1
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
2
|
Li M, Gong X, Tan Q, Xie Y, Tong Y, Ma J, Wang D, Ai L, Gong Z. A review of occurrence, bioaccumulation, and fate of novel brominated flame retardants in aquatic environments: A comparison with legacy brominated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173224. [PMID: 38763187 DOI: 10.1016/j.scitotenv.2024.173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.
Collapse
Affiliation(s)
- Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
3
|
Campioni L, Oró-Nolla B, Granadeiro JP, Silva MC, Madeiros J, Gjerdrum C, Lacorte S. Exposure of an endangered seabird species to persistent organic pollutants: Assessing levels in blood and link with reproductive parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172814. [PMID: 38679096 DOI: 10.1016/j.scitotenv.2024.172814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Ocean contamination, particularly from persistent organic pollutants (POPs), remains a significant threat to marine predators that occupy high trophic positions. Long-lived procellariform seabirds are apex predators in marine ecosystems and tend to accumulate contaminants. Prolonged exposure to pollutants negatively affects their fitness including reproductive success. Low breeding success may represent a hurdle for the restoration of small and endangered seabird populations, including several highly threatened gadfly petrels. Here we investigated the annual variation (2019 and 2022) in organochlorine pesticide (OCP), polychlorinated biphenyl ether (PCB), polybrominated diphenyl ether (PBDE), and polycyclic aromatic hydrocarbon (PAH) exposure in the endangered Bermuda petrel (Pterodroma cahow), and the relationship between female contaminant burden and breeding parameters. We found that petrels were exposed to a wide range of pollutants (33 out of 55 showed measurable levels) with PCBs dominating the blood contaminant profiles in both years. Only 9 compounds were detected in >50 % of the birds. Specifically, among OCPs, p, p'-DDE and hexaclorobenzene were the most frequently detected while fluorene and acenaphthene were the most common PAH. The concentrations of ∑5PCBs and ∑7POPs were higher in older birds. Furthermore, females with greater contaminant burdens laid eggs with a lower probability of hatching. However, female investment in egg production (size and volume) was unrelated to their blood contaminant load. Overall, this study highlights the presence of a wide range of contaminants in the petrel's food web, and it sheds light on the potential impact of chronic exposure to sub-lethal levels of PCBs on the breeding success of seabirds. We claim that toxicological testing should be a practice integrated in the management of seabirds, particularly of endangered species to monitor how past and present anthropogenic activities impact their conservation status.
Collapse
Affiliation(s)
- Letizia Campioni
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Ispa - Instituto Universitário, 1149-041 Lisboa, Portugal.
| | - Bernat Oró-Nolla
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - José P Granadeiro
- CESAM Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mónica C Silva
- CE3C- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, CHANGE - Global Change and Sustainability Institute, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jeremy Madeiros
- Department of Environment and Natural Resources, Ministry of the Environment, PO Box FL588, Flatts, FL BX, Bermuda
| | - Carina Gjerdrum
- Canadian Wildlife Service, Dartmouth, Nova Scotia B2Y 2N6, Canada
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Liang C, He Y, Mo XJ, Guan HX, Liu LY. Universal occurrence of organophosphate tri-esters and di-esters in marine sediments: Evidence from the Okinawa Trough in the East China Sea. ENVIRONMENTAL RESEARCH 2024; 248:118308. [PMID: 38281563 DOI: 10.1016/j.envres.2024.118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hong-Xiang Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
5
|
Olasupo A, Corbin DR, Shiflett MB. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133830. [PMID: 38387180 DOI: 10.1016/j.jhazmat.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.
Collapse
Affiliation(s)
- Ayo Olasupo
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - David R Corbin
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - Mark B Shiflett
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States.
| |
Collapse
|
6
|
Liu M, Li A, Li Y, Zhang Q, Jiang G. Rebuttal to Correspondence on "Exposure to Novel Brominated Flame Retardants and Organophosphate Esters and Associations with Thyroid Cancer Risk: A Case-Control Study in Eastern China". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4460-4461. [PMID: 38366330 DOI: 10.1021/acs.est.4c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Mei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - An Li
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Huang C, Zeng Y, Guan K, Qi X, Liu YE, Lu Q, Wang S, Luo X, Mai B. Occurrence, composition, and spatial distribution of dechlorane plus in surface sediments of black-odorous urban rivers across China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17472-17480. [PMID: 38342836 DOI: 10.1007/s11356-024-32341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
China, one of the two dechlorane plus (DP) producers, might have become a major area of DP pollution. The environmental contamination status of DP in sediments across the whole of China has not yet been studied. In the current study, the pollution levels, spatial distribution, and compositions of DP were investigated comprehensively in surface sediments from 173 black-odorous urban rivers across China for the first time. Total DP concentrations varied from not-detected to 39.71 ng/g dw, with an average concentration of 3.20 ± 4.74 ng/g dw, which was polluted by local emission sources and presented significant differences among different sampling cities. Among the seven administrative regions of China, DP concentrations were the highest in South China and showed a decreasing trend from southeastern coastal areas to northwest inland regions. Spearman's correlation analysis suggested that the gross industrial output, gross domestic product, and daily wastewater treatment capacity were not the principal factors controlling the spatial distribution of DP. The fanti values (the concentration ratios of anti-DP to the sum of anti-DP and syn-DP) varied from 0.19 to 0.88, with those in most sediments falling in the range of DP technical product (0.60 ~ 0.80), suggesting no apparent stereoselective enrichment occurred. Moreover, the anti-Cl11-DP was detected in sediments (n.d. ~ 0.40 ng/g dw), which showed significantly and insignificantly positive correlation with the anti-DP levels and fanti, respectively, implying it might mainly originate from the byproduct of DP technical product rather than the dechlorination of anti-DP.
Collapse
Affiliation(s)
- Chenchen Huang
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Kelan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xuemeng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yin-E Liu
- China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou, 221116, Jiangsu, People's Republic of China
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong-Hong Kong-MaCao, Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
8
|
Li S, Zhang Y, Cong B, Liu S, Liu S, Mi W, Xie Z. Spatial distribution, source identification and flux estimation of polycyclic aromatic hydrocarbons and organochlorine pesticides in basins of the Eastern Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166974. [PMID: 37699479 DOI: 10.1016/j.scitotenv.2023.166974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Although polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) have been recorded worldwide, information on their presence in the Eastern Indian Ocean (EIO), especially south of 10°S, remains limited. We investigated the distribution and depositional fluxes of PAHs and OCPs, and the major sources and ecological risks of PAHs in EIO surface sediments from the Central Indian Ocean (CIOB) and Wharton Basin (WB). The concentration of Σ18 PAHs and ∑10 OCPs had an average value (± SD) of 138.4 ± 52.34 and 0.8 ± 0.20 ng g-1, respectively. PAHs may mainly affected by traffic emission and biomass and wood combustion. Persistent organic pollutant accumulation rate (PAR) and depositional flux (DF) values showed that abundant PAHs might lost during top-down transport. The low trans- chordane (CHL)/cis-CHL ratio and PAR of OCPs may indicated few OCPs were inputted into the EIO recently. The results of binary isotope mixing modeling indicate the predominance of marine organic matter (MOM) in total organic carbon (TOC) of sediments. Fluoranthene (Flour) and pyrene (Py) might have potential biological effects in the EIO. The study provided background values for PAHs and OCPs in the Indian Ocean, and preliminarily revealed the fate of POPs in the open oceans.
Collapse
Affiliation(s)
- Shuang Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yao Zhang
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao 266237, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Shengfa Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| |
Collapse
|
9
|
Chen Y, Wang Y, Tan Y, Jiang C, Li T, Yang Y, Zhang Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166058. [PMID: 37553051 DOI: 10.1016/j.scitotenv.2023.166058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Phthalate esters (PAEs) are the most ubiquitous and highly used plasticizers in plastic products globally, yet studies on the spatial variation, risks, and their correlation with microplastics (MPs) are limited, particularly throughout the Yangtze River (the largest river in China/Asia). Therefore, this study investigated for the first time the PAEs pollution characteristics throughout the Yangtze River sediments, studied the environmental factors linked to the distribution of PAEs, and explored their potential as chemical indicators for interpreting pollution patterns of MPs. Totally 14 out of 16 PAEs were detected in sediments, with total concentrations ranging from 84.67 ng/g to 274.0 ng/g (mean: 163.5 ng/g), dominated by Bis(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Di-isobutyl phthalate (DIBP), with contributions of 38.9 %, 31.8 %, and 20.8 %, respectively. Spatial distribution of PAEs did not indicate significant differences, which may be related to anthropogenic activities (i.e., emission intensity), runoff, and sediment physicochemical properties (i.e., TOC and TN), with TOC and TN being potential predictors of PAEs. The quantitative relationships (p < 0.001) between DEHP/∑16PAEs ratio and MPs (both individual and total MPs) were found in sediments, which suggested that DEHP could be potentially used as an indicator for MPs. DEHP, DIBP, and DBP posed high risks, accounting for 100 %, 68.4 %, and 10.5 % of the monitoring sites, respectively. Further work is necessary to better understand the relationship between DEHP/∑16PAEs and MPs in the environment and to take corresponding management and control measures for these pollutants.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tianyi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
10
|
Ngeno E, Ongulu R, Orata F, Matovu H, Shikuku V, Onchiri R, Mayaka A, Majanga E, Getenga Z, Gichumbi J, Ssebugere P. Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts. ENVIRONMENTAL RESEARCH 2023; 237:117076. [PMID: 37683795 DOI: 10.1016/j.envres.2023.117076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
This study investigated the levels, mass loadings, removal efficiency, and associated ecotoxicological risks of selected endocrine disrupting chemicals (EDCs), namely, dibutylphthalate (DBP), diethylhexylphthalate (DEHP), dimethylphthalate (DMP), linuron (LNR) and progesterone (PGT) in wastewater, sludge, and untreated dry biosolid (UDBS) samples from twelve wastewater treatment plants (WWTPs) in nine major towns in Kenya. Analysis was done using high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS). All the wastewater influents had quantifiable levels of EDCs with DBP being the most abundant (37.49%) with a range of 4.33 ± 0.63 to 19.68 ± 1.24 μg L-1. DEHP was the most abundant in sludge and accounted for 48.2% ranging between 278.67 and 9243.49 ng g-1 dry weight (dw). In the UDBS samples, DEHP was also the most abundant (40%) of the total EDCs detected with levels ranging from 78.77 to 3938.54 ng g-1 dw. The average removal efficiency per pollutant was as follows: DMP (98.7%) > DEHP (91.7%) > PGT (83.4%) > DBP (77.9%) > LNR (72.2%) which can be attributed to sorption onto the biosolid, biological degradation, photolysis, and phytoremediation. The pH was negatively correlated to the EDC concentrations while total dissolved solids (TDS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and electrical conductivity (EC) were positively correlated. The mass loadings were as high as 373.33 g day-1 of DBP in the treatment plants located in densely populated cities. DEHP and PGT had their Risk Quotients (RQs) > 1, posing a high risk to biota. DMP, DBP, and LNR posed medium risks as their RQ values were between 0.1 and 1. EDCs are therefore loaded to environmental compartments through either the effluent that loads these pollutants into the receiving aquatic ecosystem or through the UDBS, which are used as fertilizers in agricultural farmlands causing potential toxicological risks to aquatic and terrestrial life.
Collapse
Affiliation(s)
- Emily Ngeno
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya; Department of Physical Sciences, Kaimosi Friends University, P.O Box 385-50309, Kaimosi, Kenya; Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Roselyn Ongulu
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya
| | - Henry Matovu
- Department of Chemistry, Gulu University, P.O Box 166, Gulu, Uganda
| | - Victor Shikuku
- Department of Physical Sciences, Kaimosi Friends University, P.O Box 385-50309, Kaimosi, Kenya
| | - Richard Onchiri
- Department of Civil Engineering, Technical University of Mombasa, P.O Box 000-80100, Mombasa, Kenya
| | - Abel Mayaka
- Faculty of Engineering, Multimedia University, P.O Box 15653-00503, Nairobi, Kenya
| | - Eunice Majanga
- Department of Social Sciences, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya
| | - Zachary Getenga
- Department of Physical Sciences, Machakos University, P.O Box 136-90100, Machakos, Kenya
| | - Joel Gichumbi
- Department of Physical Sciences, Chuka University, P.O Box 109-60400, Chuka, Kenya
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P.O Box 7062, Kampala, Uganda; Department of Cell Toxicology, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany; Department of Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
11
|
Kumar M, Saggu SK, Pratibha P, Singh SK, Kumar S. Exploring the role of microbes for the management of persistent organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118492. [PMID: 37384989 DOI: 10.1016/j.jenvman.2023.118492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Persistent organic pollutants (POPs) are chemicals which have been persisting in the environment for many years due to their longer half-lives. POPs have gained attention over the last few decades due to the unsustainable management of chemicals which led to their widespread and massive contamination of biota from different strata and environments. Due to the widespread distribution, bio-accumulation and toxic behavior, POPs have become a risk for organisms and environment. Therefore, a focus is required to eliminate these chemicals from the environment or transform into non-toxic forms. Among the available techniques for the removal of POPs, most of them are inefficient or incur high operational costs. As an alternative to this, microbial bioremediation of POPs such as pesticides, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pharmaceuticals and personal care products is much more efficient and cost-effective. Additionally, bacteria play a vital role in the biotransformation and solubilization of POPs, which reduces their toxicity. This review specifies the Stockholm Convention that evaluates the risk profile for the management of existing as well as emerging POPs. The sources, types and persistence of POPs along with the comparison of conventional elimination and bioremediation methods of POPs are discussed comprehensively. This study demonstrates the existing bioremediation techniques of POPs and summaries the potential of microbes which serve as enhanced, cost-effective, and eco-friendly approach for POPs elimination.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Allied and Healthcare Sciences, GNA University, Phagwara, Punjab, 144401, India
| | - Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Pritu Pratibha
- Center for Excellence in Molecular Plant Science, Plant Stress Center, CAS, Shanghai, 201602, China
| | - Sunil Kumar Singh
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, 211002, India.
| | - Shiv Kumar
- Department of Microbiology, Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab, 151203, India.
| |
Collapse
|
12
|
Zhao S, Liu X, Wu Z, Lin T, Sun H, Wang W, Guo Z, Yao Z. Investigating the presence of organophosphate esters in sediments from a typical fishing port agglomeration in Dalian, North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122233. [PMID: 37481025 DOI: 10.1016/j.envpol.2023.122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
The presence of 14 organophosphate esters (OPEs) in surface sediments from a typical fishing port agglomeration in Dalian, North China was investigated for the first time. Tris(2-ethylhexyl) phosphate (TEHP), triphenylphosphine oxide (TPPO), and tris(2-chloroethyl) phosphate (TCEP) dominated 12 detectable OPEs (∑OPEs), with concentrations ranging widely from 0.56 to 352 ng/g (dry weight basis). The ∑OPE levels in sediments varied significantly across fishing harbors of various grades, and within the same grade, highlighting uneven distribution of OPE sources and inputs to harbors. The first- and second-class fishing harbors had higher geometric mean of ∑OPE contents compared to center and natural harbors, reflecting higher OPE pollution in these areas. Although there were significant correlations among the OPE congeners with high detection frequencies, the composition patterns of sediment OPEs varied considerably among fishing ports. The sediments in the center and first-class harbors had higher abundance of non-chlorinated OPEs (non-Cl-OPEs), suggesting heterogeneity in source strength and pollution characteristics of Cl- and non-Cl-OPEs in fishing ports. The distribution of OPEs in sediments was weakly associated with sediment organic carbon, but not socioeconomic variables, indicating complex controlling factors of their distributions in port sediments. The ecological risks of sediment OPEs were evaluated, and while OPE accumulations ranged broadly (7-684 ng/cm2), exposure hazards were negligible. The sediments in first- and second-class fishing harbors, which had greater OPE accumulation, were identified as reservoirs of OPEs in port aquatic environments.
Collapse
Affiliation(s)
- Shilan Zhao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xing Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zilan Wu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Wenwen Wang
- Agilent Technologies (China) Co. Ltd., Beijing, 100102, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
13
|
Niu D, Xiao Y, Chen S, Du X, Qiu Y, Zhu Z, Yin D. Evaluation of the oral bioaccessibility of legacy and emerging brominated flame retardants in indoor dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99735-99747. [PMID: 37620695 DOI: 10.1007/s11356-023-29304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.0% and 26.7%, respectively. In order to maintain homeostasis of the gastrointestinal tract, 0.4 g Tenax was added in CE-PEBT, which increased BFRs bioaccessibility by up to a factor of 1.4-1.9. The highest bioaccessibility of legacy PBDEs was tri-BDEs (73.3%), while 2-ethylhexyl-tetrabromo-benzoate (EHTBB), one of penta-BDE alternatives, showed the highest (62.2%) among NBFRs. The influence of food nutrients, liquid to solid (L/S) ratio, and octanol-water partition coefficient (Kow) on bioaccessibility was assessed. The oral bioaccessibility of BFRs increased with existence of protein or carbohydrate while lipid did the opposite. The bioaccessibilities of PBDEs and NBFRs were relatively higher with 200:1 L/S ratio. PBDEs bioaccessibility generally decreased with increasing LogKow. No significant correlation was observed between NBFRs bioaccessibility and LogKow. This study comprehensively evaluated the bioaccessibilities of legacy and emerging BFRs via dust ingestion using Tenax-assisted CE-PBET, and highlighted the significance to fully consider potential influencing factors on BFRs bioaccessibility in further human exposure estimation.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yao Xiao
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Shiyan Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201206, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
14
|
Mi L, Xie Z, Xu W, Waniek JJ, Pohlmann T, Mi W. Air-Sea Exchange and Atmospheric Deposition of Phthalate Esters in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11195-11205. [PMID: 37459505 PMCID: PMC10399291 DOI: 10.1021/acs.est.2c09426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.
Collapse
Affiliation(s)
- Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Weihai Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Joanna J Waniek
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
| | - Thomas Pohlmann
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| |
Collapse
|
15
|
Carr B, Masqué P, Alonso-Hernández CM, Huertas D, Bersuder P, Tolosa I. Trends of legacy and emerging organic contaminants in a sediment core from Cienfuegos Bay, Cuba, from 1990 to 2015. CHEMOSPHERE 2023; 328:138571. [PMID: 37019402 DOI: 10.1016/j.chemosphere.2023.138571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Legacy and emerging organic pollutants pose an ever-expanding challenge for the marine environment. This study analysed a dated sediment core from Cienfuegos Bay, Cuba, to assess the occurrence of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), alternative halogenated flame retardants (aHFRs), organophosphate esters (OPEs), and phthalates (PAEs) from 1990 to 2015. The results evidence the continuing presence of historical regulated contaminants (PCBs, OCPs, and PBDEs) in the southern basin of Cienfuegos Bay. PCB contamination declined since 2007, likely in response to the gradual global phasing out of PCB containing materials. There have been relatively consistent low accumulation rates for OCPs and PBDEs at this location (in 2015 approximately 1.9 and 0.26ng/cm2/year, respectively, with 2.8ng/cm2/year for Σ6PCBs), with indications of recent local DDT use in response to public health emergencies. In contrast, sharp increases are observed between 2012 and 2015 for the contaminants of emerging concern (PAEs, OPEs, and aHFRs), and in the case of two PAEs (DEHP and DnBP) the concentrations were above the established environmental effect limits for sediment dwelling organisms. These increasing trends reflect the growing global usage of both alternative flame retardants and plasticizer additives. Local drivers for these trends include nearby industrial sources such as a plastic recycling plant, multiple urban waste outfalls, and a cement factory. The limited capacity for solid waste management may also contribute to the high concentrations of emerging contaminants, especially plastic additives. For the most recent year (2015), the accumulation rates for Σ17aHFRs, Σ19PAEs, and Σ17OPEs into sediment at this location were estimated to be 10, 46 000, and 750ng/cm2/year, respectively. This data provides an initial survey of emerging organic contaminants within this understudied region of the world. The increasing temporal trends observed for aHFRs, OPEs, and PAEs highlights the need for further research concerning the rapid influx of these emerging contaminants.
Collapse
Affiliation(s)
- Brigid Carr
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco.
| | - Pere Masqué
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | | | - David Huertas
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Philippe Bersuder
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco
| | - Imma Tolosa
- IAEA Marine Environmental Laboratories, 4 Quai Antoine 1er, 98000, Monaco.
| |
Collapse
|
16
|
Chang R, Wang Q, Ban X, Zhang H, Li J, Yuan GL. Aging affects isomer-specific occurrence of dechlorane plus in soil profiles: A case study in a geographically isolated landfill from the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163119. [PMID: 36996972 DOI: 10.1016/j.scitotenv.2023.163119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Two major structural isomers in commercial dechlorane plus (DP) mixtures, anti-DP and syn-DP, generally displayed varied desorption and partitioning efficiencies in soils, which may be linked to their different aging rates. However, the molecular parameters that govern the degree of aging and its associated effects on the occurrence of DP isomers have not been comprehensively investigated. In this study, the relative abundance of rapid desorption concentration (Rrapid) was measured for anti-DP, syn-DP, anti-Cl11-DP, anti-Cl10-DP, Dechlorane-604 (Dec-604), and Dechlorane-602 (Dec-602) at a geographically isolated landfill area in the Tibetan Plateau. The Rrapid values were used as an indicator of aging degree, exhibiting a close correlation with the three-dimension conformation of the molecules for the dechlorane series compounds. This observation suggested that planar molecules may have a greater tendency to accumulate in the condensed phase of organic matter and undergo more rapid aging. The fractional abundances and dechlorinated products of anti-DP were found to be predominantly controlled by the aging degree of DP isomers. The multiple nonlinear regression model indicated that differences in aging between anti-CP and syn-DP were primarily driven by the total desorption concentration and soil organic matter content. Aging plays a significant role in both the transport processes and metabolism of DP isomers and should be taken into account to refine the assessment of their environmental behaviors.
Collapse
Affiliation(s)
- Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qi Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiyu Ban
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
17
|
Xie J, Zhang G, Wu Q, Luo M, Chen D, Zhang Y, He L, Li Y, Zhang Q, Lin T, Jiang G. First evidence and potential sources of novel brominated flame retardants and BDE 209 in the deepest ocean. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130974. [PMID: 36860051 DOI: 10.1016/j.jhazmat.2023.130974] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Organic anthropogenic pollutants reach even the deepest parts of the oceans, i.e., the hadal trenches. We here presented the concentrations, influencing factors, and potential sources of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in hadal sediments and amphipods from the Mariana, Mussau and New Britain trenches. Results showed that BDE 209 was the dominant PBDEs congener and DBDPE was the dominant NBFRs. No significant correlation was found between TOC contents and PBDEs or NBFRs levels in sediment. Lipid content and body length were the potential important factors affecting variation in pollutant concentrations in the carapace & muscle of amphipods, while the pollution levels of viscera were mainly affected by the sex and lipid content. PBDEs and NBFRs might reach trench surface seawater through long-range atmospheric transport and oceans currents but with little contribution from the Great Pacific Garbage Patch. Determination of carbon and nitrogen isotopes indicated that the pollutants were transported and accumulated in amphipods and sediment via different pathways. PBDEs and NBFRs in the hadal sediments were generally transported via the settling of sediment particles of either marine or terrigenous origin whereas in amphipods they accumulated via feeding on animal carrion through the food web. This is the first study reporting on BDE 209 and NBFR contaminations in hadal settings and provide new insight on influencing factors and sources of PBDEs and NBFRs in the deepest oceans.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gaoxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Min Luo
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Duofu Chen
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Lisheng He
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
18
|
Huang YH, Yang YJ, Wu X, Zhu CL, Lü H, Zhao HM, Xiang L, Li H, Mo CH, Li YW, Cai QY, Li QX. Adaptation of bacterial community in maize rhizosphere for enhancing dissipation of phthalic acid esters in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130292. [PMID: 36399821 DOI: 10.1016/j.jhazmat.2022.130292] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Rhizospheric degradation is a green and in situ strategy to accelerate dissipation of organic pollutants in soils. However, the mechanism on microbial degradation of phthalic acid esters (PAEs) in rhizosphere is still unclear. Here, the bacterial community and function genes in bulk and rhizospheric soils of maize (Zea mays L.) exposed to gradient concentrations of di-(2-ethylhexyl) phthalate (DEHP) were analyzed with 16 S rRNA, metagenomic sequencing and quantitative PCR (qPCR). Maize rhizosphere significantly increased the dissipation of DEHP by 4.02-11.5% in comparison with bulk soils. Bacterial community in rhizosphere exhibited more intensive response and shaped its beneficial structure and functions to DEHP stress than that in bulk soils. Both rhizospheric and pollution effects enriched more PAE-degrading bacteria (e.g., Bacillus and Rhizobium) and function genes in rhizosphere than in bulk soil, which played important roles in degradation of PAEs in rhizosphere. The PAE-degrading bacteria (including genera Sphingomonas, Sphingopyxis and Lysobacter) identified as keystone species participated in DEHP biodegradation. Identification of PAE intermediates and metagenomic reconstruction of PAE degradation pathways demonstrated that PAE-degrading bacteria degraded PAEs through cooperation with PAE-degrading and non-PAE-degrading bacteria. This study provides a comprehensive knowledge for the microbial mechanism on the superior dissipation of PAEs in rhizosphere.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Jie Yang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaolian Wu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Cui-Lan Zhu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
19
|
Li X, Jiang S, Zheng H, Shi Y, Cai M, Cai Y. Organophosphorus pesticides in southeastern China marginal seas: Land-based export and ocean currents redistribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160011. [PMID: 36356779 DOI: 10.1016/j.scitotenv.2022.160011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Organophosphorus pesticides (OPPs) have raised an increasing public concern due to their harmful impacts. To explore the occurrence and distribution of OPPs in southeastern China marginal seas (SCMS), a sampling campaign was carried out from East China Sea (ECS) to South China Sea (SCS). A total of 33 OPPs are quantified with the ΣOPPs concentrations ranging from 4.73 to 14.15 ng/L. Higher ΣOPPs concentrations in the surface seawater from the estuaries of Yangtze River, Minjiang River, and Pearl River than those at other sampling sites indicates that riverine emissions are the principal sources of OPPs in SCMS. Different compositions of OPPs in ECS and SCS highlight the different priority of use categories for OPPs in China coastal region. In addition, the vertical diffusion and upwelling ocean currents play critical roles in the redistribution of OPPs in SCMS. For the first time, the ΣOPPs mass inventories in surface seawater of ECS and SCS are estimated at 8.51 and 11.26 t, respectively. Although the current ecological risk of OPPs is at low level in surface seawater of SCMS, the long-term use and bio-accumulative potential point to the necessity for the normalized monitoring of OPPs in China.
Collapse
Affiliation(s)
- Xiaotong Li
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Su Jiang
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; School of Oceanography (SOO), Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Hongyuan Zheng
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Minghong Cai
- MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China; School of Oceanography (SOO), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|