1
|
Yuan Y, Chen X, Cai R, Li X, Li Y, Yin R, Li D, Yan C, Liu Y, He K, Kulmala M, Jiang J. Resolving Atmospheric Oxygenated Organic Molecules in Urban Beijing Using Online Ultrahigh-Resolution Chemical Ionization Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17777-17785. [PMID: 39329193 DOI: 10.1021/acs.est.4c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Gaseous oxygenated organic molecules (OOMs) are crucial precursors of atmospheric organic aerosols. OOMs in urban atmospheres have complex compositions, posing challenges to understanding their formation, evolution, and influences. In this study, we identify 2403 atmospheric gaseous OOMs in urban Beijing using online nitrate-based chemical ionization Orbitrap mass spectrometry based on one-year atmospheric measurements. We find that OOMs in urban atmospheres can be identified with higher accuracy and wider coverage, compared to previously used online mass spectrometry. With optimized OOM resolving capabilities, previous knowledge of OOMs in urban atmospheres can be expanded. First, clear homologous and oxygen-addition characteristics of the OOMs are revealed. Second, OOMs with lower concentrations or higher masses are identified and characterized with high confidence, e.g., OOMs with masses above 350 Da. In particular, dimers of OOMs (e.g., C20H32O8-15N2), crucial species for organic nucleation, are identified. During four seasons, nitrogen-containing OOMs dominate the total concentration of OOMs, and OOMs are mainly from aromatic and aliphatic oxidation. Additionally, radicals with similar composition as OOMs, intermediates for OOM formation, are identified with clear diurnal variation, e.g., CnH2n-5O6 radicals (n = 8-10) and CmH2m-4NO9 radicals (m = 9-10), peak during the daytime and nighttime, respectively, previously having scarce measurement evidence in urban atmospheres.
Collapse
Affiliation(s)
- Yi Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Xin Chen
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Runlong Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 200438 Shanghai, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaoxiao Li
- School of Resource and Environmental Sciences, Wuhan University, 430072 Wuhan, China
| | - Yuyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Rujing Yin
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Dandan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, 210023 Nanjing, China
- National Observation and Research Station for Atmospheric Processes and Environmental Change in Yangtze River Delta, 210023 Nanjing, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
2
|
Liu G, Ma X, Li W, Chen J, Ji Y, An T. Pollution characteristics, source appointment and environmental effect of oxygenated volatile organic compounds in Guangdong-Hong Kong-Macao Greater Bay Area: Implication for air quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170836. [PMID: 38346658 DOI: 10.1016/j.scitotenv.2024.170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.
Collapse
Affiliation(s)
- Guanyong Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Li F, Tang S, Lv J, He A, Wang Y, Liu S, Cao H, Zhao L, Wang Y, Jiang G. Molecular-Scale Investigation on the Formation of Brown Carbon Aerosol via Iron-Phenolic Compound Reactions in the Dark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11173-11184. [PMID: 37462533 DOI: 10.1021/acs.est.3c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.
Collapse
Affiliation(s)
- Feifei Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Tang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Qi W, Zhang Y, Shen M, Li L, Dai W, Chen Y, Liu Y, Guo X, Cao Y, Wang X, Jiang Y, Li J. Comparison of Gas-Particle Partitioning of Glyoxal and Methylglyoxal in the Summertime Atmosphere at the Foot and Top of Mount Hua. Molecules 2023; 28:5276. [PMID: 37446934 DOI: 10.3390/molecules28135276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Glyoxal and methylglyoxal are important volatile organic compounds in the atmosphere. The gas-particle partitioning of these carbonyl compounds makes significant contributions to O3 formation. In this study, both the gas- and particle-phase glyoxal and methylglyoxal concentrations at the foot and top of Mount Hua were determined simultaneously. The results showed that the gaseous-phase glyoxal and methylglyoxal concentrations at the top were higher than those at the foot of the mountain. However, the concentrations for the particle phase showed the opposite trend. The average theoretical values of the gas-particle partitioning coefficients of the glyoxal and methylglyoxal concentrations (4.57 × 10-10 and 9.63 × 10-10 m3 μg-1, respectively) were lower than the observed values (3.79 × 10-3 and 6.79 × 10-3 m3 μg-1, respectively). The effective Henry's law constants (eff.KH) of the glyoxal and methylglyoxal were in the order of 108 to 109 mol/kgH2O/atm, and they were lower at the foot than they were at the top. The particle/gas ratios (P/G ratios) of the glyoxal and methylglyoxal were 0.039 and 0.055, respectively, indicating more glyoxal and methylglyoxal existed in the gas phase. The factors influencing the partitioning coefficients of the glyoxal and methylglyoxal were positively correlated with the relative humidity (RH) and negatively correlated with the PM2.5 value. Moreover, the partitioning coefficient of the glyoxal and methylglyoxal was more significant at the top than at the foot of Mount Hua.
Collapse
Affiliation(s)
- Weining Qi
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yifan Zhang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Minxia Shen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lu Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yukun Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yali Liu
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Xiao Guo
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yue Cao
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Xin Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yingkun Jiang
- Xi'an Institute for Innovative Earth Environment Research, Xi'an 710061, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an 710499, China
| |
Collapse
|
5
|
Tian L, Huang DD, Li YJ, Yan C, Nie W, Wang Z, Wang Q, Qiao L, Zhou M, Zhu S, Liu Y, Guo Y, Qiao X, Zheng P, Jing S, Lou S, Wang H, Huang C. Enigma of Urban Gaseous Oxygenated Organic Molecules: Precursor Type, Role of NO x, and Degree of Oxygenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:64-75. [PMID: 36516990 DOI: 10.1021/acs.est.2c05047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation. This was attributed to the high NOx concentrations (∼44 ppb), which overall showed a suppression on the propagation reactions. As another result, a large fraction of nitrogenous OOMs (75%) was observed, and this fraction further increased to 84% under a high NO/VOC ratio. By applying a novel framework on OOM categorization and supported by VOC measurements, 50 and 32% OOMs were attributed to aromatic and aliphatic precursors, respectively. Furthermore, aromatic OOMs are more oxygenated (effective oxygen number, nOeff = 4-6) than aliphatic ones (nOeff = 3-4), which can be partly explained by the difference in initiation mechanisms and points to possible discrimination in termination reactions. This study highlights the roles of NOx in OOM formation in urban areas, as well as the formation of nitrogenous products that might show discrimination between aromatic and aliphatic VOCs.
Collapse
Affiliation(s)
- Linhui Tian
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau, Taipa 999078, China
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Nie
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Qian Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Liping Qiao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shuhui Zhu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yishuo Guo
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Qiao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China
| | - Penggang Zheng
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology (HKUST), Hong Kong SAR 999077, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|