1
|
An P, Gao C, Zhu X, Wang B, Xuan Y, Liang Y, Xia S, Si W, Wang D, Peng Y, Li J. Phosphorus-Water Interaction Drives Active Center Evolution into the Water-Adaptive Structure in the High-Humidity NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16600-16610. [PMID: 39058552 DOI: 10.1021/acs.est.4c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The impact of water on catalyst activity remains inconclusive due to its dependence on the specific reaction environment. To maximize the exploitation of water's promoting effect, we employed ammonia selective catalytic reduction (NH3-SCR) as a probe reaction and proposed a phosphorus modification strategy for Cu-ZSM-5 catalysts. The objective of this approach was to construct water-adaptive microstructures through directional arrangement. To investigate the effect of phosphorus on the transformation of framework copper sites in humid environments, we conducted comprehensive characterizations and density functional theory calculation. Results reveal that water molecules cleave the oxygen bridges between phosphorus oxide and copper, leading to the formation of active isolated [Cu(OH)]+ groups and phosphate. The phosphate species weaken the interaction between exchanged Cu2+ groups and the zeolite framework, leading to the generation of highly migratory hydrated Cu2+ species. This work will potentially guide the rational design of water-adaptive catalysts for gas pollution abatement in a humid environment.
Collapse
Affiliation(s)
- Penghao An
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuan Gao
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Sunwen Xia
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Chen L, Guan X, Wu X, Asakura H, Hopkinson DG, Allen C, Callison J, Dyson PJ, Wang FR. Thermally stable high-loading single Cu sites on ZSM-5 for selective catalytic oxidation of NH 3. Proc Natl Acad Sci U S A 2024; 121:e2404830121. [PMID: 39042689 PMCID: PMC11295017 DOI: 10.1073/pnas.2404830121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/25/2024] Open
Abstract
Rigorous comparisons between single site- and nanoparticle (NP)-dispersed catalysts featuring the same composition, in terms of activity, selectivity, and reaction mechanism, are limited. This limitation is partly due to the tendency of single metal atoms to sinter into aggregated NPs at high loadings and elevated temperatures, driven by a decrease in metal surface free energy. Here, we have developed a unique two-step method for the synthesis of single Cu sites on ZSM-5 (termed CuS/ZSM-5) with high thermal stability. The atomic-level dispersion of single Cu sites was confirmed through scanning transmission electron microscopy, X-ray absorption fine structure (XAFS), and electron paramagnetic resonance spectroscopy. The CuS/ZSM-5 catalyst was compared to a CuO NP-based catalyst (termed CuN/ZSM-5) in the oxidation of NH3 to N2, with the former exhibiting superior activity and selectivity. Furthermore, operando XAFS and diffuse reflectance infrared Fourier transform spectroscopy studies were conducted to simultaneously assess the fate of the Cu and the surface adsorbates, providing a comprehensive understanding of the mechanism of the two catalysts. The study shows that the facile redox behavior exhibited by single Cu sites correlates with the enhanced activity observed for the CuS/ZSM-5 catalyst.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemical Engineering, University College London, LondonWC1E 7JE, United Kingdom
| | - Xuze Guan
- Department of Chemical Engineering, University College London, LondonWC1E 7JE, United Kingdom
| | - Xinbang Wu
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Hiroyuki Asakura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka577-8502, Japan
| | - David G. Hopkinson
- electron Physical Science Imaging Center, Diamond Light Source Ltd., DidcotOX11 0DE, United Kingdom
| | - Christopher Allen
- electron Physical Science Imaging Center, Diamond Light Source Ltd., DidcotOX11 0DE, United Kingdom
- Department of Materials, University of Oxford, OxfordOX1 3PH, United Kingdom
| | - June Callison
- United Kingdom Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, HarwellOX11 0FA, United Kingdom
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Feng Ryan Wang
- Department of Chemical Engineering, University College London, LondonWC1E 7JE, United Kingdom
| |
Collapse
|
3
|
Liu H, Wang Y, Xu W, Yang Y, Yang J, Li C, Zhu T. Unraveling the Synergistic Mechanism of Ir Species with Various Electron Densities over an Ir/ZSM-5 Catalyst Enables High-Efficiency NO Reduction by CO. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12082-12090. [PMID: 38888120 DOI: 10.1021/acs.est.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Selective catalytic reduction using CO as a reducing agent (CO-SCR) has exhibited its application potential in coal-fired, steel, and other industrial sectors. In comparison to NH3-SCR, CO-SCR can achieve synergistic control of CO and NO pollutants, making it a powerful denitrification technology that treats waste with waste. Unfortunately, the competitive adsorption of O2 and NO on CO-SCR catalysts inhibits efficient conversion of NOx under O2-containing conditions. In this work, we obtained two Ir sites with different electron densities, Ir1 single atoms in the oxidized Irδ+ state and Ir0 nanoparticles in the metallic state, by controlled pretreatment of the Ir/ZSM-5 catalyst with H2 at 200 °C. The coexistence of Ir1 single atoms and Ir0 nanoparticles on ZSM-5 creates a synergistic effect, which facilitates the reduction of NO through CO in the presence of O2, following the Langmuir-Hinshelwood mechanism. The ONNO dimer is formed on the Ir1 single atom sites and then spills over to the neighboring Ir0 nanoparticles for subsequent reduction to N2 by CO. Specifically, this tandem reaction enables 83% NO conversion and 100% CO conversion on an Ir-based catalyst at 250 °C under 3% O2.
Collapse
Affiliation(s)
- Huixian Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yixi Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenqing Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yang Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jun Yang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chaoqun Li
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Tingyu Zhu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
4
|
Ren X, Duan Y, Du W, Zhu Y, Wang L, Zhang Y, Yu T. The discrepancy of NH 3 oxidation mechanism between SAPO-34 and Cu/SAPO-34. RSC Adv 2024; 14:7499-7506. [PMID: 38440268 PMCID: PMC10910206 DOI: 10.1039/d4ra00248b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
The difference of NH3 oxidation mechanism over SAPO-34 and Cu-SAPO-34 was studied. XRD (X-ray diffraction), SEM (scanning electron microscopy) and H2-TPR (H2-temperature programmed desorption) were conducted to estimate the Cu species distribution. The quantity of individual Cu2+ ions escalated with the elevation of silicon content in the Cu/SAPO-34 catalysts, leading to an enhancement in the activity of the NH3-SCR (ammonia-selective catalytic reduction) process. This augmentation in activity can be attributed to the increased presence of isolated Cu2+ species, which are pivotal in facilitating the catalytic reaction. In addition, the kinetic test of NH3 oxidation indicated that the CuO species were the active sites for NH3 oxidation. Specifically, the strong structural Brønsted acid sites were the NH3 oxidation active sites over the SAPO-34 support, and the NH3 reacted with the O2 on the Brønsted acid sites to produce the NO mainly. While the NH3 oxidation mechanism over Cu/SAPO-34 consisted of two steps: firstly, NH3 reacted with O2 on CuO sites or residual Brønsted acid sites to form NO as the product; subsequently, the generated NO was reduced by NH3 into N2 on isolated Cu2+ sites. Simultaneously, the isolated Cu2+ sites might demonstrate a significant function in the NH3 oxidation process to form N2. The identification of active sites and corresponding mechanism could deepen the understanding of excellent performance of NH3-SCR over the Cu/SAPO-34 catalyst at high temperature.
Collapse
Affiliation(s)
- Xiubin Ren
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Yingfeng Duan
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Wei Du
- School of Chemical Engineering, Xi'an University Xi'an 710065 PR China
| | - Youyu Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Lina Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Yagang Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology Xi'an 710054 PR China
| | - Tie Yu
- Institute of Molecular Science and Engineering, Shandong University Shandong 266237 PR China
| |
Collapse
|
5
|
Jabłońska M, Palčić A, Lukman MF, Wach A, Bertmer M, Poppitz D, Denecke R, Wu X, Simon U, Pöppl A, Gläser R. OSDA-Free Seeded Cu-Containing ZSM-5 Applied for NH 3-SCR-DeNO x. ACS OMEGA 2023; 8:41107-41119. [PMID: 37970047 PMCID: PMC10633853 DOI: 10.1021/acsomega.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 11/17/2023]
Abstract
A series of ZSM-5 zeolite materials were synthesized from organic structure-directing agent (OSDA)-free seeded systems, including nanosized silicalite-1 (12 wt % water suspension or in powder form) or nanosized ZSM-5 (powder form of ZSM-5 prepared at 100 or 170 °C). The physicochemical characterization revealed aggregated species in the samples based on silicalite-1. Contrarily, the catalysts based on ZSM-5 seeds revealed isolated copper species, and thus, higher NO conversion during the selective catalytic reduction of NOx with NH3 (NH3-SCR-DeNOx) was observed. Furthermore, a comparison of the Cu-containing ZSM-5 catalysts, conventionally prepared in the presence of OSDAs and prepared with an environmentally more benign approach (without OSDAs), revealed their comparable activity in NH3-SCR-DeNOx.
Collapse
Affiliation(s)
- Magdalena Jabłońska
- Institute
of Chemical Technology, Universität
Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Ana Palčić
- Laboratory
for the Synthesis of New Materials, Division of Materials Chemistry,
Rud̵er Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Muhammad Fernadi Lukman
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Anna Wach
- PSI,
Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Marko Bertmer
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - David Poppitz
- Institute
of Chemical Technology, Universität
Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Reinhard Denecke
- Wilhelm-Ostwald-Institute
for Physical and Theoretical Chemistry, Universität Leipzig, Linnéstr. 2, D-04103 Leipzig, Germany
| | - Xiaochao Wu
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Ulrich Simon
- Institute
of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Andreas Pöppl
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Roger Gläser
- Institute
of Chemical Technology, Universität
Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Chen L, Ren S, Chen T, Li X, Wang M, Chen Z, Liu Q. Low-Temperature NH3-SCR Performance and In Situ DRIFTS Study on Zeolite X-Supported Different Crystal Phases of MnO2 Catalysts. Catalysts 2023. [DOI: 10.3390/catal13040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this study, a series of zeolite-X-supported different crystal phases of MnO2 (α-MnO2, β-MnO2, γ-MnO2, and σ-MnO2) catalysts were prepared via a solid-state diffusion method and high-heat treatment method to explore their low-temperature NH3-SCR performance. All of the catalysts featured typical octahedral zeolite X structures and manganese dioxides species of various crystal types dispersed across the support surface. Throughout the entire temperature range of the reaction, γ-MnO2/X catalyst had the highest NO conversion. Additionally, β-MnO2/X, γ-MnO2/X, and σ-MnO2/X catalysts had nearly 100% of N2 selectivity, whereas the α-MnO2/X catalyst had the lowest N2 selectivity (about 90%) below 125 °C. Moreover, the γ-MnO2/X catalyst demonstrated superior acidity capacity and reduction ability compared with the other three catalysts. All the catalysts contained the essential intermediates NH2NO and NH4NO3 species, which are essential to the SCR reaction. More acid sites and nitrate species existed on the γ-MnO2/X catalyst than on the other catalysts, thereby boosting the SCR reaction.
Collapse
|
7
|
Lin Q, Xu S, Zhao H, Liu S, Xu H, Dan Y, Chen Y. Highlights on Key Roles of Y on the Hydrothermal Stability at 900 °C of Cu/SSZ-39 for NH 3-SCR. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingjin Lin
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610064, China
- Research Institute of Natural Gas Technology, PetroChina Southwest Oil and Gasfield Company, Key Laboratory of Natural Gas Quality and Energy Measurement, CNPC, Chengdu610213, Sichuan, China
| | - Shuhao Xu
- Key Laboratory of Green Chemistry and Technology of Education Ministry, College of Chemistry, Sichuan University, Chengdu610064, China
| | - Hongyan Zhao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu610064, China
| | - Shuang Liu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu610064, China
| | - Haidi Xu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu610064, China
- Sichuan Provincial Center of Engineering of Vehicular Exhaust Gases Abatement, Sichuan Provincial Center of Engineering of Environmental Catalytic Material, Chengdu610064, China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu610064, China
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology of Education Ministry, College of Chemistry, Sichuan University, Chengdu610064, China
- Sichuan Provincial Center of Engineering of Vehicular Exhaust Gases Abatement, Sichuan Provincial Center of Engineering of Environmental Catalytic Material, Chengdu610064, China
| |
Collapse
|
8
|
Jia L, Liu J, Huang D, Zhao J, Zhang J, Li K, Li Z, Zhu W, Zhao Z, Liu J. Interface Engineering of a Bifunctional Cu-SSZ-13@CZO Core–Shell Catalyst for Boosting Potassium Ion and SO 2 Tolerance. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lingfeng Jia
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jixing Liu
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Deqi Huang
- College of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P. R. China
| | - Jingchen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jianning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Kaixiang Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300, P. R. China
| | - Wenshuai Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
- School of Chemistry and Chemical Engineering, Institution for Energy Research, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, P. R. China
| |
Collapse
|
9
|
Fang X, Qu W, Qin T, Hu X, Chen L, Ma Z, Liu X, Tang X. Abatement of Nitrogen Oxides via Selective Catalytic Reduction over Ce 1-W 1 Atom-Pair Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6631-6638. [PMID: 35500091 DOI: 10.1021/acs.est.2c00482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Environmentally benign CeO2-WO3/TiO2 catalysts are promising alternatives to commercial toxic V2O5-WO3/TiO2 for controlling NOx emission via selective catalytic reduction (SCR), but the insufficient catalytic activity of CeO2-WO3/TiO2 catalysts is one of the obstacles in their applications because of a lack of an in-depth understanding of the CeO2-WO3 interactions. Herein, we design a Ce1-W1/TiO2 model catalyst by anchoring Ce1-W1 atom pairs on anatase TiO2(001) to investigate the synergy between Ce and W in SCR. A series of characterizations combined with density functional theory calculations and in situ diffuse-reflectance infrared Fourier-transform experiments reveal that there exists a strong electronic interaction within Ce1-W1 atom pairs, leading to a much better SCR performance of Ce1-W1/TiO2 compared with that of Ce1/TiO2 and W1/TiO2. The Ce1-W1 synergy not only shifts down the lowest unoccupied states of Ce1 near the Fermi level, thus enhancing the abilities in adsorbing and oxidizing NH3 but also makes the frontier orbital electrons of W1 delocalized, thus accelerating the activation of O2. The deep insight of the Ce-W synergy may assist in the design and development of efficient catalysts with an SCR activity as high as or even higher than V2O5-WO3/TiO2.
Collapse
Affiliation(s)
- Xue Fang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Hu
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In Situ Center for Physical Science, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Yang C, Li H, Zhang A, Sun Z, Zhang X, Zhang S, Jin L, Song Z. Effect of Indium Addition on the Low-Temperature Selective Catalytic Reduction of NO x by NH 3 over MnCeO x Catalysts: The Promotion Effect and Mechanism. ACS OMEGA 2022; 7:6381-6392. [PMID: 35224399 PMCID: PMC8867571 DOI: 10.1021/acsomega.1c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A MnCeInO x catalyst was prepared by a coprecipitation method for denitrification of NH3-SCR (selective catalytic reduction). The catalysts were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption. The NH3-SCR activity and H2O and SO2 resistance of the catalysts were evaluated. The test results showed that the SCR and water resistance and sulfur resistance were good in the range of 125-225 °C. The calcination temperature of the Mn6Ce0.3In0.7O x catalyst preparation was studied. The crystallization of the Mn6Ce0.3In0.7O x catalyst was poor when calcined at 300 °C; however, the crystallization is excessive at a 500 °C calcination temperature. The influence of space velocity on the performance of the catalyst is great at 100-225 °C. FTIR test results showed that indium distribution on the surface of the catalyst reduced the content of sulfate on the surface, protected the acidic site of MnCe, and improved the sulfur resistance of the catalyst. The excellent performance of the Mn6Ce0.3In0.7O x catalyst may be due to its high content of Mn4+, surface adsorbed oxygen species, high specific surface area, redox sites and acid sites on the surface, high turnover frequency, and low apparent activation energy.
Collapse
|
11
|
Jia Z, Shen Y, Yan T, Li H, Deng J, Fang J, Zhang D. Efficient NO x Abatement over Alkali-Resistant Catalysts via Constructing Durable Dimeric VO x Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2647-2655. [PMID: 35107976 DOI: 10.1021/acs.est.1c06932] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of alkali metals in flue gas is still an obstacle to the practical application of catalysts for selective catalytic reduction (SCR) of NOx by NH3. Polymeric vanadyl species play an essential role in ensuring the effective NOx abatement for NH3-SCR. However, polymeric vanadyl would be conventionally deactivated by the poison of alkali metals such as potassium, and it still remains a great challenge to construct robust and stable vanadyl species. Here, it was demonstrated that a more durable dimeric VOx active site could be constructed with the assistance of triethylamine, thereby achieving alkali-resistant NOx abatement. Due to the rational construction of polymerization structures, the obtained TiO2-supported cerium vanadate catalyst featured more stable dimeric VOx species and the active sites could survive even after the poisoning of alkali metal. Moreover, the depolymerization of VOx was suppressed endowing the catalysts with more Brønsted and Lewis acid sites after the poisoning of alkali metal, which ensured the efficient NOx reduction. This work unraveled the effects of alkali metal on the polymerization state of active species and opens up a way to develop low-temperature alkali-resistant catalysts for NOx abatement.
Collapse
Affiliation(s)
- Zhaozhao Jia
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongrui Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianhui Fang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
12
|
Raju R, N. G, Prabhakaran K, Joseph K, Salih A. Selective catalytic reduction of NO over hierarchical Cu ZSM-5 coated on an alumina foam support. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrothermal coating of hierarchical Cu ZSM-5 catalyst on alumina foam.
Collapse
Affiliation(s)
- Risha Raju
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, India
| | - Gomathi N.
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, India
| | - K. Prabhakaran
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, India
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology, Thiruvananthapuram, India
| | - A. Salih
- Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram, India
| |
Collapse
|
13
|
Role of Al pairs on effective N2O decomposition over the ZSM-5 zeolite catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhang S, Meng Y, Pang L, Ding Q, Chen Z, Guo Y, Cai W, Li T. Understanding the direct relationship between various structure-directing agents and low-temperature hydrothermal durability over Cu-SAPO-34 during the NH3-SCR reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02046c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrolysis of Si–O(H)–Al bonds and the loss of active Cu(OH)+ species jointly contribute towards the deactivation of Cu-SAPO-34 under a moist environment at low temperature (<100 °C).
Collapse
Affiliation(s)
- Shoute Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ying Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Lei Pang
- DongFeng Trucks R&D Center, Zhushanhu Road No. 653, Wuhan 430056, P. R. China
| | - Qianzhao Ding
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhen Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou Higher Education Mega Center, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou, 510006, China
| | - Tao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Zhong C, Wu C, Zuo H, Gu Z. Theoretical analyses of
NH
3
‐SCR
reaction‐mass transfer over
Cu‐ZSM
‐5. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Zhong
- Hunan Provincial Key Laboratory of Vehicle Power and Transmission System Hunan Institute of Engineering Xiangtan China
- Hunan Engineering Research Center of New Energy Vehicle Lightweight Hunan Institute of Engineering Xiangtan China
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Chenxi Wu
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Hongyan Zuo
- Hunan Provincial Key Laboratory of Vehicle Power and Transmission System Hunan Institute of Engineering Xiangtan China
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Zhong Gu
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| |
Collapse
|
16
|
Abstract
Geopolymer-based monoliths manufactured by direct ink writing, containing up to 60% by weight of presynthesized ZSM5 with low Si/Al ratio, were investigated as structured catalysts for the NH3-SCR of NOx. Copper was introduced as the active metal by ion exchange after a preliminary acid treatment of the monoliths. Monolithic catalysts were characterized by morphological (XRD and SEM), textural (BET and pore size distribution), mechanical (compressive strength), chemical (ICP–MS), redox (H2-TPR) and surface (NH3-TPD) analyses, showing the preservation of Cu-exchanged zeolite features in the composite monoliths. NH3-SCR tests, carried out on both monolithic and powdered samples in the temperature range 70–550 °C, confirmed that composite monoliths provide a very good activity and a high selectivity to N2 over the whole range of temperatures explored due to the hierarchical structure of the materials, in addition to a good mechanical resistance—mostly related to the geopolymer matrix.
Collapse
|
17
|
Hybrid Cu-Fe/ZSM-5 Catalyst Prepared by Liquid Ion-Exchange for NOx Removal by NH3-SCR Process. J CHEM-NY 2021. [DOI: 10.1155/2021/5552187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A series of Cu/ZSM-5, Fe/ZSM-5, and Cu-Fe/ZSM-5 catalysts (Si/Al in ZSM-5 = 25) were prepared by different metal loadings using the liquid ion-exchange method. Several characterization methods were conducted to explore the effects of metals on the physical and chemical properties of catalysts. Meanwhile, the electron paramagnetic resonance method is also used to assess the copper and/or iron elements’ coordination and valence state at intersections or in channels of ZSM-5. The metal-loading effects of all catalysts on the catalytic activities were studied for the removal of NOx in a fixed-bed flow reactor using selective catalytic reduction with ammonia (NH3-SCR). The results showed that the iron’s addition could markedly broaden the operation temperature range of the Cu/ZSM-5 catalyst for NH3-SCR between 200 and 550°C due to the presence of more isolated Cu2+ ions as well as additional oligomeric Fe3+ active sites and FexOy oligomeric species. This paper gives a facile and straightforward way to synthesize the practical-promising catalyst applied in NH3-SCR technology to control NOx emissions.
Collapse
|