1
|
Gweme DT, Styler SA. OH Radical Oxidation of Organosulfates in the Atmospheric Aqueous Phase. J Phys Chem A 2024; 128:9462-9475. [PMID: 39432465 DOI: 10.1021/acs.jpca.4c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Organosulfates (OS, ROSO3-), ubiquitous constituents of atmospheric particulate matter (PM), influence both the physicochemical and climatic properties of PM. Although the formation pathways of OS have been extensively researched, only a few studies have investigated the atmospheric fate of this class of compounds. Here, to better understand the reactivity and transformation of OS under cloudwater- and aerosol-relevant conditions, we investigate the hydroxyl radical (OH) oxidation bimolecular rate constants (kOS+OHII) and products of five atmospherically relevant OS as a function of pH and ionic strength: methyl sulfate (MeS), ethyl sulfate (EtS), propyl sulfate (PrS), hydroxyacetone sulfate (HaS) and phenyl sulfate (PhS). Our results show that OS are oxidized by OH with kOS+OHII between 108 - 109 M-1 s-1, which corresponds to atmospheric lifetimes of minutes in aqueous aerosol to days in cloudwater. We find that kOS+OHII increases with carbon chain length (MeS < EtS < PrS) and aromaticity (PrS < PhS), but does not depend on solution pH (2, 9). In addition, we find that whereas the OH reactivity of the aliphatic OS studied here decreases by ∼2× with increasing ionic strength (0-15 M), the reactivity of PhS decreases by ∼10×. The oxidation of EtS and PrS produced organic peroxides (ROOH) as first-generation oxidation products, which subsequently photolyzed; the oxidation of PhS resulted in hydroxylated aromatic products. These results highlight the need for inclusion of OS loss pathways in atmospheric models, and suggest caution in using ambient OS concentration measurements alone to estimate their production rates.
Collapse
Affiliation(s)
- Daniel T Gweme
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sarah A Styler
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
2
|
Zhang R, Zhang X, Zhang Q, Li Y, Wang Y, Xu J, Cheng Z, Chen H, Yao Y, Sun H. Heterogeneous Photodegradation Behavior of Liquid Crystal Monomers in Dust: Quantitative Structure-Activity Relationship and Product Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3908-3918. [PMID: 38329000 DOI: 10.1021/acs.est.3c04753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The heterogeneous photodegradation behavior of liquid crystal monomers (LCMs) in standard dust (standard reference material, SRM 2583) and environmental dust was investigated. The measured photodegradation ratios for 23 LCMs in SRM and environmental dust in 12 h were 11.1 ± 1.8 to 23.2 ± 1.1% and 8.7 ± 0.5 to 24.0 ± 2.8%, respectively. The degradation behavior of different LCM compounds varied depending on their structural properties. A quantitative structure-activity relationship model for predicting the degradation ratio of LCMs in SRM dust was established, which revealed that the molecular descriptors related to molecular polarizability, electronegativity, and molecular mass were closely associated with LCMs' photodegradation. The photodegradation products of the LCM compound 4'-propoxy-4-biphenylcarbonitrile (PBIPHCN) in dust, including •OH oxidation, C-O bond cleavage, and ring-opening products, were identified by nontarget analysis, and the corresponding degradation pathways were suggested. Some of the identified products, such as 4'-hydroxyethoxy-4-biphenylcarbonitrile, showed predicted toxicity (with an oral rat lethal dose of 50%) comparable to that of PBIPHCN. The half-lives of the studied LCMs in SRM dust were estimated at 32.2-82.5 h by fitting an exponential decay curve to the observed photodegradation data. The photodegradation mechanisms of LCMs in dust were revealed for the first time, enhancing the understanding of LCMs' environmental behavior and risks.
Collapse
Affiliation(s)
- Ruiqi Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xiao Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuyue Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jiaping Xu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| |
Collapse
|
3
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Tran LN, Abellar KA, Cope JD, Nguyen TB. Second-Order Kinetic Rate Coefficients for the Aqueous-Phase Sulfate Radical (SO 4•-) Oxidation of Some Atmospherically Relevant Organic Compounds. J Phys Chem A 2022; 126:6517-6525. [PMID: 36069746 PMCID: PMC9511566 DOI: 10.1021/acs.jpca.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The sulfate anion radical (SO4•–) is a reactive oxidant formed in the autoxidation chain of sulfur
dioxide, among other sources. Recently, new formation pathways toward
SO4•– and other reactive sulfur
species have been reported. This work investigated the second-order
rate coefficients for the aqueous SO4•– oxidation of the following important organic aerosol compounds (kSO4): 2-methyltetrol, 2-methyl-1,2,3-trihydroxy-4-sulfate,
2-methyl-1,2-dihydroxy-3-sulfate, 1,2-dihydroxyisoprene, 2-methyl-2,3-dihydroxy-1,4-dinitrate,
2-methyl-1,2,4-trihydroxy-3-nitrate, 2-methylglyceric acid, 2-methylglycerate,
lactic acid, lactate, pyruvic acid, pyruvate. The rate coefficients
of the unknowns were determined against that of a reference in pure
water in a temperature range of 298–322 K. The decays of each
reagent were measured with nuclear magnetic resonance (NMR) and high-performance
liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS).
Incorporating additional SO4•– reactions into models may aid in the understanding of organosulfate
formation, radical propagation, and aerosol mass sinks.
Collapse
Affiliation(s)
- Lillian N Tran
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Karizza A Abellar
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - James D Cope
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
5
|
Sulfur radical formation from the tropospheric irradiation of aqueous sulfate aerosols. Proc Natl Acad Sci U S A 2022; 119:e2202857119. [PMID: 36037345 PMCID: PMC9457335 DOI: 10.1073/pnas.2202857119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It was found that shining natural or artificial sunlight on concentrated solutions of sulfate ions mixed with organics, a mixture commonly found in atmospheric aerosol particles, can generate sulfur-containing radicals under a variety of conditions. This reaction has not previously been characterized in atmospheric chemistry. These reactive radicals can subsequently degrade organic compounds in atmospheric particles, forming a variety of products that stay in the particle water and small molecules that are volatile enough to partition to the gas phase. In particular, this source of sulfur radicals can produce surface-active organosulfates and organic acids. The sulfate anion radical (SO4•–) is known to be formed in the autoxidation chain of sulfur dioxide and from minor reactions when sulfate or bisulfate ions are activated by OH radicals, NO3 radicals, or iron. Here, we report a source of SO4•–, from the irradiation of the liquid water of sulfate-containing organic aerosol particles under natural sunlight and laboratory UV radiation. Irradiation of aqueous sulfate mixed with a variety of atmospherically relevant organic compounds degrades the organics well within the typical lifetime of aerosols in the atmosphere. Products of the SO4•– + organic reaction include surface-active organosulfates and small organic acids, alongside other products. Scavenging and deoxygenated experiments indicate that SO4•– radicals, instead of OH, drive the reaction. Ion substitution experiments confirm that sulfate ions are necessary for organic reactivity, while the cation identity is of low importance. The reaction proceeds at pH 1–6, implicating both bisulfate and sulfate in the formation of photoinduced SO4•–. Certain aromatic species may further accelerate the reaction through synergy. This reaction may impact our understanding of atmospheric sulfur reactions, aerosol properties, and organic aerosol lifetimes when inserted into aqueous chemistry model mechanisms.
Collapse
|