1
|
Stanimirova I, Rich DQ, Russell AG, Hopke PK. Spatial variability of pollution source contributions during two (2012-2013 and 2018-2019) sampling campaigns at ten sites in Los Angeles basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124244. [PMID: 38810681 DOI: 10.1016/j.envpol.2024.124244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study assessed the spatial variability of PM2.5 source contributions across ten sites located in the South Coast Air Basin, California. Eight pollution sources and their contributions were obtained using positive matrix factorization (PMF) from the PM2.5 compositional data collected during the two sampling campaigns (2012/13 and 2018/19) of the Multiple Air Toxics Exposure Study (MATES). The identified sources were "gasoline vehicles", "aged sea salt", "biomass burning", "secondary nitrate", "secondary sulfate", "diesel vehicles", "soil/road dust" and "OP-rich". Among them, "gasoline vehicle" was the largest contributor to the PM2.5 mass. The spatial distributions of source contributions to PM2.5 at the sites were characterized by the Pearson correlation coefficients as well as coefficients of determination and divergence. The highest spatial variability was found for the contributions from the "OP-rich" source in both MATES campaigns suggesting varying influences of the wildfires in the Los Angeles Basin. Alternatively, the smallest spatial variabilities were observed for the contributions of the "secondary sulfate" and "aged sea salt" sources resolved for the MATES campaign in 2012/13. The "soil/road dust" contributions of the sites from the 2018/19 campaign were also highly correlated. Compared to the other sites, the source contribution patterns observed for Inland Valley and Rubidoux were the most diverse from the others likely due to their remote locations from the other sites, the major urban area, and the Pacific Ocean.
Collapse
Affiliation(s)
- Ivana Stanimirova
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Institute for Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
2
|
Stanimirova I, Rich DQ, Russell AG, Hopke PK. Common and distinct pollution sources identified from ambient PM 2.5 concentrations in two sites of Los Angeles Basin from 2005 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122817. [PMID: 37913979 DOI: 10.1016/j.envpol.2023.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
The effects of air quality control policies implemented in California from 2005 to 2019 targeting sources contributing to ambient PM2.5 concentrations, were assessed at two sampling sites in the Los Angeles Basin (N. Main Street and Rubidoux). The spatial and temporal variations of pollution source contributions obtained from dispersion-normalized positive matrix factorization, (DN-PMF) were interpreted with respect to site specific locations. Secondary nitrate and secondary sulfate were the major contributors to the ambient PM2.5 mass concentrations at both sites with substantial concentration decreases after 2008 that were likely due to the implementation of California specific programs including stricter NOx emissions control on motor vehicles. Biomass burning emissions also decreased over the study period at both sampling sites except for one event in December 2005 when strong winter storms and multiple floods led to unusually low atmospheric temperatures and likely increased residential wood burning. The large number of wildfires, trans-Pacific transport of mineral dust and regional dust transported by strong Santa Ana winds and agriculturally generated dust in Rubidoux contributed to poor air quality. Severe storms and devastating wildfires were also linked to the elevated pyrolyzed organic carbon (OP-rich) concentrations. The two distinct region-specific sources, describing fuel combustion in LA, were "residual oil" and "traffic", while separate "gasoline" and "diesel" vehicles sources were identified in Rubidoux. California emissions standards program which required replacement of conventional cars with electric or hybrid vehicles and standards for gasoline and diesel fuels, led to lower "traffic" contributions. Gasoline vehicle emissions after 2017 in Rubidoux also decreased. "Diesel" concentrations declined between 2007 and 2011 because of the recession from late 2007 to early 2009 and the Federal Heavy-Duty Diesel Rule.
Collapse
Affiliation(s)
- I Stanimirova
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - P K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Institute for Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| |
Collapse
|
3
|
Obeid E, Otman A, Khaled Y, Hanna D, Atallah EZ. Investigating the gas-phase reaction mechanism of catechol with ozone: Product analysis and insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 340:122743. [PMID: 39491160 DOI: 10.1016/j.envpol.2023.122743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
Volatile aromatic compounds (VOCs) are ubiquitous in the environment, they can be emitted from biogenic and anthropogenic sources. They can contribute to the formation of many products leading to the formation of secondary organic aerosols (SOA). The products of the gas phase reaction of 1,2-benzenediol (catechol) with ozone were studied in a simulation chamber at atmospheric pressure and 294 ± 2 K in presence of different levels of relative humidity (0-60%). The gas phase products were monitored continuously by a PTR-ToF-MS for 2 h, whereas filters samples were collected directly from the reaction chamber and analyzed by thermo-desorption gas chromatography; TD-GC-MS. This study shows the different potential chemical pathways that catechol could follow to form a variety of products under dry, low and high humidity conditions. The molecular mass 98 was found to be distinctive and appears in the gas phase when humidity in the reaction chamber is between 20 and 60%. Other new masses (m/z) such as 176, 154, 116, 68, 72, 80, 96, 108, and 124 were also detected under different experimental conditions. Furthermore, the catechol concentration has been monitored continuously by a PTR-ToF-MS from low to high humidity conditions (RH = 7.5-78.8%). The purpose of the latter is to suggest that the formation of catechol-H2O clusters occurs in the gas phase of the reaction chamber causing a decrease in catechol reactivity towards other gases and subsequently a decrease in the rate constant.
Collapse
Affiliation(s)
- Emil Obeid
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait.
| | - Abida Otman
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait; African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune, 70000, Morocco
| | - Younes Khaled
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Dib Hanna
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - El Zein Atallah
- Radiation, Chemicals and Environmental Hazards, Toxicology Department, UK Health Security Agency, Didcot, OX11 0RQ, United Kingdom
| |
Collapse
|
4
|
Gregson FKA, Gerrebos NGA, Schervish M, Nikkho S, Schnitzler EG, Schwartz C, Carlsten C, Abbatt JPD, Kamal S, Shiraiwa M, Bertram AK. Phase Behavior and Viscosity in Biomass Burning Organic Aerosol and Climatic Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14548-14557. [PMID: 37729583 DOI: 10.1021/acs.est.3c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Smoke particles generated by burning biomass consist mainly of organic aerosol termed biomass burning organic aerosol (BBOA). BBOA influences the climate by scattering and absorbing solar radiation or acting as nuclei for cloud formation. The viscosity and the phase behavior (i.e., the number and type of phases present in a particle) are properties of BBOA that are expected to impact several climate-relevant processes but remain highly uncertain. We studied the phase behavior of BBOA using fluorescence microscopy and showed that BBOA particles comprise two organic phases (a hydrophobic and a hydrophilic phase) across a wide range of atmospheric relative humidity (RH). We determined the viscosity of the two phases at room temperature using a photobleaching method and showed that the two phases possess different RH-dependent viscosities. The viscosity of the hydrophobic phase is largely independent of the RH from 0 to 95%. We use the Vogel-Fulcher-Tamman equation to extrapolate our results to colder and warmer temperatures, and based on the extrapolation, the hydrophobic phase is predicted to be glassy (viscosity >1012 Pa s) for temperatures less than 230 K and RHs below 95%, with possible implications for heterogeneous reaction kinetics and cloud formation in the atmosphere. Using a kinetic multilayer model (KM-GAP), we investigated the effect of two phases on the atmospheric lifetime of brown carbon within BBOA, which is a climate-warming agent. We showed that the presence of two phases can increase the lifetime of brown carbon in the planetary boundary layer and polar regions compared to previous modeling studies. Hence, the presence of two phases can lead to an increase in the predicted warming effect of BBOA on the climate.
Collapse
Affiliation(s)
- Florence K A Gregson
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nealan G A Gerrebos
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Meredith Schervish
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Sepehr Nikkho
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Elijah G Schnitzler
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Saeid Kamal
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Smith N, Crescenzo GV, Bertram AK, Nizkorodov SA, Faiola CL. Insect Infestation Increases Viscosity of Biogenic Secondary Organic Aerosol. ACS EARTH & SPACE CHEMISTRY 2023; 7:1060-1071. [PMID: 37223424 PMCID: PMC10201571 DOI: 10.1021/acsearthspacechem.3c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Plant stress alters emissions of volatile organic compounds. However, little is known about how this could influence climate-relevant properties of secondary organic aerosol (SOA), particularly from complex mixtures such as real plant emissions. In this study, the chemical composition and viscosity were examined for SOA generated from real healthy and aphid-stressed Canary Island pine (Pinus canariensis) trees, which are commonly used for landscaping in Southern California. Healthy Canary Island pine (HCIP) and stressed Canary Island pine (SCIP) aerosols were generated in a 5 m3 environmental chamber at 35-84% relative humidity and room temperature via OH-initiated oxidation. Viscosities of the collected particles were measured using an offline poke-flow method, after conditioning the particles in a humidified air flow. SCIP particles were consistently more viscous than HCIP particles. The largest differences in particle viscosity were observed in particles conditioned at 50% relative humidity where the viscosity of SCIP particles was an order of magnitude larger than that of HCIP particles. The increased viscosity for the aphid-stressed pine tree SOA was attributed to the increased fraction of sesquiterpenes in the emission profile. The real pine SOA particles, both healthy and aphid-stressed, were more viscous than α-pinene SOA particles, demonstrating the limitation of using a single monoterpene as a model compound to predict the physicochemical properties of real biogenic SOA. However, synthetic mixtures composed of only a few major compounds present in emissions (<10 compounds) can reproduce the viscosities of SOA observed from the more complex real plant emissions.
Collapse
Affiliation(s)
- Natalie
R. Smith
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Giuseppe V. Crescenzo
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Allan K. Bertram
- Department
of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Sergey A. Nizkorodov
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
| | - Celia L. Faiola
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697, United States
- Department
of Ecology and Evolutionary Biology, University
of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
He Y, Lambe AT, Seinfeld JH, Cappa CD, Pierce JR, Jathar SH. Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6262-6273. [PMID: 35504037 DOI: 10.1021/acs.est.1c08520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosol (SOA) data gathered in environmental chambers (ECs) have been used extensively to develop parameters to represent SOA formation and evolution. The EC-based parameters are usually constrained to less than one day of photochemical aging but extrapolated to predict SOA aging over much longer timescales in atmospheric models. Recently, SOA has been increasingly studied in oxidation flow reactors (OFRs) over aging timescales of one to multiple days. However, these OFR data have been rarely used to validate or update the EC-based parameters. The simultaneous use of EC and OFR data is challenging because the processes relevant to SOA formation and evolution proceed over very different timescales, and both reactor types exhibit distinct experimental artifacts. In this work, we show that a kinetic SOA chemistry and microphysics model that accounts for various processes, including wall losses, aerosol phase state, heterogeneous oxidation, oligomerization, and new particle formation, can simultaneously explain SOA evolution in EC and OFR experiments, using a single consistent set of SOA parameters. With α-pinene as an example, we first developed parameters by fitting the model output to the measured SOA mass concentration and oxygen-to-carbon (O:C) ratio from an EC experiment (<1 day of aging). We then used these parameters to simulate SOA formation in OFR experiments and found that the model overestimated SOA formation (by a factor of 3-16) over photochemical ages ranging from 0.4 to 13 days, when excluding the abovementioned processes. By comprehensively accounting for these processes, the model was able to explain the observed evolution in SOA mass, composition (i.e., O:C), and size distribution in the OFR experiments. This work suggests that EC and OFR SOA data can be modeled consistently, and a synergistic use of EC and OFR data can aid in developing more refined SOA parameters for use in atmospheric models.
Collapse
Affiliation(s)
- Yicong He
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew T Lambe
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - John H Seinfeld
- Divison of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Christopher D Cappa
- Department of Civil and Environmental Engineering, University of California Davis, Davis, California 95616, United States
| | - Jeffrey R Pierce
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80521, United States
| | - Shantanu H Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Mahrt F, Huang Y, Zaks J, Devi A, Peng L, Ohno PE, Qin YM, Martin ST, Ammann M, Bertram AK. Phase Behavior of Internal Mixtures of Hydrocarbon-like Primary Organic Aerosol and Secondary Aerosol Based on Their Differences in Oxygen-to-Carbon Ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3960-3973. [PMID: 35294833 PMCID: PMC8988305 DOI: 10.1021/acs.est.1c07691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phase behavior, the number and type of phases, in atmospheric particles containing mixtures of hydrocarbon-like organic aerosol (HOA) and secondary organic aerosol (SOA) is important for predicting their impacts on air pollution, human health, and climate. Using a solvatochromic dye and fluorescence microscopy, we determined the phase behavior of 11 HOA proxies (O/C = 0-0.29) each mixed with 7 different SOA materials generated in environmental chambers (O/C 0.4-1.08), where O/C represents the average oxygen-to-carbon atomic ratio. Out of the 77 different HOA + SOA mixtures studied, we observed two phases in 88% of the cases. The phase behavior was independent of relative humidity over the range between 90% and <5%. A clear trend was observed between the number of phases and the difference between the average O/C ratios of the HOA and SOA components (ΔO/C). Using a threshold ΔO/C of 0.265, we were able to predict the phase behavior of 92% of the HOA + SOA mixtures studied here, with one-phase particles predicted for ΔO/C < 0.265 and two-phase particles predicted for ΔO/C ≥ 0.265. The threshold ΔO/C value provides a relatively simple and computationally inexpensive framework for predicting the number of phases in internal SOA and HOA mixtures in atmospheric models.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Yuanzhou Huang
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Julia Zaks
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Annesha Devi
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Long Peng
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Institute
for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Paul E. Ohno
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Center
for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yi Ming Qin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Scot T. Martin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Allan K. Bertram
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| |
Collapse
|
8
|
Bessagnet B, Allemand N, Putaud JP, Couvidat F, André JM, Simpson D, Pisoni E, Murphy BN, Thunis P. Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles—A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. APPLIED SCIENCES-BASEL 2022; 12:1-52. [PMID: 35529678 PMCID: PMC9067409 DOI: 10.3390/app12073623] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide.
Collapse
Affiliation(s)
- Bertrand Bessagnet
- Joint Research Centre, European Commission, 21027 Ispra, Italy
- Correspondence: or
| | | | | | - Florian Couvidat
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway
- Department Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Enrico Pisoni
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Philippe Thunis
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| |
Collapse
|