1
|
Deeleepojananan C, Pandit S, Li J, Schmidt DA, Farmer DK, Grassian VH. Chemical Transformations of Infiltrated Wildfire Smoke on Indoor-Relevant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40242954 DOI: 10.1021/acs.est.4c11771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Indoor environments are affected during wildfire events due to the infiltration of smoke. In this study, the fate of wildfire smoke, including gases and particles, on indoor surfaces was investigated through laboratory and field experiments. Fresh smoke was generated from the burning of ponderosa pine woodchips, which produced well-established wildfire and biomass burning tracers, such as levoglucosan, 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), and 5-hydroxymethylfurfural. The interactions of smoke particles and gases were observed on different indoor-relevant building material surfaces, including glass (windows), rutile (paint and self-cleaning surfaces), and kaolinite (cement proxy and clay). However, the relative abundance of surface-bound species varied depending on the nature of these surfaces, suggesting that preferential adsorption of volatile species and particle deposition onto relevant surfaces play a key role in indoor chemistry and indoor air quality following smoke intrusion. Kaolinite surfaces, in particular, exhibited the formation of surface-initiated products during fresh smoke exposure. Furthermore, the formation of larger particles on a rutile surface was observed following ozone-aged smoke exposure, potentially resulting from the interaction of secondary organic aerosol formed during ozonolysis. Overall, this study demonstrates that different indoor-relevant material surfaces interact uniquely with smoke compounds, leading to distinct chemical transformations.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Shubhrangshu Pandit
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Jienan Li
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Dylan A Schmidt
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Delphine K Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Fu Z, Guo S, Xie HB, Zhou P, Boy M, Yao M, Hu M. A Near-Explicit Reaction Mechanism of Chlorine-Initiated Limonene: Implications for Health Risks Associated with the Concurrent Use of Cleaning Agents and Disinfectants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19762-19773. [PMID: 39231115 DOI: 10.1021/acs.est.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Limonene, a key volatile chemical product (VCP) commonly found in personal care and cleaning agents, is emerging as a major indoor air pollutant. Recently, elevated levels of reactive chlorine species during bleach cleaning and disinfection have been reported to increase indoor oxidative capacity. However, incomplete knowledge of the indoor transformation of limonene, especially the missing chlorine chemistry, poses a barrier to evaluating the environmental implications associated with the concurrent use of cleaning agents and disinfectants. Here, we investigated the reaction mechanisms of chlorinated limonene peroxy radicals (Cl-lim-RO2•), key intermediates in determining the chlorine chemistry of limonene, and toxicity of transformation products (TPs) using quantum chemical calculations and toxicology modeling. The results indicate that Cl-lim-RO2• undergoes a concerted autoxidation process modulated by RO2• and alkoxy radicals (RO•), particularly emphasizing the importance of RO• isomerization. Following this generalized autoxidation mechanism, Cl-lim-RO2• can produce low-volatility precursors of secondary organic aerosols. Toxicological findings further indicate that the majority of TPs exhibit increased respiratory toxicity, mutagenicity, and eye/skin irritation compared to limonene, presenting an occupational hazard for indoor occupants. The proposed near-explicit reaction mechanism of chlorine-initiated limonene significantly enhances our current understanding of both RO2• and RO• chemistry while also highlighting the health risks associated with the concurrent use of cleaning agents and disinfectants.
Collapse
Affiliation(s)
- Zihao Fu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Putian Zhou
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, Helsinki FIN-00014, Finland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Deeleepojananan C, Zhou J, Grassian VH. Heterogeneous interactions and transformations of dibasic esters with indoor relevant surfaces. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:582-594. [PMID: 38305769 DOI: 10.1039/d3em00542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Dibasic esters (DBEs) have recently become emerging indoor air pollutants due to their usage as a solvent for mixtures of paints and coatings. In this study, we explored the adsorption/desorption kinetics, heterogeneous interactions, and chemical transformations of dimethyl succinate (DMS, C6H10O4), a component of commercial dibasic ester solvent mixtures, on indoor relevant surfaces using transmission Fourier-transform infrared (FTIR) spectroscopy and high-resolution mass spectrometry (HRMS). Silica (SiO2) and rutile (TiO2) were used as proxies for window glass, and an active component in paint and self-cleaning surfaces, respectively. FTIR spectroscopy of these surfaces shows that DMS can interact with SiO2 and TiO2 through hydrogen bonding between the carbonyl oxygen and surface hydroxyl groups. The kinetics show fast adsorption of DMS onto these surfaces followed by slow desorption. Furthermore, new products formed observed on TiO2 surfaces in addition to molecularly adsorbed DMS. In particular, succinate (C5H7O) was observed binding to the surface in a bidentate chelating coordination mode as indicated by the appearance of νas(COO-) and νs(COO-) bands in the FTIR spectra. These absorption bands grow in intensity over time and the resulting product remains strongly adsorbed on the surface. The formation of adsorbed succinate is a result of a reaction with DMS on Lewis acid sites of the TiO2 surface. Overall, the slow desorption of these adsorbed species indicates that indoor surfaces can become long term reservoirs for dibasic esters and their surface products. Moreover, in the presence of ∼50% relative humidity, water displaces outer layers of adsorbed DMS on SiO2 and TiO2, while having no impact on the more strongly bound surface species.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Jinxu Zhou
- Department of Nanoengineering and Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, USA
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
4
|
Liu Z, Sinopoli A, Francisco JS, Gladich I. Uptake and reactivity of NO2 on the hydroxylated silica surface: A source of reactive oxygen species. J Chem Phys 2023; 159:234704. [PMID: 38108483 DOI: 10.1063/5.0178259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023] Open
Abstract
We report state-of-the-art first-principles molecular dynamics results on the heterogeneous chemical uptake of NO2, a major anthropogenic pollutant, on the dry and wet hydroxylated surface of α-quartz, which is a significant component of silica-based catalysts and atmospheric dust aerosols. Our investigation spotlights an unexpected chemical pathway by which NO2 (i) can be adsorbed as HONO by deprotonation of interfacial silanols (i.e., -Si-OH group) on silica, (ii) can be barrierless converted to nitric acid, and (iii) can finally dissociated to surface bounded NO and hydroxyl gas phase radicals. This chemical pathway does not invoke any previously experimentally postulated NO2 dimerization, dimerization that is less likely to occur at low NO2 concentrations. Moreover, water significantly catalyzes the HONO formation and the dissociation of nitric acid into surface-bounded NO and OH radicals, while visible light adsorption can further promote these chemical transformations. This work highlights how water-restricted solvation regimes on common mineral substrates are likely to be a source of reactive oxygen species, and it offers a theoretical framework for further and desirable experimental efforts, aiming to better constrain trace gases/mineral interactions at different relative humidity conditions.
Collapse
Affiliation(s)
- Ziao Liu
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Alessandro Sinopoli
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34410, Doha, Qatar
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34410, Doha, Qatar
| |
Collapse
|
5
|
Deeleepojananan C, Grassian VH. Gas-Phase and Surface-Initiated Reactions of Household Bleach and Terpene-Containing Cleaning Products Yield Chlorination and Oxidation Products Adsorbed onto Indoor Relevant Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20699-20707. [PMID: 38010858 PMCID: PMC10720375 DOI: 10.1021/acs.est.3c06656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The use of household bleach cleaning products results in emissions of highly oxidative gaseous species, such as hypochlorous acid (HOCl) and chlorine (Cl2). These species readily react with volatile organic compounds (VOCs), such as limonene, one of the most abundant compounds found in indoor enviroments. In this study, reactions of HOCl/Cl2 with limonene in the gas phase and on indoor relevant surfaces were investigated. Using an environmental Teflon chamber, we show that silica (SiO2), a proxy for window glass, and rutile (TiO2), a component of paint and self-cleaning surfaces, act as a reservoir for adsorption of gas-phase products formed between HOCl/Cl2 and limonene. Furthermore, high-resolution mass spectrometry (HRMS) shows that the gas-phase reaction products of HOCl/Cl2 and limonene readily adsorb on both SiO2 and TiO2. Surface-mediated reactions can also occur, leading to the formation of new chlorine- and oxygen-containing products. Transmission Fourier-transform infrared (FTIR) spectroscopy of adsorption and desorption of bleach and terpene oxidation products indicates that these chlorine- and oxygen-containing products strongly adsorb on both SiO2 and TiO2 surfaces for days, providing potential sources of human exposure and sinks for additional heterogeneous reactions.
Collapse
Affiliation(s)
- Cholaphan Deeleepojananan
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| | - Vicki H. Grassian
- Department of Chemistry and
Biochemistry, University of California San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
7
|
Frank ES, Fan H, Grassian VH, Tobias DJ. Adsorption of 6-MHO on two indoor relevant surface materials: SiO 2 and TiO 2. Phys Chem Chem Phys 2023; 25:3930-3941. [PMID: 36648281 DOI: 10.1039/d2cp04876k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The compound 6-methyl-5-hepten-2-one (6-MHO) is a product of skin oil ozonolysis and is of significance in understanding the role of human occupants in the indoor environment. We present a joint computational and experimental study investigating the adsorption of 6-MHO on two model indoor relevant surfaces, SiO2, a model for a glass window, and TiO2, a component of paint and self-cleaning surfaces. Our classical force field-based molecular dynamics, ab initio molecular dynamics simulations, and FTIR absorption spectra indicate 6-MHO can adsorb on to both of these surfaces via hydrogen and π-hydrogen bonds and is quite stable due to the linear geometry of 6-MHO. Detailed analysis of 6-MHO on the SiO2 surface shows that relative humidity does not impact surface adsorption and adsorbed water does not displace 6-MHO from the hydroxylated SiO2 surface. Additionally, the desorption kinetics of 6-MHO from the hydroxylated SiO2 surface is compared to other compounds found in indoor environments and 6-MHO is shown to desorb with a first order rate constant that is approximately four times slower than that of limonene, but six times faster than that of carvone. In addition, our joint results indicate 6-MHO forms a stronger interaction with the TiO2 surface compared to the SiO2 surface. This study suggests that skin oil ozonolysis products can partition to indoor surfaces leading to the formation of organic films.
Collapse
Affiliation(s)
- Elianna S Frank
- Department of Chemistry, University of California, Irvine, California, 92697, USA.
| | - Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, 92093, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California, 92697, USA.
| |
Collapse
|
8
|
Fan H, Frank ES, Tobias DJ, Grassian VH. Interactions of limonene and carvone on titanium dioxide surfaces. Phys Chem Chem Phys 2022; 24:23870-23883. [PMID: 36165087 DOI: 10.1039/d2cp03021g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limonene, a monoterpene, found in cleaning products and air fresheners can interact with a variety of surfaces in indoor environments. An oxidation product of limonene, carvone, has been reported to cause contact allergens. In this study, we have investigated the interactions of limonene and carvone with TiO2, a component of paint and self-cleaning surfaces, at 297 ± 1 K with FTIR spectroscopy and force field-based molecular dynamics and ab initio simulations. The IR absorption spectra and computational methods show that limonene forms π-hydrogen bonds with the surface O-H groups on the TiO2 surface and that carvone adsorbs on the TiO2 surface through a variety of molecular interactions including through carbonyl oxygen atoms with Ti4+ surface atoms, O-H hydrogen bonding (carbonyl O⋯HO) and π-hydrogen bonds with surface O-H groups. Furthermore, we investigated the effects of relative humidity (RH) on the adsorption of limonene and carvone on the TiO2 surface. The spectroscopic results show that the adsorbed limonene can be completely displaced by water at a relative humidity of ca. 50% RH (∼2 MLs of water) and that 25% of carvone is displaced at ca. 67% RH, which agrees with the calculated free energies of adsorption which show carvone more strongly adsorbs on the surface relative to limonene and thus would be harder to displace from the surface. Overall, this study shows how a monoterpene and its oxidation product interact with TiO2 and the impact of relative humidity on these interactions.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|