1
|
Fang L, Lakshmanan P, Su X, Shi Y, Chen Z, Zhang Y, Sun W, Wu J, Xiao R, Chen X. Impact of residual antibiotics on microbial decomposition of livestock manures in Eutric Regosol: Implications for sustainable nutrient recycling and soil carbon sequestration. J Environ Sci (China) 2025; 147:498-511. [PMID: 39003065 DOI: 10.1016/j.jes.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 07/15/2024]
Abstract
The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, β-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.
Collapse
Affiliation(s)
- Linfa Fang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaoxuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yujia Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zheng Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and National Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Li C, Wu L, Zou X, Wu Q, Mo Y. Effect of sponge city facilities on the exposure characteristics and ecological risks of antibiotics in urban inland lakes: A case study at Fuzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57645-57654. [PMID: 39289264 DOI: 10.1007/s11356-024-34981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Antibiotics are increasingly found in urban lakes, posing significant ecological risks to lake ecosystems. The impact of sponge city facilities on urban flood control is significant; however, their influence on the exposure characteristics and risks associated with antibiotics in urban inland lakes remains unclear. This study investigated the exposure characteristics and evaluated the ecological risks of 15 antibiotics across seven lakes of Fuzhou (as the target of sponge city) in different seasons, in comparison to non-sponge cities. The results revealed that 12 antibiotics were consistently detectable across all lakes, with concentrations ranging from non-detectable (ND) to 20.61 ng/L, with sulfamethoxazole (SMX) emerging as the predominant contaminant. Most antibiotics exhibited higher concentrations in the dry season, attributed to environmental conditions, biological mechanisms, and their physicochemical properties. SMX, tetracycline (TTC), oxytetracycline (OTC), and ciprofloxacin (CIP) posed moderate to high ecological risks, with risk quotient (RQ) values of 0.46, 0.14, 0.17, and 0.61, respectively, while the remaining antibiotics presented lower ecological risks in both seasons. Notably, the RQ values for TTC, OTC, and CIP were elevated during the dry season, whereas SMX displayed a higher RQ value in the wet season, indicating an increased ecological risk during the dry months. In comparison to non-sponge cities, sponge cities exhibited significantly lower concentrations of nearly all antibiotics, particularly during the wet season (p ≤ 0.05). Moreover, over 85% of the antibiotics in non-sponge cities were classified as high risk, contrasted with only 55% in sponge cities, underscoring the heightened ecological risks associated with non-sponge urban designs. This study provides critical insights for controlling antibiotic pollution in the lakes of Fuzhou and serves as a valuable reference for maintaining aquatic ecosystem health through the implementation of sponge city infrastructure.
Collapse
Affiliation(s)
- Chengfu Li
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Ligui Wu
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaoming Zou
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
- School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Qiaofeng Wu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Fuzhou Urban and Rural Construction Group Co. Ltd, Fuzhou, 350007, China
| | - Yuanmin Mo
- School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
4
|
Li K, Li H, Wang Y, Yang Z, Liang S. Household carbon footprints of age groups in China and socioeconomic influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171402. [PMID: 38431176 DOI: 10.1016/j.scitotenv.2024.171402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
China has a large fastest-aging population, which would reshape household consumption patterns and influence global CO2 emissions. This study examines global CO2 emissions driven by household consumption (i.e., household carbon footprints, HCFs) of 34 age groups in China's 30 provinces and uncovers relevant socioeconomic influencing factors. Results show that China's population aging (i.e., the proportion of the elderly population) is conducive to global CO2 emission reduction during 2011-2014. This trend is mainly due to the relatively lower per capita HCFs of the elderly (1.7 t in 2014). In contrast, the per capita HCFs of the youth group are higher (3.3 t in 2014), mainly affected by the large expenditure on residence and transportation & communication. In addition, the HCFs of all age groups have increased during 2011-2014. Per capita expenditure is the most significant driver of this increase. The decline in CO2 emission intensity makes the largest contribution to reducing the HCFs of the youth group. For the aged group, expenditure structure change is the largest contributor to HCFs reduction. These findings reveal the differentiated impacts of China's household consumption by age on global CO2 emissions. This study lays the scientific foundation for deriving amelioration policies and achieving emission reduction targets in the process of population aging.
Collapse
Affiliation(s)
- Ke Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Hui Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yafei Wang
- School of Statistics, Beijing Normal University, Beijing 100875, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Sai Liang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
5
|
Shao Z, Chen J, Wang S, Wang W, Zhu L. Sulfonamide-induced DNA hypomethylation disturbed sugar metabolism in rice (Oryza sativa L.). ENVIRONMENT INTERNATIONAL 2024; 187:108737. [PMID: 38735075 DOI: 10.1016/j.envint.2024.108737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
DNA methylation is well-accepted as a bridge to unravel the complex interplay between genome and environmental exposures, and its alteration regulated the cellular metabolic responses towards pollutants. However, the mechanism underlying site-specific aberrant DNA methylation and metabolic disorders under pollutant stresses remained elusive. Herein, the multilevel omics interferences of sulfonamides (i.e., sulfadiazine and sulfamerazine), a group of antibiotics pervasive in farmland soils, towards rice in 14 days of 1 mg/L hydroponic exposure were systematically evaluated. Metabolome and transcriptome analyses showed that 57.1-71.4 % of mono- and disaccharides were accumulated, and the differentially expressed genes were involved in the promotion of sugar hydrolysis, as well as the detoxification of sulfonamides. Most differentially methylated regions (DMRs) were hypomethylated ones (accounting for 87-95 %), and 92 % of which were located in the CHH context (H = A, C, or T base). KEGG enrichment analysis revealed that CHH-DMRs in the promoter regions were enriched in sugar metabolism. To reveal the significant hypomethylation of CHH, multi-spectroscopic and thermodynamic approaches, combined with molecular simulation were conducted to investigate the molecular interaction between sulfonamides and DNA in different sequence contexts, and the result demonstrated that sulfonamides would insert into the minor grooves of DNA, and exhibited a stronger affinity with the CHH contexts of DNA compared to CG or CHG contexts. Computational modeling of DNA 3D structures further confirmed that the binding led to a pitch increase of 0.1 Å and a 3.8° decrease in the twist angle of DNA in the CHH context. This specific interaction and the downregulation of methyltransferase CMT2 (log2FC = -4.04) inhibited the DNA methylation. These results indicated that DNA methylation-based assessment was useful for metabolic toxicity prediction and health risk assessment.
Collapse
Affiliation(s)
- Zexi Shao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Li S, Zhu Y, Zhong G, Huang Y, Jones KC. Comprehensive Assessment of Environmental Emissions, Fate, and Risks of Veterinary Antibiotics in China: An Environmental Fate Modeling Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5534-5547. [PMID: 38470711 DOI: 10.1021/acs.est.4c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
China is one of the major global consumers of veterinary antibiotics. Insufficient recognition of emissions and environmental contamination hamper global efforts to prevent antibiotic resistance development. This pioneering study combined empirical data and modeling approaches to predict total 2010-2020 emissions of 80 veterinary antibiotics ranging from 23,110 to 40,850 tonnes/year, after 36-50% antibiotic removal by manure treatment. Following an initial increase of 10% from 2010 to 2015, emissions declined thereafter by 43%. While 85% of emissions discharged into soils, approximately 56%, 23%, and 18% of environmental residue were ultimately distributed in soils, freshwaters, and seawaters under steady-state conditions. In 2020, 657 (319-1470) tonnes entered the ocean from inland freshwaters. Median ∑antibiotics concentrations were estimated at 4.7 × 103 ng/L in freshwaters and 2.9 ng/g in soils, with tetracyclines and sulfonamides as the predominant components. We identified 44 veterinary antibiotics potentially posing high risks of resistance development in freshwaters, with seven exhibiting high risks in >10% of Chinese freshwater areas. Tetracyclines were the category with the most antibiotics exhibiting elevated risks; however, sulfamethylthiazole demonstrated the highest individual compound risk. The Haihe River Basin displayed the highest susceptibility overall. The findings offer valuable support for control of veterinary antibiotic contamination in China.
Collapse
Affiliation(s)
- Shuaiqi Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangbin Zhong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| |
Collapse
|
7
|
Wang W, Luo T, Zhao Y, Yang X, Wang D, Yang G, Jin Y. Antibiotic resistance gene distribution in Shine Muscat grapes and health risk assessment of streptomycin residues in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133254. [PMID: 38103297 DOI: 10.1016/j.jhazmat.2023.133254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Antibiotic residues and antibiotic resistance genes (ARGs) in fruits and vegetables pose public health risks via the food chain, attracting increased attention. Antibiotics such as streptomycin, used directly on seedless grapes or introduced into vineyard soil through organic fertilizers. However, extensive data supporting the risk assessment of antibiotic residues and resistance in these produce remains lacking. Utilizing metagenomic sequencing, we characterized Shine Muscat grape antibiotic resistome and mobile genetic elements (MGEs). Abundant MGEs and ARGs were found in grapes, with 174 ARGs on the grape surface and 32 in the fruit. Furthermore, our data indicated that soil is not the primary source of these MGEs and ARGs. Escherichia was identified as an essential carrier and potential transmitter of ARGs. In our previous study, streptomycin residue was identified in grapes. Further short-term exposure experiments in mice revealed no severe physiological or histological damage at several environment-related concentrations. However, with increased exposure, some ARGs levels in mouse gut microbes increased, indicating a potential threat to animal health. Overall, this study provides comprehensive insights into the resistance genome and potential hosts in grapes, supporting the risk assessment of antibiotic resistance in fruits and vegetables.
Collapse
Affiliation(s)
- Weitao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China, Hangzhou 310021, China
| | - Yao Zhao
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinyuan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, China, Hangzhou 310021, China
| | - Guiling Yang
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- Xianghu Laboratory, Hangzhou 311231, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
8
|
Huang YH, Yang YJ, Li JY, Lü H, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY, Li QX. Root-associated bacteria strengthen their community stability against disturbance of antibiotics on structure and functions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133317. [PMID: 38218031 DOI: 10.1016/j.jhazmat.2023.133317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Antibiotics affect bacterial community structure and functions in soil. However, the response and adaptation of root-associated bacterial communities to antibiotic stress remains poorly understood. Here, rhizobox experiments were conducted with maize (Zea mays L.) upon exposure to antibiotics ciprofloxacin or tetracycline. High-throughput sequencing analysis of bacterial community and quantitative PCR analysis of nitrogen cycling genes show that ciprofloxacin and tetracycline significantly shift bacterial community structure in bulk soil, whereas plant host may mitigate the disturbances of antibiotics on bacterial communities in root-associated niches (i.e., rhizosphere and rhizoplane) through the community stabilization. Deterministic assembly, microbial interaction, and keystone species (e.g., Rhizobium and Massilia) of root-associated bacterial communities benefit the community stability compared with those in bulk soil. Meanwhile, the rhizosphere increases antibiotic dissipation, potentially reducing the impacts of antibiotics on root-associated bacterial communities. Furthermore, rhizospheric effects deriving from root exudates alleviate the impacts of antibiotics on the nitrogen cycle (i.e., nitrification, organic nitrogen conversion and denitrification) as confirmed by functional gene quantification, which is largely attributed to the bacterial community stability in rhizosphere. The present study enhances the understanding on the response and adaptation of root-associated bacterial community to antibiotic pollution.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie-Yu Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| |
Collapse
|
9
|
Xu G, Li Y, Lin X, Yu Y. Effects and mechanisms of polystyrene micro- and nano-plastics on the spread of antibiotic resistance genes from soil to lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169293. [PMID: 38104810 DOI: 10.1016/j.scitotenv.2023.169293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Effects of microplastics (MPs) and nanoplastics (NPs) on the spread of antibiotic resistance genes (ARGs) in soil-plant systems are still unclear. To investigate the spread and mechanisms of ARGs from soil to lettuce, lettuce was exposed to soil spiked with two environmentally relevant concentrations of polystyrene MPs (100 μm) and NPs (100 nm). Results showed that microorganisms that carried ARGs in soil were increased after exposure to MPs/NPs, which led to an increase in ARGs in roots. NPs were absorbed by roots and can be transported to leaves. Analysis of transcriptomics, proteomics and metabolomics indicated that high concentration of NPs regulated the expression of related genes and proteins and improved the accumulation of flavonoids in the lettuce, therefore decreased the abundance of microorganisms that contained ARGs. Our work emphasizes the size and dose influences of MPs and NPs on the spread of ARGs from soil to plant.
Collapse
Affiliation(s)
- Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
10
|
Du J, Wang C, Sun M, Chen G, Liu C, Deng X, Chen R, Zhao Z. Novel vacuum UV/ozone/peroxymonosulfate process for efficient degradation of levofloxacin: Performance evaluation and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132916. [PMID: 37951169 DOI: 10.1016/j.jhazmat.2023.132916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Vacuum UV (VUV) irradiation has advantage in coupling oxidants for organics removal because VUV can dissociate water to produce reactive oxygen species (ROS) in situ and decompose oxidants rapidly. In this study, the synergistic activation of peroxymonosulfate (PMS) by VUV and ozone (O3) was explored via developing a novel integrated VUV/O3/PMS process, and the performance and mechanisms of VUV/O3/PMS for levofloxacin (LEV) degradation were investigated systematically. Results indicated that VUV/O3/PMS could effectively degrade LEV, and the degradation rate was 1.67-18.79 times of its sub-processes. Effects of PMS dosage, O3 dosage, solution pH, anions, and natural organic matter on LEV removal by VUV/O3/PMS were also studied. Besides, hydroxyl radical and sulfate radical were main ROS with contributions of 49.7% and 17.4%, respectively. Moreover, the degradation pathways of LEV in VUV/O3/PMS process were speculated based on density functional theory calculation and by-products detection. Furthermore, synergistic reaction mechanisms in VUV/O3/PMS process were proposed. The energy consumption of VUV/O3/PMS decreased by 22.6%- 88.1% compared to its sub-processes. Finally, the integrated VUV/O3/PMS process showed satisfactory results in removing LEV in actual waters, manifesting VUV/O3/PMS had great application potential and feasibility in removing organics in wastewater reuse.
Collapse
Affiliation(s)
- Jinying Du
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chuang Wang
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| | - Meilin Sun
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Guoliang Chen
- School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; Hunan Province Key Laboratory of Coal Resources Clean Utilization and Mine Environment Protection, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Chenglin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xiaoyong Deng
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Rui Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhiwei Zhao
- College of Environmental and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
11
|
Liu H, Shan X, Song L, Huan H, Chen H. An integrated multimedia fate modeling framework for identifying mitigation strategy of antibiotic ecological risks: A case study in a peri-urban river. ENVIRONMENTAL RESEARCH 2023; 238:117225. [PMID: 37788759 DOI: 10.1016/j.envres.2023.117225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Antibiotics have been heavily used over the past decades, resulting in their frequent detections in rivers and increasing ecological risks. Recognizing characteristics of antibiotic ecological risks (AERs) and making effective strategies to mitigate the AERs are essential to ensure the safety of aquatic ecosystem and public health. In this study, an integrated technological framework has been proposed toward identifying management options for reducing AERs by jointly utilizing multimedia fugacity modelling and ecotoxicological risk assessment, and applied to characterize the AERs in a peri-urban river in Beijing. Specifically, a level III fugacity model has been successfully established to simulate the fate of antibiotics in the environment, and the manageable parameters have been screened out via sensitivity analysis of the model. Then the validated fugacity model has been used for scenario modellings to optimize mitigation strategies of AERs. Results show most of the antibiotics considered are frequently detected in the river, and pose medium or high risks to aquatic organisms. Relatively, the macrolides and fluoroquinolones present higher ecotoxicological risks than sulfonamides and tetracyclines. Furthermore, the mixture risk quotient and predictive equation of concentration addition suggest joint and synergistic/antagonistic effects of AERs for multiple or binary antibiotics in the environment. Largely, the concentrations of antibiotics in the river are determined by the source emissions into water and soil. Scenario modellings show the improvement of antibiotic removal rates would be considered preferentially to mitigate the AERs. Also, controlling human consumption is conducive to reducing the risks posed by tetracyclines, macrolides and trimethoprim, while controlling animal consumption would benefit the reduction for sulfonamides. Overall, the joint strategy presents the greatest reduction of AERs by reducing antibiotic consumption and together improving sewage treatment rate and antibiotic removal rate. The study provides us a useful guideline to make ecological risk-based mitigation strategy for reducing AERs in environment.
Collapse
Affiliation(s)
- Hong Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Xin Shan
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
12
|
Yu T, Rajasekar A, Zhang S. A decennial study of the trend of antibiotic studies in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121338-121353. [PMID: 37996597 DOI: 10.1007/s11356-023-30796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Antibiotics are one of the greatest inventions in human history and are used worldwide on an enormous scale. Besides its extensive usage in medical and veterinary arenas to treat and prevent the infection, its application is very prominent in other fields, including agriculture, aquaculture, and horticulture. In recent decades, the increased consumption of antibiotics in China saw a vast increase in its production and disposal in various environments. However, in this post-antibiotic era, the abuse and misuse of these valuable compounds could lead to the unreversible consequence of drug resistance. In China, antibiotics are given a broad discussion in various fields to reveal their impact on both human/animals health and the environment. To our knowledge, we are the first paper to look back at the development trend of antibiotic-related studies in China with qualitative and quantitative bibliometric analysis from the past decades. Our study identified and analyzed 5559 papers from its inception (1991) to December 6, 2021, from the Web of Science Core Collection database. However, with few authors and institutions focusing on long-term studies, we found the quality of contributions was uneven. Studies mainly focused on areas such as food science, clinical research, and environmental studies, including molecular biology, genetics and environmental, ecotoxicology, and nutrition, which indicate possible primary future trends. Our study reports on including potentially new keywords, studies' milestones, and their contribution to antibiotic research. We offer potential topics that may be important in upcoming years that could help guide future research.
Collapse
Affiliation(s)
- Tong Yu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Adharsh Rajasekar
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC‑AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Hohai University, Nanjing, 210098, China.
- College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
13
|
Zhang X, Cai T, Zhang S, Hou J, Cheng L, Chen W, Zhang Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132862. [PMID: 39492100 DOI: 10.1016/j.jhazmat.2023.132862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
While the occurrence and removal technologies of tetracyclines in the environment have been reported, a comprehensive systematic summary and analysis remain limited, especially for new generations compounds such as doxycycline. In this review, the latest information regarding the distribution of various tetracyclines in different countries over the past seven years (2017-2023) reveals a notable absence of research reports in North America and Oceania. With China as the representative country, the investigation indicates that the maximum concentrations of TCs exceed 5 µg/L. The maximum concentration of tetracyclines in feces (26.22 µg/L) can reach one order of magnitude higher than that in other media. Furthermore, advanced oxidation technologies, such as Fenton processes, electrochemical oxidation, photolysis, ozonation, etc., were also examined, and the median degradation rate achieved 91.9-97.67%. Reactions such as methylation, demethylation, hydroxylation, dehydration, ring cleavage, and oxidation were observed during degradation. The most common intermediate product was identified as m/z = 461 (C22H25N2O9). This review indicates that future efforts should emphasize understanding the occurrence and fate of new-generation tetracyclines in the environment.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Shudong Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Jinju Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Cheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wenjie Chen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| |
Collapse
|
14
|
Zhu Z, Ye J, Tang X, Chen Z, Yang J, Huo P, Ng YH, Crittenden J. Vacancy-Rich CoS x@LDH@Co-NC Catalytic Membrane for Antibiotic Degradation with Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16131-16140. [PMID: 37812398 DOI: 10.1021/acs.est.3c03037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Improving the wettability of carbon-based catalysts and overcoming the rate-limiting step of the Mn+1/Mn+ cycle are effective strategies for activating peroxymonosulfate (PMS). In this study, the coupling of Co-NC, layered double hydroxide (LDH), and CoSx heterostructure (CoSx@LDH@Co-NC) was constructed to completely degrade ofloxacin (OFX) within 10 min via PMS activation. The reaction rate of 1.07 min-1 is about 1-2 orders of magnitude higher than other catalysts. The interfacial effect of confined Co-NC and layered double hydroxide (LDH) not only enhanced the wettability of catalysts but also increased the vacancy concentration; it facilitated easier contact with the interface reactive oxygen species (ROS). Simultaneously, reduced sulfur species (CoSx) accelerated the Co3+/Co2+ cycle, acquiring long-term catalytic activity. The catalytic mechanism revealed that the synergistic effect of hydroxyl groups and reduced sulfur species promoted the formation of 1O2, with a longer lifespan and a longer migration distance, and resisted the influence of nontarget background substances. Moreover, considering the convenience of practical application, the CoSx@LDH@Co-NC-based catalytic membrane was prepared, which had zero discharge of OFX and no decay in continuous operation for 5.0 h. The activity of the catalytic membrane was also verified in actual wastewater. Consequently, this work not only provides a novel strategy for designing excellent catalysts but also is applicable to practical organic wastewater treatment.
Collapse
Affiliation(s)
- Zhi Zhu
- Institute of Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P. R. China
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, P. R. China
| | - Jian Ye
- Institute of Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xu Tang
- Institute of Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zefang Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jie Yang
- College of Civil Engineering and Architecture, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, Zhejiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, P. R. China
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Hu J, Li S, Zhang W, Helbling DE, Xu N, Sun W, Ni J. Animal production predominantly contributes to antibiotic profiles in the Yangtze River. WATER RESEARCH 2023; 242:120214. [PMID: 37329718 DOI: 10.1016/j.watres.2023.120214] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
Human-induced antibiotic pollution in the world's large rivers poses significant risk to riverine ecosystems, water quality, and human health. This study identified geophysical and socioeconomic factors driving antibiotic pollution in the Yangtze River by quantifying 83 target antibiotics in water and sediment samples collected in its 6300-km-long reach, followed by source apportionment and statistical modeling. Total antibiotic concentrations ranged between 2.05-111 ng/L in water samples and 0.57-57.9 ng/g in sediment samples, contributed predominantly by veterinary antibiotics, sulfonamides and tetracyclines, respectively. Antibiotic compositions were clustered according to three landform regions (plateau, mountain-basin-foothill, and plains), resulting from varying animal production practices (cattle, sheep, pig, poultry, and aquaculture) in the sub-basins. Population density, animal production, total nitrogen concentration, and river water temperature are directly associated with antibiotic concentrations in the water samples. This study revealed that the species and production of food animals are key determinants of the geographic distribution pattern of antibiotics in the Yangtze River. Therefore, effective strategies to mitigate antibiotic pollution in the Yangtze River should include proper management of antibiotic use and waste treatment in animal production.
Collapse
Affiliation(s)
- Jingrun Hu
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences; Environmental Science, and Policy Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Nan Xu
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Weiling Sun
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Jinren Ni
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| |
Collapse
|
16
|
Wang S, He L, Zhang M, Su X, Liu F, Chen Q, Yang J, Tong M. Effects of Antibiotic Resistance Genes and Antibiotics on the Transport and Deposition Behaviors of Bacteria in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37406198 DOI: 10.1021/acs.est.3c03768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Antibiotics present in the natural environment would induce the generation of antibiotic-resistant bacteria (ARB), causing great environmental risks. The effects of antibiotic resistance genes (ARGs) and antibiotics on bacterial transport/deposition in porous media yet are unclear. By using E. coli without ARGs as antibiotic-susceptible bacteria (ASB) and their corresponding isogenic mutants with ARGs in plasmids as ARB, the effects of ARGs and antibiotics on bacterial transport in porous media were examined under different conditions (1-4 m/d flow rates and 5-100 mM NaCl solutions). The transport behaviors of ARB were comparable with those of ASB under antibiotic-free conditions, indicating that ARGs present within cells had negligible influence on bacterial transport in antibiotic-free solutions. Interestingly, antibiotics (5-1000 μg/L gentamicin) present in solutions increased the transport of both ARB and ASB with more significant enhancement for ASB. This changed bacterial transport induced by antibiotics held true in solution with humic acid, in river water and groundwater samples. Antibiotics enhanced the transport of ARB and ASB in porous media via different mechanisms (ARB: competition of deposition sites; ASB: enhanced motility and chemotaxis effects). Clearly, since ASB are likely to escape sites containing antibiotics, these locations are more likely to accumulate ARB and their environmental risks would increase.
Collapse
Affiliation(s)
- Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiangyu Su
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing Key Laboratory of Water Resources and Environmental, Engineering, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Qian Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
17
|
Li Y, Wang J, Lin C, Lian M, Wang A, He M, Liu X, Ouyang W. Riverine antibiotic occurrence and potential ecological risks in a low-urbanized and rural basin of the middle Yangtze River: Socioeconomic, land use, and seasonal effects. ENVIRONMENTAL RESEARCH 2023; 228:115827. [PMID: 37015301 DOI: 10.1016/j.envres.2023.115827] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023]
Abstract
This study firstly investigated the effects of season, land use, and socioeconomic on the spatiotemporal changes of riverine antibiotic concentrations in a low urbanized and rural watershed. In the dry and wet seasons, water samples were collected and analyzed for 15 antibiotics. The results indicated that 14 antibiotics, excluding leucomycin, were detected. Monsoon led to significantly lower total antibiotic concentrations in the wet season (22.0ngL-1) than in the dry season (51.2ngL-1). Total antibiotic concentrations were dominated by amoxicillin (below limit of detection (<LOD)-34.7ngL-1)), erythromycin-H2O (<LOD-14.7ngL-1), roxithromycin (<LOD-27.9ngL-1), and trimethoprim (<LOD-6.34ngL-1). The total antibiotic concentrations were usually higher in the downstream areas of urban land than in the river reaches of forest land and agricultural land. At county or city scales, total antibiotic concentrations in the dry season were significantly correlated with the rural population, public budget, husbandry product and output, effluent volume, fishery product and output, and hospital number, which generally depend on land use in the basin. Amoxicillin poses a high ecological risk to aquatic algae, whereas erythromycin-H2O, ofloxacin, and norfloxacin pose medium ecological risks. However, trimethoprim poses a medium ecological risk to mollusks. These results provide improved insights into the characteristics of antibiotic occurrence and ecological risks in the waters of low-urbanized and rural areas in China and can be extrapolated worldwide.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jing Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Maoshan Lian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Yang M, Liang S, Zhou H, Li Y, Zhong Q, Yang Z. Consumption in Non-Pastoral Regions Drove Three-Quarters of Forage-Livestock Conflicts in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7721-7732. [PMID: 37163752 DOI: 10.1021/acs.est.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Forage-livestock conflict (FLC) is a major anthropogenic cause of rangeland degradation. It poses tremendous threats to the environment owing to its adverse impacts on carbon sequestration, water supply and regulation, and biodiversity conservation. Existing policy interventions focus on the in situ FLCs induced by local production activities but overlook the role of consumption activities in driving FLCs. Here, we investigate the spatiotemporal variations in China's FLCs and the domestic final consumers at the county level by combining remote sensing data and multi-regional input-output model. Results show that during 2005-2015, China's pastoralism induced an average of 82 million tons of FLCs per year. Domestic final demand was responsible for 85-93% of the FLCs in China. There was spatiotemporal heterogeneity in domestic consumption driving China's FLCs. In particular, the final demand of non-pastoral regions was responsible for around three-quarters (74-79%) of the total FLCs throughout the decade. The rangeland-based livestock raising, agricultural and sideline product processing, and catering sectors are important demand-side drivers. These findings can support targeted demand-side strategies and interregional cooperation to reduce China's FLCs, thus mitigating rangeland degradation.
Collapse
Affiliation(s)
- Mingyue Yang
- School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Haifeng Zhou
- School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yumeng Li
- School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiumeng Zhong
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
19
|
Yang Y, Ji Y, Gao Y, Lin Z, Lin Y, Lu Y, Zhang L. Antibiotics and antimycotics in waste water treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. ENVIRONMENTAL RESEARCH 2022; 215:114135. [PMID: 35998699 DOI: 10.1016/j.envres.2022.114135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
For investigating the spatial, temporal variations and assessing ecological risk of 10 antibiotics and 6 antimycotics, influent sewage water and treated effluent were collected during three different seasons in 19 waste water treatment plants of Tianjin. High performance liquid chromatography tandem mass spectrometry was used to analyze 16 substances. The concentration range of influent samples was not detected (nd) -547.94 ng/L and the concentration range of effluent samples was nd-52.97 ng/L. By calculating the removal efficiency, it was found that Ciprofloxacin (CIP), Ofloxacin (OFL) and Clotrimazole (CTR) were effectively removed. There were significant spatial and temporal differences, the concentration in the dry season was evidently higher than that in the wet and normal seasons, and the northeast was lower than that in the northwest and southeast. By establishing a data set of influent and effluent, the priority features were extracted by feature engineering, which were temperature and NH3-N. Under the condition of ensuring the best performance of the models, the influent model with 9 features and the effluent model with 4 features were established, and the quantitative relationship between the above features and concentration was obtained through partial dependence analysis. Except for Moxifloxacin (MOX), Norfloxacin (NOR) and OFL in the influent samples, the RQ values for other antibiotics and antimycotics were less than 0.1. Among the effluent samples, only NOR had an RQ value greater than 0.1, and OFL, MOX, and Pefloxacin (PEF) had RQ values between 0.01 and 0.1. Comparing the observations and predictions individual RQ values, the predictions were ideal and matched the observations. This work effectively assessed environmental impact and provided a valuable reference for evaluating antibiotics and antimycotics ecological toxicity.
Collapse
Affiliation(s)
- Yi Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin, 300350, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin, 300350, China.
| | - Yuzong Gao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin, 300350, China
| | - Zi Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin, 300350, China
| | - Yu Lin
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin, 300350, China
| | - Yuan Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| |
Collapse
|