1
|
Qi Y, Guan W, Jiang C, Chen W, Zhang T. Protein Corona Formation on Cadmium-Bearing Nanoparticles: Important Role of Facet-Dependent Binding of Cysteine-Rich Proteins. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:623-630. [PMID: 39512393 PMCID: PMC11540113 DOI: 10.1021/envhealth.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 11/15/2024]
Abstract
Cadmium-bearing nanoparticles, such as nanoparticulate cadmium selenide (CdSe) and cadmium sulfide (CdS), widely exist in the environment and originate from both natural and anthropogenic sources. Risk assessment of these nanoparticles cannot be accurate without taking into account the properties of the protein corona that is acquired by the nanoparticles upon biouptake. Here, we show that the compositions of the protein corona on CdSe/CdS nanoparticles are regulated collectively by the surface atomic arrangement of the nanoparticles and the abundance and distribution of cysteine moieties of the proteins in contact with the nanoparticles. A proteomic analysis shows that the observed facet-dependent preferential binding of proteins is mostly related to the cysteine contents of the proteins, among commonly recognized protein properties controlling the formation of the protein corona. Theoretical calculations further demonstrate that the atomic arrangement of surface Cd atoms, as dictated by the exposed facets of the nanoparticles, controls the specific binding mode of the S atoms in the disulfide bonds of the proteins. Supplemental protein adsorption experiments confirm that disulfide bonds remain intact during protein adsorption, making the binding of protein molecules sensitive to the abundance and distribution of Cd-binding moieties and possibly molecular rigidity of the proteins. The significant conformational changes of adsorbed proteins evidenced from a circular dichroism spectroscopy analysis suggest that disrupting the structural stability of proteins may be an additional risk factor of Cd-bearing nanoparticles. These findings underline that the unique properties and behaviors of nanoparticles must be fully considered when evaluating the biological effects and health risks of metal pollutants.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, People’s
Republic of China
- University
of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, People’s
Republic of China
| | - Wenyu Guan
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, People’s
Republic of China
| | - Chuanjia Jiang
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, People’s
Republic of China
| | - Wei Chen
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, People’s
Republic of China
| | - Tong Zhang
- College
of Environmental Science and Engineering, Ministry of Education Key
Laboratory of Pollution Processes and Environmental Criteria, Tianjin
Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, People’s
Republic of China
| |
Collapse
|
2
|
Zhao H, Li P. Immobilization of cadmium in paddy soil using a novel active silicon-potassium amendment: a field experimental study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1087. [PMID: 37615787 DOI: 10.1007/s10661-023-11714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
The rapid development of industrialization and agriculture has led to extensive environmental issues worldwide such as cadmium (Cd) pollution of paddy soils, posing a potential threat to environmental safety and food health. Therefore, there is an urgent need to reduce the Cd contents in paddy soils. In this study, a newly active silicon-potassium amendment was first prepared from potassium hydroxide-assisted potassium feldspar at a low temperature, and then was used to remediate a contaminated paddy soil by Cd over a long period. The obtained results demonstrated the effectiveness of the applied active silicon-potassium in promoting rice growth in the experimental field. In addition, soil pH values increased to 6.89-7.03, thus decreasing the bioavailability of Cd bioavailability by 8.61-13.7%. The soil enzyme activities and available nutrients (Si, Ca, Mg, N, and P) were also significantly increased. In particular, the Cd contents in the rice grains decreased from 0.279 to 0.179-0.194 mg/kg following the application of the active silicon-potassium amendment, reaching the food crop standard level of China (< 0.2 mg/kg). The detailed remediation mechanisms of the Cd-contaminated paddy soil involved several processes, including ion exchange, ligand complexation, electrostatic attraction, and precipitation. Overall, the active silicon-potassium material is a promising amendment for achieving effective control of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Hanghang Zhao
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
- Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
3
|
Koenigsmark F, Rivera NA, Pierce EM, Hsu-Kim H. Dissolution Potential of Elemental Mercury in the Presence of Bisulfide and Implications for Mobilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12388-12397. [PMID: 37561589 DOI: 10.1021/acs.est.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Liquid elemental mercury (Hg0L) pollution can remain in soils for decades and, over time, will undergo corrosion, a process in which the droplet surface oxidizes soil constituents to form more reactive phases, such as mercury oxide (HgO). While these reactive coatings may enhance Hg migration in the subsurface, little is known about the transformation potential of corroded Hg0L in the presence of reduced inorganic sulfur species to form sparingly soluble HgS particles, a process that enables the long-term sequestration of mercury in soils and generally reduces its mobility and bioavailability. In this study, we investigated the dissolution of corroded Hg0L in the presence of sulfide by quantifying rates of aqueous Hg release from corroded Hg0L droplets under different sulfide concentrations (expressed as the S:Hg molar ratio). For droplets corroded in ambient air, no differences in soluble Hg release were observed among all sulfide exposure levels (S:Hg mole ratios ranging from 10-4 to 10). However, for droplets oxidized in the presence of a more reactive oxidant (hydrogen peroxide, H2O2), we observed a 10- to 25-fold increase in dissolved Hg when the oxidized droplets were exposed to low sulfide concentrations (S:Hg ratios from 10-4 to 10-1) relative to droplets exposed to high sulfide concentrations. These results suggest two critical factors that dictate the release of soluble Hg from Hg0L in the presence of sulfide: the extent of surface corrosion of the Hg0L droplet and sufficient sulfide concentration for the formation of HgS solids. The mobilization of Hg0L in porous media, therefore, largely depends on aging conditions in the subsurface and chemical reactivity at the Hg0L droplet interface.
Collapse
Affiliation(s)
- Faye Koenigsmark
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| | - Nelson A Rivera
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Heileen Hsu-Kim
- Civil and Environmental Engineering, Duke University ,118A Hudson Hall, Box 90287,Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Zheng X, Wu B, Zhou C, Liu T, Wang Y, Zhao G, Chen B, Chu C. Sunlight-Driven Production of Reactive Oxygen Species from Natural Iron Minerals: Quantum Yield and Wavelength Dependence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1177-1185. [PMID: 36538289 DOI: 10.1021/acs.est.2c06942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photochemically generated reactive oxygen species (ROS) play numerous key roles in earth's surface biogeochemical processes and pollutant dynamics. ROS production has historically been linked to the photosensitization of natural organic matter. Here, we report the photochemical ROS production from three naturally abundant iron minerals. All investigated iron minerals are photoactive toward sunlight irradiation, with photogenerated currents linearly correlated with incident light intensity. Hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) are identified as the major ROS species, with apparent quantum yields ranging from 1.4 × 10-8 to 3.9 × 10-8 and 5.8 × 10-8 to 2.5 × 10-6, respectively. Photochemical ROS production exhibits high wavelength dependence, for instance, the •OH quantum yield decreases with the increase of light wavelength from 375 to 425 nm, and above 425 nm it sharply decreases to zero. The temperature shows a positive impact on •OH production, with apparent activation energies ranging from 8.0 to 17.8 kJ/mol. Interestingly, natural iron minerals with impurities exhibit higher ROS production than their pure crystal counterparts. Compared with organic photosensitizers, iron minerals exhibit higher wavelength dependence, higher selectivity, lower efficiency, and long-term stability in photochemical ROS production. Our study highlights natural inorganic iron mineral photochemistry as a ubiquitous yet previously overlooked source of ROS.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
5
|
He P, Zhang L, Wu L, Yang X, Chen T, Li Y, Yang X, Zhu L, Meng Q, Duan T. Synergistic Effect of the Sulfur Vacancy and Schottky Heterojunction on Photocatalytic Uranium Immobilization: The Thermodynamics and Kinetics. Inorg Chem 2022; 61:2242-2250. [PMID: 35025499 DOI: 10.1021/acs.inorgchem.1c03552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Not only a critical matter in the nuclear fuel cycle but uranium is also a global contaminant with both radioactive and chemical toxicity. Reducing soluble hexavalent uranium [U(VI)] to relatively nonimmigrated tetravalent uranium [U(IV)] by photocatalytic technologies is recognized as a highly promising strategy for avoiding environmental pollution and re-extracting uranium resources from nuclear wastewater. Herein, we have designed a heterojunction photocatalyst constructed from the carbon aerogels (CA) and the CdS nanoflowers with an S-vacancy (CA@CdS-SV). With the S-vacancy and heterojunction being synergized, the U(VI) removal rate exceeded 97% in 40 min without the addition of any sacrificial agents. As impacted by the synergistic effects of the S-vacancy and heterojunction, thermodynamics and kinetics revealed that photogenerated electrons were first captured via shallow traps generated by vacancies on CdS-SV and then transferred to the CA surfaces through the heterojunction to realize the spatial separation of carriers, thereby achieving a satisfactory performance. This work is considered to underpin the improvement of U(VI) immobilization by exploiting the synergistic effect of vacancy engineering and the Schottky heterojunction from the perspective of thermodynamics and kinetics.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Ling Zhang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Linzhen Wu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xin Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Tao Chen
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Yi Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Xiaoyong Yang
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Lin Zhu
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Qi Meng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| |
Collapse
|