1
|
Nosek K, Zhao D. Transformation products of diclofenac: Formation, occurrence, and toxicity implication in the aquatic environment. WATER RESEARCH 2024; 266:122388. [PMID: 39270499 DOI: 10.1016/j.watres.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Diclofenac (DCF) is the first drug on the EU Watch List of Priority Substances due to its extensive uses, incomplete removal in wastewater treatment plants (WWTPs), and toxic effects. Once in the environment, DCF undergoes processes that yield various transformation products (TPs) or metabolites, whichcan be more toxic than DCF. While these TPs or metabolites often dominate the majority of the drug load in municipal wastewater, they have been largely ignored. This review critically examines recent data on the formation, occurrence, fate, and toxicology of DCF TPs in the aquatic environment. This review reveals some important findings. First, DCF TPs may constitute >57 % of DCF in wastewater influent, ∼60 % in effluent, and ∼30 % in surface waters. Second, TPs persistently retain the core structure of DCF and may pose greater environmental risks than the parent drug. Third, some metabolites may revert back to the parent drug. Fourth, WWTPs serve as a consistent source that release DCF and its by-products into the environment. Fifth, mixtures of DCF and its metabolites, along with other contaminants, may pose elevated and synergistic environmental risks than individual compounds. These findings suggest that current risk assessment practices, which ignore the impacts of the metabolites and the chemical interactions/synergies, may seriously underestimate the overall toxicity of DCF and likely other pharmaceuticals. Further studies are needed to monitor the long-term fate and toxicity of the metabolites, as well as new analytical methods and standards to unveil the hidden metabolites and the associated environmental risks.
Collapse
Affiliation(s)
- Katarzyna Nosek
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, Krakow 30-059, Poland.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182-1324, USA
| |
Collapse
|
2
|
Fučík J, Fučík S, Rexroth S, Sedlář M, Gargošová HZ, Mravcová L. Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library. Anal Bioanal Chem 2024; 416:6291-6306. [PMID: 39251428 PMCID: PMC11541386 DOI: 10.1007/s00216-024-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Stanislav Fučík
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
3
|
Fuster L, Bonnefoy C, Fildier A, Geffard A, Arnaudguilhem C, Mounicou S, Dedourge-Geffard O, Daniele G, Vulliet E. The iodinated contrast agent diatrizoic acid has an impact on the metabolome of the mollusc Dreissena polymorpha. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107087. [PMID: 39293296 DOI: 10.1016/j.aquatox.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
The occurrence of iodinated contrast agents (ICAs) in the aquatic environment is relatively well documented, showing that these compounds can be found at several µg/L in natural waters, and up to hundreds of µg/L in waste water treatment plants inlets. Nevertheless, only few studies address their potential impacts and fate in aquatic organisms mainly because these compounds are considered non-toxic due to their intrinsic properties. However, as aquatic organisms are continuously exposed to these compounds, they could nonetheless induce some adverse effects on aquatic populations like filter feeder organisms. To verify this, we exposed model organisms, Dreissena polymorpha mollusks, to 100 µg/L of an ICA, diatrizoic acid (DTZ), to determine the potential biological effects caused by this compound using a non-targeted metabolomic approach based on liquid chromatography coupled to high resolution mass spectrometry. Metabolic profiles showed a slight effect of DTZ, with some metabolome variations linked to exposure. Indeed, to avoid any misinterpretation of DTZ effects, we also studied the natural evolution of the metabolome over time in unexposed mussels, showing that control mussels exhibited metabolomic changes over the exposure period. During DTZ exposure, we showed that the carnitine shuttle pathway of fatty acids and pyrimidine metabolisms were impacted, leading to dysregulation of mussels' energy metabolism. Thus, this study demonstrates for the first time that compounds considered non-toxic like ICAs can have an impact on aquatic organisms such as bivalves by slightly modulating their metabolome.
Collapse
Affiliation(s)
- Laura Fuster
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Christelle Bonnefoy
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Aurélie Fildier
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Alain Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | | | - Sandra Mounicou
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Odile Dedourge-Geffard
- Université Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex 2, France
| | - Gaëlle Daniele
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| | - Emmanuelle Vulliet
- Universite Claude Bernard Lyon1, ISA, UMR 5280 CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
4
|
Michorowska S, Kucharski D, Chojnacka J, Nałęcz-Jawecki G, Marek D, Giebułtowicz J. Metabolomic study on ostracods exposed to environmentally relevant concentrations of five pharmaceuticals selected via a novel approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174036. [PMID: 38889824 DOI: 10.1016/j.scitotenv.2024.174036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Pharmaceuticals (PhACs) are increasingly detected in aquatic ecosystems, yet their effects on biota remain largely unknown. The environmentally relevant concentrations of many PhACs may not result in individual-level responses, like mortality or growth inhibition, traditional toxicity endpoints. However, this doesn't imply the absence of negative effects on biota. Metabolomics offers a more sensitive approach, detecting responses at molecular and cellular levels and providing mechanistic understanding of adverse effects. We evaluated bioaccumulation and metabolic alterations in a benthic ostracod, Heterocypris incongruens, exposed to a mixture of five PhACs (carbamazepine, tiapride, tolperisone, propranolol and amlodipine) at environmentally relevant concentrations for 7 days using liquid chromatography coupled with mass spectrometry. The selection of PhACs was based, among other factors, on risk quotient values determined using toxicological data available in the literature and concentrations of PhACs quantified in our previous research in the sediments of the Odra River estuary. This represents a novel approach to PhACs selection for metabolomic studies that considers strictly quantitative data. Amlodipine and tolperisone exhibited the highest bioaccumulation. Significant impacts were observed in Alanine, aspartate and glutamate metabolism, Starch and sucrose metabolism, Arginine biosynthesis, Histidine metabolism, Tryptophan metabolism, Glycerophospholipid metabolism, and Glutathione metabolism pathways. Most of the below-individual-level responses were likely nonspecific and related to dysregulation in energy metabolism and oxidative stress response. Additionally, some pharmaceutical-specific responses were also observed. Therefore, untargeted metabolomics can be used to detect metabolic changes resulting from environmentally relevant concentrations of PhACs in aquatic ecosystems and to understand their underlying mechanism.
Collapse
Affiliation(s)
- Sylwia Michorowska
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland
| | - Dawid Kucharski
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland
| | - Justyna Chojnacka
- Department of Toxicology and Food Science, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Toxicology and Food Science, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland
| | - Dominik Marek
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Medical University of Warsaw, Banacha 1 Str., 02-097 Warszawa, Poland.
| |
Collapse
|
5
|
Yue S, Wang R, Huang C, Qiao Y, Shen Z, Wei Y, Li Z. Toxicokinetics of selenate in earthworm sub-tissues and potential bio-accessibility assessment of earthworm-derived selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116643. [PMID: 38925033 DOI: 10.1016/j.ecoenv.2024.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/16/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Selenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk. The results demonstrated that Se accumulated in the pre-clitellum (PC) and total tissues (TT) of earthworms in a time- and dose-dependent manner. The highest Se levels in the PC, post-clitellum (PoC), and TT were 70.54, 57.93, and 64.26 mg/kg during the uptake phase, respectively. The kinetic Se contents in the earthworms PC and TT were consistent with the TK model but not with PoC. The earthworm TT exhibited a faster uptake (Kus = 0.83-1.02 mg/kg/day) and elimination rate of Se (Kee = 0.044-0.049 mg/kg/day), as well as a shorter half-life time (LT1/2 = 15.88-14.22 days) than PC at low soil Se levels (≤5 mg/kg). Conversely, the opposite trend was observed with higher Se concentrations (10 and 20 mg/kg). These results are likely attributable to the tissue specificity and concentration of the toxicant. Earthworms PC and TT exhibited a higher kinetic Se accumulation factor (BAFk) than steady-state BAF (BAFss), with values ranging from 8 to 24 and 3-13, respectively. Furthermore, the bio-accessibility of earthworm-derived Se to poultry ranged from 66.25 % to 84.35 %. As earthworms are at the bottom of the terrestrial food chain, the high bio-accessibility of earthworm-derived Se poses a potential risk to predators. This study offers data support and a theoretical foundation for understanding the biological footprint of soil Se and its toxicological impacts and ecological hazards.
Collapse
Affiliation(s)
- Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou 253023, PR China
| | - Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China; International Joint Laboratory of Agricultural Food Science and Technology of Universities of Shandong, Dezhou University, Dezhou 253023, PR China.
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuhui Qiao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhiqiang Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yunwei Wei
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
6
|
Lin X, Song MH, Li W, Wei W, Wu X, Mao J, Yun YS. Optimized design of quaternary amino-functionalized chitosan fibers for ultra-high diclofenac adsorption from wastewater. CHEMOSPHERE 2024; 357:141970. [PMID: 38608776 DOI: 10.1016/j.chemosphere.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.
Collapse
Affiliation(s)
- Xiaoyu Lin
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Myung-Hee Song
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Wenhao Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wei
- School of Geographic Sciences, Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Nanhu Road 237, Xinyang, 464000, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Mao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
7
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
8
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Chen P, Hu Y, Chen G, Zhao N, Dou Z. Probing the bioconcentration and metabolism disruption of bisphenol A and its analogues in adult female zebrafish from integrated AutoQSAR and metabolomics studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167011. [PMID: 37704156 DOI: 10.1016/j.scitotenv.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Plenty of emerging bisphenol A (BPA) substitutes rise to wait for assessment of bioconcentration and metabolism disruption. Computational methods are useful to fill the data gap in chemical risk assessment, such as automated quantitative structure-activity relationship (AutoQSAR). It is not clear how AutoQSAR performs in predicting the bioconcentration factor (BCF) in adult zebrafish. Herein, AutoQSAR was used to predict the logBCFs of BPA, bisphenol AF (BPAF), bisphenol B, bisphenol F and bisphenol S (BPS). For the test set, a linear relationship was shown between the observed and predicted logBCFs with a slope of 0.97. The predicted logBCFs of these five bisphenols were quite close to their experimental data with a slope of 0.94, suggesting better performance than directed message passing neural networks and EPI Suite with a slope of 0.69 and 0.61, respectively. Thus, AutoQSAR is powerful in modeling logBCFs in fish with minimal time and expertise. To link bioconcentration with metabolic effects, female zebrafish were exposed to BPA, BPAF and BPS for metabolomics analysis. BPA caused a significant disturbance in amino acid metabolism, while BPAF and BPS significantly altered another three metabolic pathways, showing chemical-specific responses. BPAF with the highest logBCF elicited the strongest metabolomic responses reflected by the metabolic effect level index, followed by BPA and BPS. Thus, BPAF and BPS elicited higher or similar metabolism disruption compared with BPA in female zebrafish, respectively, reflecting consequences of bioconcentration.
Collapse
Affiliation(s)
- Pengyu Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China; Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210024, China.
| | - Yuxi Hu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Geng Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Na Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Zhichao Dou
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| |
Collapse
|
10
|
Van Nguyen T, Bořík A, Sims JL, Kouba A, Žlábek V, Koubová A. Toxicological effects of diclofenac on signal crayfish (Pacifastacus leniusculus) as related to weakly acidic and basic water pH. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106777. [PMID: 38035650 DOI: 10.1016/j.aquatox.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The widespread use and continuous discharge of pharmaceuticals to environmental waters can lead to potential toxicity to aquatic biota. Pharmaceuticals and their metabolites are often complex organic and environmentally persistent compounds that are bioactive at low doses. This study aimed to investigate the effects of diclofenac (DCF) on the antioxidant defence system and neurotoxicity biomarkers in signal crayfish (Pacifastacus leniusculus) under weakly acidic and basic conditions. Crayfish were exposed to 200 µg/L of DCF at pH 6 and 8 for 96 h and subsequently underwent the depuration phase for 96 h. Gills, hepatopancreas, and muscle were sampled after the exposure and depuration phases to assess the toxicological biomarker responses of DCF in crayfish by evaluating lipid peroxidation (LPO) levels, activities of antioxidant enzymes and acetylcholinesterase. After the exposure phase, the hemolymph DCF concentration was detected one order higher at pH 6 than at pH 8. The DCF was subsequently fully eliminated from the hemolymph during the depuration phase. Our results showed that DCF caused alteration in the activities of six of the seven tested biomarkers in at least one crayfish tissue. Although exposure to DCF caused imbalances in the detoxification system on multiple tissue levels, it was regenerated to a balanced state after the depuration phase. Integrated biomarker response (IBRv2) showed that the highest toxicological response to DCF exposure was elicited in the gills, whereas the hepatopancreas was the highest-responding tissue after the depuration phase. Exposure to DCF at pH 6 caused higher toxicological effects than at pH 8; however, crayfish antioxidant mechanisms recovered more quickly at pH 6 than at pH 8 after the depuration phase. Our results showed that water pH influenced the toxicological effects of DCF, an ionisable compound in crayfish.
Collapse
Affiliation(s)
- Tuyen Van Nguyen
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Adam Bořík
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Jaylen L Sims
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic; Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Vladimír Žlábek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic
| | - Anna Koubová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, Vodňany CZ-389 25, Czech Republic.
| |
Collapse
|
11
|
Cao S, Wang J, You X, Zhou B, Wang Y, Zhou Z. Purine Metabolism and Pyrimidine Metabolism Alteration Is a Potential Mechanism of BDE-47-Induced Apoptosis in Marine Rotifer Brachionus plicatilis. Int J Mol Sci 2023; 24:12726. [PMID: 37628905 PMCID: PMC10454229 DOI: 10.3390/ijms241612726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
This present study was conducted to provide evidence and an explanation for the apoptosis that occurs in the marine rotifer Brachionus plicatilis when facing 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) stress. Metabolomics analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and arginine biosynthesis were the top three sensitive pathways to BDE-47 exposure, which resulted in the reduction in the amino acid pool level. Pyrimidine metabolism and purine metabolism pathways were also significantly influenced, and the purine and pyrimidine content were obviously reduced in the low (0.02 mg/L) and middle (0.1 mg/L) concentration groups while increased in the high (0.5 mg/L) concentration group, evidencing the disorder of nucleotide synthesis and decomposition in B. plicatilis. The biochemical detection of the key enzymes in purine metabolism and pyrimidine metabolism showed the downregulation of Glutamine Synthetase (GS) protein expression and the elevation of Xanthine Oxidase (XOD) activity, which suggested the impaired DNA repair and ROS overproduction. The content of DNA damage biomarker (8-OHdG) increased in treatment groups, and the p53 signaling pathway was found to be activated, as indicated by the elevation of the p53 protein expression and Bax/Bcl-2 ratio. The ROS scavenger (N-acetyl-L-cysteine, NAC) addition effectively alleviated not only ROS overproduction but also DNA damage as well as the activation of apoptosis. The combined results backed up the speculation that purine metabolism and pyrimidine metabolism alteration play a pivotal role in BDE-47-induced ROS overproduction and DNA damage, and the consequent activation of the p53 signaling pathway led to the observed apoptosis in B. plicatilis.
Collapse
Affiliation(s)
- Sai Cao
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Jiayi Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Xinye You
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - You Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266237, China
| | - Zhongyuan Zhou
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China; (S.C.); (J.W.); (X.Y.); (B.Z.); (Y.W.)
| |
Collapse
|
12
|
Imbert-Auvray N, Fichet D, Bodet PE, Ory P, Sabot R, Refait P, Graber M. Metabolomics-Based Investigation on the Metabolic Changes in Crassostrea gigas Experimentally Exposed to Galvanic Anodes. Metabolites 2023; 13:869. [PMID: 37512576 PMCID: PMC10384061 DOI: 10.3390/metabo13070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cathodic protection is widely used to protect metal structures from corrosion in marine environments using sacrificial galvanic anodes. These anodes, either in Zinc, or preferentially nowadays in Al-Zn-In alloys, are expected to corrode instead of the metal structures. This leads to the release of dissolved species, Zn2+, Al3+, and In3+, and solid phases such as Al(OH)3. Few studies have been conducted on their effects on marine organisms, and they concluded that further investigations are needed. We therefore evaluated the effects of Zn and Al-Zn-In anodes on oysters stabulated in tanks, under controlled conditions defined through a comparison with those prevailing in a given commercial seaport used as reference. We analyzed the entire metabolome of gills with a non-targeted metabolomic approach HRMS. A modelling study of the chemical species, corresponding to the degradation products of the anodes, likely to be present near the exposed oysters, was also included. We identified 16 and two metabolites modulated by Zn- and Al-Zn-In-anodes, respectively, that were involved in energy metabolism, osmoregulation, oxidative stress, lipid, nucleotide nucleoside and amino acid metabolisms, defense and signaling pathways. The combination of chemical modelling and metabolomic approach, used here for the first time, enlightened the influence of Zn present in the Al-Zn-In anodes.
Collapse
Affiliation(s)
- Nathalie Imbert-Auvray
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Denis Fichet
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pierre-Edouard Bodet
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pascaline Ory
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - René Sabot
- UMR 7356 LaSIE, CNRS-La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Philippe Refait
- UMR 7356 LaSIE, CNRS-La Rochelle Université, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Marianne Graber
- UMR 7266 LIENSs, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
13
|
Raths J, Švara V, Lauper B, Fu Q, Hollender J. Speed it up: How temperature drives toxicokinetics of organic contaminants in freshwater amphipods. GLOBAL CHANGE BIOLOGY 2023; 29:1390-1406. [PMID: 36448880 PMCID: PMC10107603 DOI: 10.1111/gcb.16542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 05/26/2023]
Abstract
The acceleration of global climate change draws increasing attention towards interactive effects of temperature and organic contaminants. Many studies reported a higher sensitivity of aquatic invertebrates towards contaminant exposure with increasing or fluctuating temperatures. The hypothesis of this study was that the higher sensitivity of invertebrates is associated with the changes of toxicokinetic processes that determine internal concentrations of contaminants and consequently toxic effects. Therefore, the influence of temperature on toxicokinetic processes and the underlying mechanisms were studied in two key amphipod species (Gammarus pulex and Hyalella azteca). Bioconcentration experiments were carried out at four different temperatures with a mixture of 12 exposure relevant polar organic contaminants. Tissue and medium samples were taken in regular intervals and analysed by online solid-phase extraction liquid chromatography high-resolution tandem mass spectrometry. Subsequently, toxicokinetic rates were modelled and analysed in dependence of the exposure temperature using the Arrhenius equation. An exponential relationship between toxicokinetic rates versus temperature was observed and could be well depicted by applying the Arrhenius equation. Due to a similar Arrhenius temperature of uptake and elimination rates, the bioconcentration factors of the contaminants were generally constant across the temperature range. Furthermore, the Arrhenius temperature of the toxicokinetic rates and respiration was mostly similar. However, in some cases (citalopram, cyprodinil), the bioconcentration factor appeared to be temperature dependent, which could potentially be explained by the influence of temperature on active uptake mechanisms or biotransformation. The observed temperature effects on toxicokinetics may be particularly relevant in non-equilibrated systems, such as exposure peaks in summer as exemplified by the exposure modelling of a field measured pesticide peak where the internal concentrations increased by up to fourfold along the temperature gradient. The results provide novel insights into the mechanisms of chemical uptake, biotransformation and elimination in different climate scenarios and can improve environmental risk assessment.
Collapse
Affiliation(s)
- Johannes Raths
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Vid Švara
- UNESCO Chair on Sustainable Management of Conservation Areas, Engineering & ITCarinthia University of Applied SciencesVillachAustria
- Department of Effect‐Directed AnalysisHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Benedikt Lauper
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| | - Qiuguo Fu
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
| | - Juliane Hollender
- Department of Environmental ChemistrySwiss Federal Institute of Aquatic Science and Technology – EawagDübendorfSwitzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH ZürichZürichSwitzerland
| |
Collapse
|
14
|
Molecular Responses of Daphnids to Chronic Exposures to Pharmaceuticals. Int J Mol Sci 2023; 24:ijms24044100. [PMID: 36835510 PMCID: PMC9964447 DOI: 10.3390/ijms24044100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Pharmaceutical compounds are among several classes of contaminants of emerging concern, such as pesticides, heavy metals and personal care products, all of which are a major concern for aquatic ecosystems. The hazards posed by the presence of pharmaceutical is one which affects both freshwater organisms and human health-via non-target effects and by the contamination of drinking water sources. The molecular and phenotypic alterations of five pharmaceuticals which are commonly present in the aquatic environment were explored in daphnids under chronic exposures. Markers of physiology such as enzyme activities were combined with metabolic perturbations to assess the impact of metformin, diclofenac, gabapentin, carbamazepine and gemfibrozil on daphnids. Enzyme activity of markers of physiology included phosphatases, lipase, peptidase, β-galactosidase, lactate dehydrogenase, glutathione-S-transferase and glutathione reductase activities. Furthermore, targeted LC-MS/MS analysis focusing on glycolysis, the pentose phosphate pathway and the TCA cycle intermediates was performed to assess metabolic alterations. Exposure to pharmaceuticals resulted in the changes in activity for several enzymes of metabolism and the detoxification enzyme glutathione-S-transferase. Metabolic perturbations on key pathways revealed distinct groups and metabolic fingerprints for the different exposures and their mixtures. Chronic exposure to pharmaceuticals at low concentrations revealed significant alterations of metabolic and physiological endpoints.
Collapse
|
15
|
Ye C, Zhang K, Wu X, Wan K, Cai WF, Feng M, Yu X. Uncovering novel disinfection mechanisms of solar light/periodate system: The dominance of singlet oxygen and metabolomic insights. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130177. [PMID: 36308932 DOI: 10.1016/j.jhazmat.2022.130177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Disinfection plays an essential role in waterborne pathogen control and disease prevention, especially during the COVID-19 pandemic. Catalyst-free solar light/periodate (PI) system has recently presented great potential in water disinfection, whereas the in-depth chemical and microbiological mechanisms for efficient bacterial inactivation remain unclear. Our work delineated firstly the critical role of singlet oxygen, instead of reported hydroxyl radicals and superoxide radicals, in dominating bacterial inactivation by the PI/simulated sunlight (SSL) system. Multi-evidence demonstrated the prominent disinfection performance of this system for Staphylococcus aureus in terms of culturability (> 6 logs CFU), cellular integrity, and metabolic activity. Particularly, the excellent intracellular DNA removal (> 95%) indicated that PI/SSL system may function as a selective disinfection strategy to diminish bacterial culturability without damaging the cell membrane. The PI/SSL system could also effectively inhibit bacterial regrowth for > 5 days and horizontal gene transfer between E. coli genera. Nontargeted metabolomic analysis suggested that PI/SSL system inactivated bacteria by triggering the accumulation of intracellular reactive oxygen species and the depletion of reduced glutathione. Additionally, the PI/SSL system could accomplish simultaneous micropollutant removal and bacterial inactivation, suggesting its versatility in water decontamination. Overall, this study deciphers more comprehensive antibacterial mechanisms of this environmentally friendly disinfection system, facilitating the technical development and application of the selective disinfection strategy in environmental pathogen control.
Collapse
Affiliation(s)
- Chengsong Ye
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xu Wu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Kun Wan
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wei-Feng Cai
- Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361009, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
16
|
Wang R, Yue S, Huang C, Shen Z, Qiao Y, Charles S, Yu J, Cao Z, Li Z, Li Z. Uptake, distribution, and elimination of selenite in earthworm Eisenia fetida at sublethal concentrations based on toxicokinetic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159632. [PMID: 36283532 DOI: 10.1016/j.scitotenv.2022.159632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Natural and anthropogenic causes have promoted the rapid increase in environmental selenium (Se) levels, and the complex Se metabolism and dynamic in organisms make it challenging to evaluate the toxicity and ecological risks. In this study, the kinetics of selenite in earthworm Eisenia fetida were investigated based on toxicokinetic (TK) model (uptake-elimination phases: 14-14 days). The results showed the highest sub-tissue Se concentrations in pre-clitellum (PC), post-clitellum (PoC) parts, and total earthworms were 95.71, 70.40, and 79.94 mg/kg, respectively, which indicates the distinctive Se uptake capacities of E. fetida. Se kinetic rates in PCs were faster than that of the total E. fetida for both uptake (Kus = 0.30-0.80 mg/kg/day) and elimination phases (Kee = 0.024-0.056 mg/kg/day). Longer half-life times (LT1/2) were observed in the total earthworms (17.85-47.15 d) than PCs (12.28-29.22 d), while non-significant difference was found for the kinetic Se bioaccumulation factor (BAFk) in PC and total earthworms (12-19), which demonstrates that Se can be efficiently bioaccumulated and eliminated in earthworm PC part. Besides, the significant increase Se concentration in PoC with rapid elimination in PC also illustrates that earthworms can alleviate the Se stress by the transformation strategy of Se from the head to tail tissues. In conclusion, the investigation of Se kinetic accumulation and elimination characteristics in this study is helpful for understanding the metabolism and detoxification processes of Se in earthworms, and also providing a theoretical basis for further Se risk assessment using TK model.
Collapse
Affiliation(s)
- Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China.
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon OX10 8BB, UK
| | - Zhiqiang Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yuhui Qiao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Sandrine Charles
- Laboratoire de Biométrie et Biologie Évolutive Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne 69100, France
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| | - Zhen Li
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, PR China
| |
Collapse
|
17
|
Świacka K, Maculewicz J, Świeżak J, Caban M, Smolarz K. A multi-biomarker approach to assess toxicity of diclofenac and 4-OH diclofenac in Mytilus trossulus mussels - First evidence of diclofenac metabolite impact on molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120384. [PMID: 36223851 DOI: 10.1016/j.envpol.2022.120384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although the presence of pharmaceuticals in the environment is an issue widely addressed in research over the past two decades, still little is known about their transformation products. However, there are indications that some of these chemicals may be equally or even more harmful than parent compounds. Diclofenac (DCF) is among the most commonly detected pharmaceuticals in the aquatic environment, but the potential effects of its metabolites on organisms are poorly understood. Therefore, the present study aimed to evaluate and compare the toxicity of DCF and its metabolite, 4-hydroxy diclofenac (4-OH DCF), in mussels using a multi-biomarker approach. Mytilus trossulus mussels were exposed to DCF and 4-OH DCF at 68.22 and 20.85 μg/L (measured concentrations at day 0), respectively, for 7 days. In our work, we showed that both tested compounds have no effect on most of the enzymatic biomarkers tested. However, it has been shown that their action can affect the protein content in gills and also be reflected through histological markers. ENVIRONMENTAL IMPLICATION: Studies in recent years clearly prove that pharmaceuticals can negatively affect aquatic organisms. In addition to parent compounds, metabolites of pharmaceuticals can also be a significant environmental problem. In the present work, the effects of diclofenac and its main metabolite, 4-hydroxy diclofenac, on marine mussels were evaluated. Both compounds showed negative effects on mussels, which was primarily observed through histological changes. The present study therefore confirms that not only diclofenac, but also its main metabolite can have negative effects on aquatic organisms.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
18
|
Bouly L, Fenet H, Carayon JL, Gomez E, Géret F, Courant F. Metabolism of the aquatic pollutant diclofenac in the Lymnaea stagnalis freshwater gastropod. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85081-85094. [PMID: 35790636 DOI: 10.1007/s11356-022-21815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The metabolism of organic contaminants in Lymnaea stagnalis freshwater gastropod remains unknown. Yet, pharmaceuticals-like the NSAID diclofenac-are continuously released in the aquatic environment, thereby representing a risk to aquatic organisms. In addition, lower invertebrates may be affected by this pollution since they are likely to bioaccumulate contaminants. The metabolism of pharmaceuticals in L. stagnalis requires further investigation to understand their detoxification mechanisms and characterized the risk posed by contaminant exposure in this species. In this study, a non-targeted strategy using liquid chromatography combined with high-resolution mass spectrometry was applied to highlight metabolites formed in L. stagnalis freshwater snails exposed to 300 µg/L diclofenac for 3 and 7 days. Nineteen metabolites were revealed by this approach, 12 of which were observed for the first time in an aquatic organism exposed to diclofenac. Phase I metabolism involved hydroxylation, with detection of 3'-, 4'-, and 5-hydroxydiclofenac and three dihydroxylated metabolites, as well as cyclization, oxidative decarboxylation, and dehydrogenation, while phase II metabolism consisted of glucose and sulfate conjugation. Among these reactions, the two main DCF detoxification pathways detected in L. stagnalis were hydroxylation (phase I) and glucosidation (phase II).
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie Et Toxicologie Des Substances Bioactives, EA 7417, INU Champollion, Albi, France
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - Jean-Luc Carayon
- Biochimie Et Toxicologie Des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 avenue Charles Flahault, 34093, Montpellier, France
| | - Florence Géret
- Biochimie Et Toxicologie Des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 avenue Charles Flahault, 34093, Montpellier, France.
| |
Collapse
|
19
|
Liu X, Fang Y, Ma X, Li P, Wang P, Zhou Z, Liu D. Metabolomic profiling to assess the effects of chlordanes and its bioaccumulation characteristics in chicken embryo. CHEMOSPHERE 2022; 308:136580. [PMID: 36155011 DOI: 10.1016/j.chemosphere.2022.136580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Although chlordane-related compounds (CHLs) have been regulated, a variety of CHLs are still identified and detected in wild birds and eggs. Embryo is one of fragile periods and is very susceptible to toxic effects of pollutants. In this study, the fate of CHLs during embryo development and degradation of CHLs in neonatal chick were investigated. During embryo development, CHLs were mainly distributed to the liver and muscle, in which trans-nonachlor and an octachlorochlordane (MC5) were hardly metabolized and showed the high persistence, implying a greater risk to birds' offspring. CHLs with the lower Kow were found to be higher uptake efficiency in embryo, implying contaminants with the lower lipophilicity may contribute to their transport to embryo. Furthermore, the effects of CHLs on the metabolome of neonatal chicks was evaluated. The ether lipid metabolism and glycerophospholipid metabolism were found to be significantly affected, which may disturb the angiogenesis and endothelial cell migration in embryogenesis. Taken together, the lipophilicity of contaminants might be a main factor influencing their transport to embryo, and metabolomics results improve understanding of the effects of CHLs on embryo.
Collapse
Affiliation(s)
- Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Yaofeng Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Xiaoran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peize Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
20
|
Bouly L, Vignet C, Carayon JL, Malgouyres JM, Fenet H, Géret F. Multigenerational responses in the Lymnaea stagnalis freshwater gastropod exposed to diclofenac at environmental concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106266. [PMID: 36037607 DOI: 10.1016/j.aquatox.2022.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/17/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, there has been increased concern about the occurrence of diclofenac (DCF) in aquatic ecosystems. Living organisms could be exposed to this "pseudo-persistent" pharmaceutical for more than one generation. In this multigenerational study, we assessed the DCF impact at environmentally relevant concentrations on the life history and behavioral parameters of two offspring generations (F1 and F2) of the Lymnaea stagnalis freshwater gastropod. Snail growth was affected by DCF in the F1 generation, with increased shell sizes of juveniles exposed to 0.1 µg L - 1 concentration and a decreased shell size at 2 and 10 µg L - 1. DCF also lowered food intake, enhanced locomotion activity and reduced the number of eggs/egg mass in the F1 generation. For the F2 generation, shorter time to hatch, faster growth, increased food intake and production of more egg masses/snail were induced by DCF exposure at 10 µg L - 1. Over time, DCF exposure led to maximization of L. stagnalis reproductive function. These results show that multigenerational studies are crucial to reveal adaptive responses to chronic contaminant exposure, which are not observable after short-term exposure.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| |
Collapse
|
21
|
Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae. Sci Rep 2022; 12:6830. [PMID: 35474093 PMCID: PMC9042914 DOI: 10.1038/s41598-022-10805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Wastewater treatment plant effluents have been identified as a major contributor to increasing anthropogenic pollution in aquatic environments worldwide. Yet, little is known about the potentially adverse effects of wastewater treatment plant effluent on aquatic invertebrates. In this study, we assessed effects of wastewater effluent on the behaviour and metabolic profiles of damselfly larvae (Coenagrion hastulatum), a common aquatic invertebrate species. Four key behavioural traits: activity, boldness, escape response, and foraging (traits all linked tightly to individual fitness) were studied in larvae before and after one week of exposure to a range of effluent dilutions (0, 50, 75, 100%). Effluent exposure reduced activity and foraging, but generated faster escape response. Metabolomic analyses via targeted and non-targeted mass spectrometry methods revealed that exposure caused significant changes to 14 individual compounds (4 amino acids, 3 carnitines, 3 lysolipids, 1 peptide, 2 sugar acids, 1 sugar). Taken together, these compound changes indicate an increase in protein metabolism and oxidative stress. Our findings illustrate that wastewater effluent can affect both behavioural and physiological traits of aquatic invertebrates, and as such might pose an even greater threat to aquatic ecosystems than previously assumed. More long-term studies are now needed evaluate if these changes are linked to adverse effects on fitness. The combination of behavioural and metabolomic assessments provide a promising tool for detecting effects of wastewater effluent, on multiple biological levels of organisation, in aquatic ecosystems.
Collapse
|
22
|
Bouly L, Courant F, Bonnafé E, Carayon JL, Malgouyres JM, Vignet C, Gomez E, Géret F, Fenet H. Long-term exposure to environmental diclofenac concentrations impairs growth and induces molecular changes in Lymnaea stagnalis freshwater snails. CHEMOSPHERE 2022; 291:133065. [PMID: 34848232 DOI: 10.1016/j.chemosphere.2021.133065] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
As pharmaceutical substances are highly used in human and veterinary medicine and subsequently released in the environment, they represent emerging contaminants in the aquatic compartment. Diclofenac (DCF) is one of the most commonly detected pharmaceuticals in water and little research has been focused on its long-term effects on freshwater invertebrates. In this study, we assessed the chronic impacts of DCF on the freshwater gastropod Lymnaea stagnalis using life history, behavioral and molecular approaches. These organisms were exposed from the embryo to the adult stage to three environmentally relevant DCF concentrations (0.1, 2 and 10 μg/L). The results indicated that DCF impaired shell growth and feeding behavior at the juvenile stage, yet no impacts on hatching, locomotion and response to light stress were noted. The molecular findings (metabolomics and transcriptomic) suggested that DCF may disturb the immune system, energy metabolism, osmoregulation and redox balance. In addition, prostaglandin synthesis could potentially be inhibited by DCF exposure. The molecular findings revealed signs of reproduction impairment but this trend was not confirmed by the physiological tests. Combined omics tools provided complementary information and enabled us to gain further insight into DCF effects in freshwater organisms.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Elsa Bonnafé
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
23
|
Dumas T, Courant F, Fenet H, Gomez E. Environmental Metabolomics Promises and Achievements in the Field of Aquatic Ecotoxicology: Viewed through the Pharmaceutical Lens. Metabolites 2022; 12:186. [PMID: 35208259 PMCID: PMC8880617 DOI: 10.3390/metabo12020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
Scientists often set ambitious targets using environmental metabolomics to address challenging ecotoxicological issues. This promising approach has a high potential to elucidate the mechanisms of action (MeOAs) of contaminants (in hazard assessments) and to develop biomarkers (in environmental biomonitoring). However, metabolomics fingerprints often involve a complex mixture of molecular effects that are hard to link to a specific MeOA (if detected in the analytical conditions used). Given these promises and limitations, here we propose an updated review on the achievements of this approach. Metabolomics-based studies conducted on the effects of pharmaceutical active compounds in aquatic organisms provide a relevant means to review the achievements of this approach, as prior knowledge about the MeOA of these molecules could help overcome some shortcomings. This review highlighted that current metabolomics advances have enabled more accurate MeOA assessment, especially when combined with other omics approaches. The combination of metabolomics with other measured biological endpoints has also turned out to be an efficient way to link molecular effects to (sub)-individual adverse outcomes, thereby paving the way to the construction of adverse outcome pathways (AOPs). Here, we also discuss the importance of determining MeOA as a key strategy in the identification of MeOA-specific biomarkers for biomonitoring. We have put forward some recommendations to take full advantage of environmental metabolomics and thus help fulfil these promises.
Collapse
Affiliation(s)
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; (T.D.); (H.F.); (E.G.)
| | | | | |
Collapse
|
24
|
Dos Santos A, Vannuci-Silva M, Vendemiatti JADS, Artal MC, Silva BFD, Zanoni MVB, Umbuzeiro GDA. Measuring concentrations of a dye in the hemolymph of a marine amphipod: Development of a protocol for exposure assessment. MARINE POLLUTION BULLETIN 2022; 175:113376. [PMID: 35131559 DOI: 10.1016/j.marpolbul.2022.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The increasing pollution of aquatic environments due to old and emerging contaminants requires the development of integrative methods for exposure assessment. Internal concentrations are a reliable way to estimate total exposure of contaminants originated from different routes (water, sediment, and food). We developed a protocol to evaluate the concentration of a dye, C.I. Disperse Red 1, in the hemolymph of Parhyale hawaiensis, a marine amphipod. LOD and LOQ were satisfactory to detect the dye in all hemolymph samples. The concentration detected in the hemolymph varied related to exposure time and dye concentration (0.003 to 0.086 μg mL-1). Polynomial regression model was the best fit. The protocol was reliable to detect and quantify dye exposure in marine amphipods and can be considered for future assessments of estuarine and marine regions under the influence of dye processing plants. The method possibly can be easily adapted to other amphipods and other azo dyes.
Collapse
Affiliation(s)
- Amanda Dos Santos
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil
| | | | | | | | | | | | - Gisela de Aragão Umbuzeiro
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Technology, University of Campinas, Limeira, SP, Brazil; Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|