1
|
Gentile MB, Gómez SR, Avena MJ, Luengo CV. The interaction of phenylphosphonic acid with the surface of goethite: Isotherms, kinetics, electrophoretic mobility and ATR-FTIR spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125938. [PMID: 40020899 DOI: 10.1016/j.envpol.2025.125938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The increased industrial use of phosphorus-containing substances, such as phenylphosphonic (PhP) acid, have raised significant environmental concerns. This study investigates the interaction of PhP with the surface of goethite, a ubiquitous mineral in soils and natural waters. Adsorption kinetics and isotherms are employed to examine the dynamic and equilibrium conditions of the adsorption process. DFT calculations, ATR-FTIR spectroscopy in a flow cell, and electrophoretic mobility measurements are used to determine the ionization of PhP and the type of binding involved in the PhP-goethite interaction. PhP adsorption decreased by increasing pH. Batch adsorption kinetics coincide with results from ATR-FTIR, showing that the rate-controlling step is the bond formation between PhP and the surface. ATR-FTIR with the flow cell proves to be very powerful for elucidating the process, because the time evolution of the adsorption extent and identity of the adsorbed species can be simultaneously tracked. Regardless of PhP speciation in solution and adsorption time, the adsorbed species is consistently an inner-sphere surface complex, where the phosphonate group establishes a direct P-O-Fe bond with an Fe(III) cation on the surface. These findings provide a comprehensive understanding of the PhP-goethite interaction, offering valuable insights into the environmental mobility of PhP.
Collapse
Affiliation(s)
- Mariana B Gentile
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Sebastián R Gómez
- Departamento de Química, Universidad Nacional Del Sur, Bahía Blanca, Argentina
| | - Marcelo J Avena
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Carina V Luengo
- INQUISUR, Departamento de Química, Universidad Nacional Del Sur (UNS)-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Boyer TH, Briese E, Crane L, Bhadha J, Call DF, McLamore ES, Rittmann B, Tuberty S, Westerhoff P, Duckworth OW. Guidance on aqueous matrices for evaluating novel precipitants and adsorbents for phosphorus removal and recovery. CHEMOSPHERE 2024; 367:143648. [PMID: 39476984 DOI: 10.1016/j.chemosphere.2024.143648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Phosphorus (P) removal from water and recovery into useable forms is a critical component of creating a sustainable P cycle, although mature technologies for P removal and recovery are still lacking. The goal of this paper was to advance the testing of novel materials for P removal and recovery from water by providing guidance on the development of more realistic aqueous matrices used during materials development. Literature reports of "new" materials to remove P from water are often difficult to compare in terms of performance because authors use a myriad of water chemistries containing P concentrations, pH, and competing ions. Moreover, many tests are conducted in simplified matrices that do not reflect conditions in real systems. To address this critical gap, the research herein developed a systematic approach of identifying aqueous matrices relevant to P recovery, including key components in the aqueous matrices having the greatest influence on the mechanisms of P removal with emphasis on phosphate precipitation and phosphate adsorption, and providing guidelines on relevant "recipes" for aqueous solutions for testing novel materials. Key components in the aqueous matrices included hydrogen ion (i.e., pH), multivalent metal cations, and dissolved organic matter due to their influence on phosphate precipitation and adsorption mechanisms. Recipes for buffer solution and synthetic groundwater, surface water, anaerobic digestate, and stored urine are discussed in the context of P removal and recovery processes. Wherein the adoption of standard matrices in other fields have permitted direct comparison of processes or materials, it is anticipated that adoption of relevant aqueous matrix recipes for P removal and recovery will improve the ability to directly compare novel materials and processes.
Collapse
Affiliation(s)
- Treavor H Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA.
| | - Emily Briese
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Lucas Crane
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Jehangir Bhadha
- Department of Soil, Water, and Ecosystem Sciences, UF/IFAS Everglades Research and Education Center, University of Florida, 3200 E Canal St, Belle Glade, FL, 33430, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Douglas F Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Raleigh, NC, 27695-7908, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, 232 McAdams Hall, Clemson, SC, 29634, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Calhoun Dr, Clemson, SC, 29634, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Shea Tuberty
- Department of Biology, Appalachian State University, ASU Box 32027, 572 Rivers St, Boone, NC, 28608, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 101 Derieux St, Campus Box 7619, Raleigh, NC, 26795, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| |
Collapse
|
3
|
Liang Y, Jin J, Chen H, Xu J, Wang M, Tan W. Modeling of phosphate speciation on goethite surface: Effects of humic acid. CHEMOSPHERE 2024; 359:142351. [PMID: 38761821 DOI: 10.1016/j.chemosphere.2024.142351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Iron (hydr)oxides and humic acid (HA) are important active components in soils and usually coexist in the environment. The effects of HA on the adsorption and subsequent immobilization of phosphate on iron (hydr)oxide surface are of great importance in studies of soil fertility and eutrophication. In this study, two types of goethite with different particle sizes were prepared to investigate the phosphate adsorption behaviors and complexation mechanisms in the absence or presence of HA by combining multiple characterization and modeling studies. The adsorption capacity of micro- (M-Goe) and nano-sized goethite (N-Goe) for phosphate was 2.02 and 2.04 μmol/m2, which decreased by ∼25% and ∼45% in the presence of 100 and 200 mg/L HA, respectively. Moreover, an increase in equilibrium phosphate concentration significantly decreased the adsorption amount of goethite for HA. Charge distribution-multisite surface complexation (CD-MUSIC) and natural organic matter-charge distribution (NOM-CD) modeling identified five phosphate complexes and their corresponding affinity constants (logKP). Among these phosphate complexes, FeOPO2OH, (FeO)2PO2, and (FeO)2POOH species were predominant complexes on the surface of both M-Goe and N-Goe across a wide range of pH and initial phosphate concentrations. The presence of HA had little effect on the coordination mode and logKP of phosphate on goethite surface. These results and the obtained model parameters shed new lights on the interfacial reactivity of phosphate at the goethite-water interface in the presence of HA, and may facilitate further prediction of the environmental fate of phosphate in soils and sediments.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Jiezi Jin
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongfeng Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, PR China.
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250358, PR China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
4
|
Wang F, Xu J, Xu Y, Chen H, Liang Y, Xiong J. Face-dependent phosphate speciation on goethite: CD-MUSIC modeling and ATR-FTIR/2D-COS study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169970. [PMID: 38220014 DOI: 10.1016/j.scitotenv.2024.169970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Understanding the face-dependent phosphate adsorption mechanisms and their variations with environmental conditions is of great significance for revealing phosphate adsorption mechanisms on various goethites and predicting phosphorus speciation in iron-rich soils. In this study, micro- (MicroGoe) and nano-sized goethite (NanoGoe) were synthesized and used to investigate the face-dependent adsorption behaviors of proton and phosphate on goethite by combining the charge distribution-multisite surface complexation (CD-MUSIC) model and attenuated total reflectance Fourier transform infrared (ATR-FTIR). The results demonstrated that MicroGoe had a higher charge density and phosphate adsorption capacity than NanoGoe, which could be attributed to the higher site density of ≡FeOH-0.5 and inner-layer capacitance arising from a higher proportion of capping face and rougher surface of MicroGoe. The logKH of ≡FeOH-0.5 on the main and capping face was 8.2 and 8.9, respectively. Three types of monodentate mononuclear phosphate complexes in different protonated states were identified, along with the non-protonated bidentate complex. Protonated monodentate complexes were formed at relatively low pH and high surface loadings, whereas non-protonated complexes were the predominant species at intermediate to high pH. MicroGoe had a higher percentage of monodentate complexes than NanoGoe, and both goethites had considerably lower phosphate adsorption on the capping face than on the main face. The results provide valuable insights into the interfacial reactivity of goethite prepared with various methods and facilitate further prediction of phosphorus speciation and availability in iron-rich soils.
Collapse
Affiliation(s)
- Feng Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250358, PR China.
| | - Yun Xu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongfeng Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, PR China
| | - Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
5
|
Islam MA, Nazal MK, Angove MJ, Morton DW, Hoque KA, Reaz AH, Islam MT, Karim SMA, Chowdhury AN. Emerging iron-based mesoporous materials for adsorptive removal of pollutants: Mechanism, optimization, challenges, and future perspective. CHEMOSPHERE 2024; 349:140846. [PMID: 38043616 DOI: 10.1016/j.chemosphere.2023.140846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Iron-based materials (IBMs) have shown promise as adsorbents due to their unique physicochemical properties. This review provides an overview of the different types of IBMs, their synthesis methods, and their properties. Results found in the adsorption of emerging contaminants to a wide range of IBMs are discussed. The IBMs used were evaluated in terms of their maximum uptake capacity, with special consideration given to environmental conditions such as contact time, solution pH, initial pollutant concentration, etc. The adsorption mechanisms of pollutants are discussed taking into account the results of kinetic, isotherm, thermodynamic studies, surface complexation modelling (SCM), and available spectroscopic data. A current overview of molecular modeling and simulation studies related to density functional theory (DFT), surface response methodology (RSM), and artificial neural network (ANN) is presented. In addition, the reusability and suitability of IBMs in real wastewater treatment is shown. The review concludes with the strengths and weaknesses of current research and suggests ideas for future research that will improve our ability to remove contaminants from real wastewater streams.
Collapse
Affiliation(s)
- Md Aminul Islam
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh.
| | - Mazen K Nazal
- Applied Research Center for Environment and Marine Studies (ARCEMS), Research Institute, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Michael J Angove
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia.
| | - David W Morton
- Colloid and Environmental Chemistry (CEC) Research Laboratory, Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Sciences (LIMS), La Trobe University, Bendigo, Victoria, Australia
| | - Khondaker Afrina Hoque
- Department of Chemistry, Faculty of Science, Comilla University, Cumilla, 3506, Bangladesh; Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Akter Hossain Reaz
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh
| | - Mohammad Tajul Islam
- Department of Textile Engineering, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - S M Abdul Karim
- Division of Chemistry, Department of Arts and Sciences, Faculty of Engineering, Ahsanullah University of Science and Technology (AUST), 14 1 & 142, Love Road, Tejgaon Industrial Area, Dhaka, 1208, Bangladesh
| | - Al-Nakib Chowdhury
- Department of Chemistry, Faculty of Science, Bangladesh University of Engineering and Technology (BUET), Dhaka, 1000, Bangladesh.
| |
Collapse
|
6
|
Hou Y, Jia A, Qin X, Yang X, Xie J, Li X, Zhao Y. New insights on the preparation of amine covalent organic polymer and its adsorption properties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122659. [PMID: 37839682 DOI: 10.1016/j.envpol.2023.122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Dye pollution is becoming increasingly severe. This study used the Schiff base reaction to synthesize a polyaromatic ring covalent organic polymer material with amide bonds and high electronegativity named SLEL-9 to adsorb Methylene Blue (MB) and Rhodamine B (RhB). SLEL-9 was characterized by Fourier transform infra-red spectra, X-ray photoelectron spectra, Brunauer-Emmett-Teller (BET), zeta potential analysis, and other techniques. It was found that SLEL-9 material contains C-C, CN, C-N, and CO. SLEL-9 had a zeta potential of about -45 mV under neutral conditions, which proved that the material had been synthesized successfully. The BET and Langmuir surface areas of SLEL-9 were 35.187 m2 g-1 and 56.419 m2 g-1, respectively. The adsorptions of SLEL-9 on low concentration (10 mg L-1) Methylene Blue and Rhodamine B reached equilibrium within 48 h. The results showed that SLEL-9's adsorption of dye molecules are more consistent with pseudo-second-order kinetic and Langmuir isotherm model. The adsorption experiments showed that the adsorption process is a spontaneous endothermic reaction, mainly chemisorption. The maximum adsorption capacity of SLEL-9 for MB and RhB were 132.45 mg g-1 and 101.94 mg g-1. In addition, this study investigated to determine the optimal reaction parameters. The primary mechanisms of SLEL-9 adsorption of two dyes are n→π* interaction, π-π EDA interaction and electrostatic attraction. Selective adsorb ability experiment results showed that SLEL-9 could selectively adsorb MB and RhB to a certain extent. Finally, it was found that SLEL-9 can maintain over 70% adsorption capacity after five reuses and can maintain stability after soaking in different pH water and organic solvents for 120 h. SLEL-9 proved to be a promising organic covalent polymer adsorption material for the removal of Methylene Blue and Rhodamine B in water.
Collapse
Affiliation(s)
- Yutong Hou
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Aiyuan Jia
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xueming Qin
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xinru Yang
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiayin Xie
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiaoyu Li
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yongsheng Zhao
- Key Lab of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, 2519 Jiefang Road, Changchun, 130021, PR China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
7
|
Zhao C, Zhang Z, Deng Q, Song G, Wu Y, Zhang H, Li X, Ma X, Tan B, Yin Y, Jiang Q. Adsorption of deoxynivalenol by APTS-TEOS modified eggshell powder. Food Chem 2022; 391:133259. [DOI: 10.1016/j.foodchem.2022.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
|