synthesis capacity, and leakage and oxidation of protein, lipid, potassium, DNA, and RNA. During membrane filtration of model foulants and membrane bioreactor sludge, the POFs significantly alleviated the membrane flux decline by foulant disintegration. By qualitative and quantitative detection and quenching tests of reactive species, aerobically generated •O2- and •OH and anaerobically generated •OH from POFs played dominant roles in the antibiofouling process. This work provides unique insights into membrane fouling control based on environmentally friendly and efficient photocatalytic technology.
Collapse
Affiliation(s)
- Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
32
|
Li G, Tian W, Zhong C, Yang Y, Lin Z. Construction of Donor-Acceptor Heteroporous Covalent Organic Frameworks as Photoregulated Oxidase-like Nanozymes for Sensing Signal Amplification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21750-21757. [PMID: 35482589 DOI: 10.1021/acsami.2c04391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterials with enzyme-like characteristics (called nanozymes) show their extreme potentials as alternatives to natural enzymes. Covalent organic frameworks (COFs) as metal-free nanozymes have attracted huge attention for catalytic applications due to their flexible molecular design and synthetic strategies and conjugated, porous, and chemically stable architectures. Designing high-performance two-dimensional (2D) porous COF materials embedded with functional building units for modulating nanozymes' catalytic activity is of immense importance in contemporary research. The proper combination of donor-acceptor (D-A) fragments within a porous COF skeleton is an effective strategy to decrease the band gap and provide a strong charge-transfer pathway for highly effective charge separation. Herein, two donor-acceptor heteroporous COFs using an electron-deficient 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)dibenzaldehyde (Tz) unit or 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzaldehyde (Td) unit and electron-rich tetrakis(4-aminophenyl)ethane (ETTA) linkers were presented. The resulting crystalline and heteroporous COFs showed outstanding oxidase-like activity under light irradiation, which can catalyze the oxidation of typical substrates and corresponding evolution in color and absorption. The light-activatable ETTA-Tz COF with prominent oxidase-like activity can serve as a colorimetric probe for quantitative detection of sulfide ions with a linear range of 1-50 μM and a detection limit of 0.27 μM within 3 min. The colorimetric approach could also be used for sulfide ion detection in human serum samples. The research demonstrated the future potential of D-A motifs within fully conjugated COFs to obtain excellent mimic enzyme activity.
Collapse
Affiliation(s)
- Guorong Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchang Tian
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yixin Yang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
33
|
Zhang Y, Xu X, Liao Q, Wang Q, Han Q, Chen P, Xi K. New potential of boron-based COFs: the biocompatible COF-1 for reactive oxygen generation and antimicrobial applications. J Mater Chem B 2022; 10:3285-3292. [PMID: 35377374 DOI: 10.1039/d1tb02808a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photocatalytic covalent organic frameworks (COFs) are popular in the field of biomedical materials and also have potential as antimicrobial materials. Herein, a boron-based COF was used in antibacterial applications innovatively. The results of this study suggested that COF-1, the earliest boroxine COF, could produce a variety of reactive oxygen species (ROS) under visible light irradiation. In order to explore more applications of COF-1, antibacterial tests were carried out based on the above results. The test results showed that the material displayed an obvious bactericidal effect on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by releasing ROS under white light. According to the results of plate coating, all bacteria died after co-cultivation with COF-1 under white light for about 120 minutes. In a word, this study could provide a new idea for the application of boron-based COFs as multifunctional photocatalysts in future.
Collapse
Affiliation(s)
- Yiying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, China.
| | - Xiaoqing Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China.
| | - Qiaobo Liao
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, China.
| | - Qiaomu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, China.
| | - Qingwen Han
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, China.
| | - Pengpeng Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China.
| | - Kai Xi
- School of Chemistry and Chemical Engineering, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
34
|
Wu H, Kim SY, Ito T, Miwa M, Matsuyama S. One-pot synthesis of silica-gel-based adsorbent with Schiff base group for the recovery of palladium ions from simulated high-level liquid waste. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Liu F, Li Z, Dong Q, Nie C, Wang S, Zhang B, Han P, Tong M. Catalyst-Free Periodate Activation by Solar Irradiation for Bacterial Disinfection: Performance and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4413-4424. [PMID: 35315645 DOI: 10.1021/acs.est.1c08268] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Periodate (PI)-based advanced oxidation process has recently attracted great attention in the water treatment processes. In this study, solar irradiation was used for PI activation to disinfect waterborne bacteria. The PI/solar irradiation system could inactivate Escherichia coli below the limit of detection (LOD, 10 CFU mL-1) with initial concentrations of 1 × 106, 1 × 107, and 1 × 108 CFU mL-1 within 20, 40, and 100 min, respectively. •O2- and •OH radicals contributed to the bacterial disinfection. These reactive radicals could attack and penetrate the cell membrane, thereby increasing the amount of intracellular reactive oxygen species and destroying the intracellular defense system. The damage of the cell membrane caused the leakage of intracellular K+ and DNA (that could be eventually degraded). Excellent bacterial disinfection performance in PI/solar irradiation systems was achieved in a wide range of solution pH (3-9), with coexisting humic acid (0.1-10 mg L-1) and broad solution ionic strengths (15-600 mM). The PI/solar irradiation system could also efficiently inactivate Gram-positive Bacillus subtilis. Moreover, PI activated by natural sunlight irradiation could inactivate 1 × 107 CFU mL-1 viable E. coli below the LOD in the river and sea waters with a working volume of 1 L in 40 and 50 min, respectively. Clearly, the PI/solar system could be potentially applied to disinfect bacteria in water.
Collapse
Affiliation(s)
- Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qiqi Dong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
36
|
Zhao Y, Liang Y, Wu D, Tian H, Xia T, Wang W, Xie W, Hu XM, Tian X, Chen Q. Ruthenium Complex of sp 2 Carbon-Conjugated Covalent Organic Frameworks as an Efficient Electrocatalyst for Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107750. [PMID: 35224845 DOI: 10.1002/smll.202107750] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Indexed: 06/14/2023]
Abstract
It is still a great challenge to explore hydrogen evolution reaction (HER) electrocatalysts with both lower overpotential and higher stability in acidic electrolytes. In this work, an efficient HER catalyst, Ru@COF-1, is prepared by complexation of triazine-cored sp2 carbon-conjugated covalent organic frameworks (COFs) with ruthenium ion. Ru@COF-1 possesses high crystallinity and porosity, which are beneficial for electrocatalysis. The large specific surface area and regular porous channels of Ru@COF-1 facilitate full contact between reactants and catalytic sites. The nitrogen atoms of triazines are protonated in the acidic media, which greatly improve the conductivity of Ru@COF-1. This synergistic effect makes the overpotential of Ru@COF-1 about 200 mV at 10 mA cm-2 , which is lower than other reported COFs-based electrocatalysts. Moreover, Ru@COF-1 exhibits exceptionally electrocatalytic durability in the acidic electrolytes. It is particularly stable and remains highly active after 1000 cyclic voltammetry cycles. Density functional theory calculations demonstrate that tetracoordinated Ru-N2 Cl2 moieties are the major contributors to the outstanding HER performance. This work provides a new idea for developing protonated HER electrocatalysts in acidic media.
Collapse
Affiliation(s)
- Yuxiang Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Ying Liang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Daoxiong Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Hao Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Tian Xia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Wenxin Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Weiyu Xie
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Xin-Ming Hu
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, School of Science, Hainan University, Haikou, 570228, China
| |
Collapse
|
37
|
Zhang S, Lan H, Cui Y, An X, Liu H, Qu J. Insight into the Key Role of Cr Intermediates in the Efficient and Simultaneous Degradation of Organic Contaminants and Cr(VI) Reduction via g-C 3N 4-Assisted Photocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3552-3563. [PMID: 35212521 DOI: 10.1021/acs.est.1c08440] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalysis provides an impetus for the synergetic removal of Cr(VI) and organic contaminants, but the generation of Cr intermediates and their potential oxidizability may be overlooked in pollutant conversion. Herein, the Cr intermediates in the Cr(VI) reduction process were emphasized in Cr(VI)/bisphenol A (BPA) by using graphitic carbon nitride as a photocatalyst. The active species for BPA photodegradation in the BPA system and Cr(VI)/BPA system suggested that the Cr(VI) reduction process indeed promotes BPA photodegradation. Electron paramagnetic resonance (EPR) of Cr complexes and in situ variable-temperature EPR analysis demonstrated Cr(V) intermediate (g = 1.978) generation in Cr(VI) reduction and its oxidization for BPA degradation in photocatalysis. By adding the electron donor Na2SO3, BPA degradation was induced in Cr(VI)/BPA solution, further confirming the positive effect of Cr(V). Moreover, the difference in BPA degradation products in the BPA/air, Cr(VI)/BPA/air, and Cr(VI)/BPA/Ar systems indirectly explained why the Cr(V) intermediate was involved in BPA degradation. Density functional theory calculations revealed that photogenerated electrons can reduce the free energy (0.98 eV) of converting Cr(VI) into Cr(V), which can facilitate the subsequent Cr(V) oxidation step for BPA degradation. This work contributes to the exploration of the Cr(VI) reduction process and the synergistic removal of organic pollutants in Cr(VI)/organics systems.
Collapse
Affiliation(s)
- Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Geng WY, Guo SF, Zhang H, Luo YH, Lu XX, Chen FY, Wang ZX, Zhang DE. Assembly of anthracene-based donor-acceptor conjugated organic polymers for efficient photocatalytic aqueous Cr(VI) reduction and organic pollutions degradation under visible light. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Ge T, Shen L, Li J, Zhang Y, Zhang Y. Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Chakraborty J, Nath I, Verpoort F. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chem Soc Rev 2022; 51:1124-1138. [DOI: 10.1039/d1cs00916h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A detailed physicochemical explanation for experimental observations is provided for POPs as powerful photocatalysts for organic transformations and wastewater decontamination.
Collapse
Affiliation(s)
- Jeet Chakraborty
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Ipsita Nath
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Centre for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 (S3), 9000, Ghent, Belgium
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
41
|
Cui WR, Li YJ, Jiang QQ, Wu Q, Luo QX, Zhang L, Liang RP, Qiu JD. Covalent Organic Frameworks as Advanced Uranyl Electrochemiluminescence Monitoring Platforms. Anal Chem 2021; 93:16149-16157. [PMID: 34792351 DOI: 10.1021/acs.analchem.1c03907] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electrochemiluminescence (ECL), as an advanced sensing process, can selectively control the generation of excited states by changing the potential. However, most of the existing ECL systems rely on poisonous coreactants to provide radicals for luminescence; although the ECL efficiency was improved, the athematic coreactants will cause unpredictable interference to the accurate analysis of trace targets. Herein, we realized the ECL of nonemitting molecules by performing intramolecular electron transfer in the olefin-linked covalent organic frameworks (COFs), with a high efficiency of 63.7%. Employing internal dissolved oxygen as the coreactant, it is well suitable for the analysis of various complex samples in the environment. Taking nuclear contamination analysis as the goal orientation, we further illustrated a design of a "turn-on" uranyl ion monitoring system integrating fast response, low detection limit, and high selectivity, showing that new ECL-COFs are promising to facilitate environment-related sensing analysis and structure-feature correlation mechanism exploration.
Collapse
Affiliation(s)
- Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ya-Jie Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiong Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China.,College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| |
Collapse
|
42
|
Liang X, Tian Y, Yuan Y, Kim Y. Ionic Covalent Organic Frameworks for Energy Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105647. [PMID: 34626010 DOI: 10.1002/adma.202105647] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are a class of porous crystalline materials whose facile preparation, functionality, and modularity have led to their becoming powerful platforms for the development of molecular devices in many fields of (bio)engineering, such as energy storage, environmental remediation, drug delivery, and catalysis. In particular, ionic COFs (iCOFs) are highly useful for constructing energy devices, as their ionic functional groups can transport ions efficiently, and the nonlabile and highly ordered all-covalent pore structures of their backbones provide ideal pathways for long-term ionic transport under harsh electrochemical conditions. Here, current research progress on the use of iCOFs for energy devices, specifically lithium-based batteries and fuel cells, is reviewed in terms of iCOF backbone-design strategies, synthetic approaches, properties, engineering techniques, and applications. iCOFs are categorized as anionic COFs or cationic COFs, and how each of these types of iCOFs transport lithium ions, protons, or hydroxides is illustrated. Finally, the current challenges to and future opportunities for the utilization of iCOFs in energy devices are described. This review will therefore serve as a useful reference on state-of-the-art iCOF design and application strategies focusing on energy devices.
Collapse
Affiliation(s)
- Xiaoguang Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ye Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yufei Yuan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yoonseob Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|