1
|
Kumar P, Singh S, Gacem A, Yadav KK, Bhutto JK, Alreshidi MA, Kumar M, Kumar A, Yadav VK, Soni S, Kumar R, Qasim MT, Tariq M, Alam MW. A review on e-waste contamination, toxicity, and sustainable clean-up approaches for its management. Toxicology 2024; 508:153904. [PMID: 39106909 DOI: 10.1016/j.tox.2024.153904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Ecosystems and human health are being negatively impacted by the growing problem of electrical waste, especially in developing countries. E-waste poses a significant risk to ecological systems because it can release a variety of hazardous substances into the environment, containing polybrominated diphenyl ethers and heavy metals, brominated flame retardants, polychlorinated dibenzofurans and polycyclic aromatic hydrocarbons, and dioxins. This review article provides a critical assessment of the toxicological consequences of e-waste on ecosystems and human health and data analyses from scientific journals and grey literature on metals, BFRs, PBDEs, PCDFs, and PAHs in several environmental compartments of commercial significance in informal electronic trash recycling. The currently available techniques and tools employed for treating e-waste are sustainable techniques such as bioremediation, chemical leaching, biological leaching, and pyrometallurgy have been also discussed along with the necessity of implementing strong legislation to address the issue of unregulated exports of electronic trash in recycling practices. Despite the ongoing hurdles, implementing environmentally sustainable recycling methods have the potential to address the detrimental impacts of e-waste and foster positive economic development.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | | | - Manoj Kumar
- Department of Hydrology, Indian Institute of Technology, Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anand Kumar
- School of Management Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sunil Soni
- School of Medico-Legal Studies, National Forensic Science University, Gandhinagar, Gujarat 382007, India
| | - Ramesh Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Maytham T Qasim
- College of health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| |
Collapse
|
2
|
Guo J, Chen Z, Chen X, Xu Z, Ruan J. Organophosphate flame retardants in air from formal e-waste recycling workshops in China: Size-distribution, gas-particle partitioning and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124593. [PMID: 39043313 DOI: 10.1016/j.envpol.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
In order to understand the organophosphate flame retardants (OPFRs) pollution and evaluate the inhalation exposure risk in formal e-waste recycling facilities, the air concentrations, particle size distribution and gas-particle partitioning of OPFRs in four typical workshops were investigated. The total Σ15OPFR concentrations inside workshops were in the range of 64.7-682 ng/m3, with 5.80-23.4 ng/m3 in gas phase and 58.8-658 ng/m3 in particle phase. Triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) were main analogs, both of which contributed to 49.0-85.7% of total OPFRs. In the waste printed circuit boards thermal treatment workshop, the OPFRs concentration was the highest, and particle-bound OPFRs mainly distributed in 0.7-1.1 μm particles. The proportions of TPHP in different size particles increased as the decrease of particle size, while TCIPP presented an opposite trend. The gas-particle partitioning of OPFR analogs was dominated by absorption process, and did not reach equilibrium state due to continuous emission of OPFRs from the recycling activities. The deposition fluxes of OPFRs in respiratory tract were 65.7-639 ng/h, and the estimated daily intake doses of OPFRs were 8.52-76.9 ng/(kg·day) in four workshops. Inhalation exposure was an important exposure pathway for e-waste recycling workers, and deposition fluxes of size-segregated OPFRs were mainly in head airways region.
Collapse
Affiliation(s)
- Jie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Zhenyu Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xuan Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, PR China
| |
Collapse
|
3
|
Agbim A, Schumacher KA, Sharp N, Paul R, Corzo R. Elemental characterization of electronic waste: a review of research methodologies and applicability to the practice of e-waste recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:91-100. [PMID: 39002297 DOI: 10.1016/j.wasman.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Economic and environmental considerations have elucidated research interests on the best approach to managing electronic waste (e-waste), which has increasing social, environmental, and economic impacts. Proper e-waste managementis essential for resource recovery, environmental sustainability, and public health protection, and effective management of e-waste necessitates analytical techniques to assess and characterize their elemental composition. Despite expansive literature published on the topic of e-waste, there is scarce coverage of the various analytical techniques employed to characterize the inorganic contents of e-waste. This review discusses the various e-waste characterization techniques used in studies published between 2013 and 2023. Specifically, this review covers the analytical approaches employed to characterize the inorganic content of e-waste, the electronic devices or their components analyzed, the elements identified, the sample preparation methods adopted, and the merits and demerits of the analytical procedures. This review highlights the disparate approaches to e-waste characterization and the need for reliable and repeatable e-waste analysis and sample preparation methods.
Collapse
Affiliation(s)
- Amarachukwu Agbim
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Kelsea A Schumacher
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States.
| | - Nicholas Sharp
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Rick Paul
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Ruthmara Corzo
- National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| |
Collapse
|
4
|
Megret-Bonilla A, Neu J, Oh J, You W. Achieving Closed-Loop Recycling of a Semi-Conjugated Polymer Through the Incorporation of Ester Linkers Along the Backbone. CHEMSUSCHEM 2024:e202401376. [PMID: 39285604 DOI: 10.1002/cssc.202401376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/16/2024] [Indexed: 11/06/2024]
Abstract
Design strategies to achieve degradation and ideally closed-loop recycling of organic semiconductors have attracted great interest in order to minimize the electronic waste (E-waste). In this work, three ester-incorporated monomers were synthesized by the names of Thiophene-Ester-Ethylene-Thiophene (TEET), Thiophene-Ester-Methylene-Thiophene (TEMT), and Thiophene-Ester-Thiophene (TET), which were co-polymerized via Stille polycondensation with a benzodithiophene (BnDT) π-conjugated unit to yield a series of ester-incorporated polymers: PBnDT-TEET, PBnDT-TEMT, and PBnDT-TET. While the ester-only linker can maintain some extended conjugation in PBnDT-TET, the other two ester linkers having conjugation breaking units result in isolated conjugated segments in PBnDT-TEET and PBnDT-TEMT, evidenced by UV-Vis and CV results. This yields an improved photovoltaic performance of PBnDT-TET compared to PBnDT-TEET. While all three polymers can depolymerize under methanolysis, the alternating co-polymer PBnDT-TEET demonstrates the highest recyclability potential with a single dimethyl ester-functionalized product with an excellent 92 % isolated yield, which can then be repolymerized to reobtain PBnDT-TEET with a 36 % yield. This work provides a framework towards achieving recyclable organic semiconductors to reduce E-waste. Although the incorporation of ester linkers allowed for closed-loop recycling, the low solar cell efficiency of PBnDT-TEET highlights the significant challenge in achieving both recycling and high device performance.
Collapse
Affiliation(s)
- Anthony Megret-Bonilla
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Justin Neu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Jiyeon Oh
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| |
Collapse
|
5
|
Gao Z, Geng Y, Gao Z, Liang Z, Wei W. Tracking tantalum stocks and flows in China from 2000 to 2021: A material flow analysis. Heliyon 2024; 10:e36336. [PMID: 39253238 PMCID: PMC11382022 DOI: 10.1016/j.heliyon.2024.e36336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Tantalum is not only one of the critical metals applied in various advanced industries such as electronics, aerospace, military, and medical applications, but also is considered a conflict mineral, posing a threat to its global supply security. China plays a significant role in the tantalum industrial chain; however, the complete picture of its anthropogenic tantalum cycle remains unknown. This study investigates the tantalum cycles in China from 2000 to 2021 by conducting a dynamic material flow analysis. The results reveal that China's domestic tantalum consumption surged from 91 tons in 2000 to 580 tons in 2021. China heavily relied on importing tantalum minerals to support its domestic production, with a trade dependence rate of 90 %. Moreover, the trade volume of tantalum-related commodities experienced substantial growth from 2000 to 2014 and then fluctuated, with tantalum concentrates as the primary imported goods and electronic products as the primary exported goods. Approximately 24.9 % of the overall tantalum demand was met with secondary tantalum, in which 80 % of such secondary material being recovered during the refining and production stages. Policy recommendations are proposed accordingly, including diversifying tantalum mineral resources and increasing the recovery rates from end-of-life products. These policies can significantly contribute to achieving sufficient tantalum supply and maintaining sustainable tantalum supply chain in China.
Collapse
Affiliation(s)
- Zhen Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yong Geng
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Ziyan Gao
- School of International and Public Affairs, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, China
| | - Zhou Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Wendong Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
Wang X, Chen Y, Chen T, Guo L, Yang Z, Chen Y, Yu Z, Liu X, Wang H. Lagging pollution of polycyclic aromatic hydrocarbons in the rebuilt e-waste site: From the perspective of characteristics, sources, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172406. [PMID: 38642745 DOI: 10.1016/j.scitotenv.2024.172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Little information is known regarding how the lagged pollution of polycyclic aromatic hydrocarbon (PAH) influenced the environment and human health after an e-waste dismantling site was rebuilt. This study investigated the characteristics, sources, and risk assessment of PAHs in a rebuilt e-waste site and its surrounding farmland by analyzing the samples of soil, dust, water, and vegetable. Concentrations of PAHs in soil, vegetable and water in the rebuilt site were relatively higher than in its surrounding farmland. The concentrations in surface soils, soil columns, dust, vegetables, and water varied from 55.4 to 3990 ng g-1, 1.65 to 5060 ng g-1, 2190 to 2420 ng g-1, 2670 to 10,300 ng g-1, and 46.8 to 110 μg L-1 in the e-waste site, respectively. On the farmland, PAH concentrations in surface soils, vegetables, and water ranged from 41.5 to 2760 ng g-1, 506 to 7640 ng g-1, and 56.6 to 89.2 μg L-1, respectively. A higher proportion of high-molecular-weight PAHs (HMW-PAHs) appeared in all multimedia compared with low-molecular-weight PAHs (LMW-PAHs). Diagnostic ratio together with positive matrix factorization (PMF) revealed that vehicle emission was the primary source in this area, and the activity of e-waste disposal was another important source in the rebuilt e-waste site. Based on the deterministic health risks, people working in the reconstructed e-waste site were exposed to low risks, whereas the residents living near the surrounding farmland were exposed to low risk. Sensitivity analyses indicated that exposure frequency and PAH concentrations were the main factors that influenced exposure risk. This study provides valuable insight into the comprehension of the lagging pollution effects of PAH on the environment and human health after the e-waste site was rebuilt.
Collapse
Affiliation(s)
- Xilin Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yandao Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Ting Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Longxiu Guo
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhen Yang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yan Chen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Zhiyang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environment & Resource Sciences, Key Laboratory of Agricultural Resources & Environment of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Xia J, Ghahreman A. Sustainable technologies for the recycling and upcycling of precious metals from e-waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170154. [PMID: 38242454 DOI: 10.1016/j.scitotenv.2024.170154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
E-waste is the fastest growing solid waste in the world. Each year, over 50 million tonnes of e-waste are produced, with its rate increasing by 3-5 % annually. Currently, only 17 % of e-waste is properly recycled, leaving the majority managed unsustainably, thereby causing detrimental environmental and economic effects. Cleaner e-waste management technologies are essential to address this urgent and rapidly expanding issue. Precious metals within e-waste significantly contribute to recycling revenues. In this paper, we review state-of-the-art technologies for sustainable recycling and upcycling of these metals from e-waste, including cleaner extractive metallurgy, solution purification technologies, and direct synthesis of green nanomaterials. We also discuss the potential impacts and constraints of these technologies and provide recommendations for improving and implementing both existing and prospective technologies.
Collapse
Affiliation(s)
- Jinsong Xia
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada.
| | - Ahmad Ghahreman
- Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen's University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
8
|
Peng X, Zhou J, Chen G, Tan J, Zhu Z. Profile, Tissue Distribution, and Time Trend of Bisphenol Plastic Additives in Freshwater Wildlife of the Pearl River Ecosystem, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2130-2142. [PMID: 37431940 DOI: 10.1002/etc.5715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Plastic-related contaminants in the environment have attracted increasing attention, with plastic pollution becoming a serious issue globally. The present study investigated the potential bioaccumulation and biotransfer of bisphenol (BP) compounds that are widely added in various products such as plastics and other products in a freshwater ecosystem, China. Among commonly applied 14 BP analogues, bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were predominant, representing 64%-100% of the total concentrations of BPs (ΣBPs) in freshwater wildlife. Both the concentrations and analogue profiles in the fish showed seasonal differences and species dependence. Higher BP concentrations were observed in fish collected during the dry season than the wet season. Higher percentages of non-BPA analogues (e.g., BPS and BPF) were observed in fish collected during the wet season. Pelagic species accumulated notably higher levels of BPs than midwater and bottom species. The liver generally contained the highest ΣBPs, followed successively by the swim bladder, belly fat, and dorsal muscle. The analogue profile also showed some differences among tissues, varying by species and season. Lower ΣBPs but higher percentages of non-BPA analogues were observed in female than male common carp. Time trends of the BPA concentration in fish varied by species, probably related to habitats and diets of the fish. Habitats, feeding behaviors, and trophic transfer may have significant impacts on exposure of wildlife to BPs in natural ecosystems. The BPs did not demonstrate strong potential for bioaccumulation. More research is warranted about metabolism and transgenerational transfer of BPs in wildlife to fully reveal the bioaccumulation and consequently ecological risks of these chemicals in the environment. Environ Toxicol Chem 2023;42:2130-2142. © 2023 SETAC.
Collapse
Affiliation(s)
- Xianzhi Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guangshi Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Tan
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, China
| | - Zewen Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Yu YJ, Li MY, Li LZ, Liao ZQ, Zhu XH, Li ZC, Xiang MD, Kuang HX. Construction of Models To Predict the Effectiveness of E-Waste Control through Capture of Volatile Organic Compounds and Metals/Metalloids Exposure Fingerprints: A Six-Year Longitudinal Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37319360 DOI: 10.1021/acs.est.3c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The significant health implications of e-waste toxicants have triggered the global tightening of regulation on informal e-waste recycling sites (ER) but with disparate governance that requires effective monitoring. Taking advantage of the opportunity to implement e-waste control in the Guiyu ER since 2015, we investigated the temporal variations in levels of oxidative DNA damage, 25 volatile organic compound metabolites (VOCs), and 16 metals/metalloids (MeTs) in urine in 918 children between 2016 and 2021 to demonstrate the effectiveness of e-waste control in reducing population exposure risks. The hazard quotients of most MeTs and levels of 8-hydroxy-2'-deoxyguanosine in children decreased significantly during this time, indicating that e-waste control effectively reduces the noncarcinogenic risks of MeT exposure and levels of oxidative DNA damage. Using mVOC-derived indexes as a feature, a bagging-support vector machine algorithm-based machine learning model was constructed to predict the extent of e-waste pollution (EWP). The model exhibited excellent performance with accuracies >97.0% in differentiating between slight and severe EWP. Five simple functions established using mVOC-derived indexes also had high accuracy in predicting the presence of EWP. These models and functions provide a novel human exposure monitoring-based approach for assessing e-waste governance or the presence of EWP in other ERs.
Collapse
Affiliation(s)
- Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Lei-Zi Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, P.R. China
| | - Zeng-Quan Liao
- School of Life Sciences, South China Normal University, Guangzhou 510631, P.R. China
| | - Xiao-Hui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| | - Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China
| |
Collapse
|
10
|
Li R, Liu M, Shan Y, Shi Y, Zheng H, Zhang W, Yang J, Fang W, Ma Z, Wang J, Bi J, Hubacek K. Large Virtual Transboundary Hazardous Waste Flows: The Case of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8161-8173. [PMID: 37192406 DOI: 10.1021/acs.est.2c07962] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Basel Convention and prior studies mainly focused on the physical transboundary movements of hazardous waste (transporting waste from one region to another for cheaper disposal). Here, we take China, the world's largest waste producer, as an example and reveal the virtual hazardous waste flows in trade (outsourcing waste by importing waste-intensive products) by developing a multiregional input-output model. Our model characterizes the impact of international trade between China and 140 economies and China's interprovincial trade on hazardous waste generated by 161,599 Chinese enterprises. We find that, in 2015, virtual hazardous waste flows in China's trade reached 26.6 million tons (67% of the national total), of which 31% were generated during the production of goods that were ultimately consumed abroad. Trade-related production is much dirtier than locally consumed production, generating 26% more hazardous waste per unit of GDP. Under the impact of virtual flows, 40% of the waste-intensive production and relevant disposal duty is unequally concentrated in three Chinese provinces (including two least-developed ones, Qinghai and Xinjiang). Our findings imply the importance of expanding the scope of transboundary waste regulations and provide a quantitative basis for introducing consumer responsibilities. This may help relieve waste management burdens in less-developed "waste havens".
Collapse
Affiliation(s)
- Ruoqi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Miaomiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yuli Shan
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Yufan Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Heran Zheng
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China
| | - Jianxun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wen Fang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, People's Republic of China
| | - Jun Bi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, People's Republic of China
| | - Klaus Hubacek
- Integrated Research on Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
11
|
Kuang HX, Li MY, Zhou Y, Li ZC, Xiang MD, Yu YJ. Volatile organic compounds and metals/metalloids exposure in children after e-waste control: Implications for priority control pollutants and exposure mitigation measures. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131598. [PMID: 37187124 DOI: 10.1016/j.jhazmat.2023.131598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
The decade-long effort to control e-waste in China has made significant progress from haphazard disposal to organized recycling, but environmental research suggests that exposure to volatile organic compounds (VOCs) and metals/metalloids (MeTs) still poses plausible health risks. To investigate the exposure risk faced by children and identify corresponding priority control chemicals, we evaluated the carcinogenic risk (CR), non-CR, and oxidative DNA damage risks of VOCs and MeTs exposure in 673 children from an e-waste recycling area (ER) by measuring urinary exposure biomarker levels. The ER children were generally exposed to high levels of VOCs and MeTs. We observed distinctive VOCs exposure profiles in ER children. In particular, the 1,2-dichloroethane/ethylbenzene ratio and 1,2-dichloroethane were promising diagnostic indexes for identifying e-waste pollution due to their high accuracy (91.4%) in predicting e-waste exposure. Exposure to acrolein, benzene, 1,3-butadiene, 1,2-dichloroethane, acrylamide, acrylonitrile, arsenic, vanadium, copper, and lead posed considerable CR or/and non-CR and oxidative DNA damage risks to children, while changing personal lifestyles, especially enhancing daily physical exercise, may facilitate mitigating these chemical exposure risks. These findings highlight that the exposure risk of some VOCs and MeTs is still non-negligible in regulated ER, and these hazardous chemicals should be controlled as priorities.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng-Yang Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|
12
|
Kuang HX, Li MY, Li LZ, Li ZC, Wang CH, Xiang MD, Yu YJ. Co-exposure levels of volatile organic compounds and metals/metalloids in children: Implications for E-waste recycling activity prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160911. [PMID: 36528103 DOI: 10.1016/j.scitotenv.2022.160911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Identifying informal e-waste recycling activity is crucial for preventing health hazards caused by e-waste pollution. This study attempted to build a prediction model for e-waste recycling activity based on the differential exposure biomarkers of the populations between the e-waste recycling area (ER) and non-ER. This study recruited children in ER and non-ER and conducted a quasi-experiment among the adult investigators to screen differential exposure or effect biomarkers by measuring urinary 25 volatile organic compound (VOC) metabolites, 18 metals/metalloids, and 8-hydroxy-2'-deoxyguanosine (8-OHdG). Compared with children of the non-ER, the ER children had higher metal/metalloid (e.g., manganese [Mn], lead [Pb], antimony [Sb], tin [Sn], and copper [Cu]) and VOC exposure (e.g., carbon-disulfide, acrolein, and 1-bromopropane) levels, oxidative DNA damage, and non-carcinogenic risks. Individually added 8-OHdG, VOC metabolites, and metals/metalloids to the support vector machine (SVM) classifier could obtain similar classification effects, with the area under curve (AUC) ranging from 0.741 to 0.819. The combined inclusion of 8-OHdG and differential VOC metabolites, metals/metalloids, and mixed indexes (e.g., product items or ratios of different metals/metalloids) in the SVM classifier showed the highest performance in predicting e-waste recycling activity, with an AUC of 0.914 and prediction accuracy of 83.3 %. "Sb × Mn", followed by "Sn × Pb/Cu", "Sb × Mn/Cu", and "Sn × Pb", were the top four important features in the models. Compared with non-ER children, the levels of urinary Mn, Pb, Sb, Sn, and Cu in ER children were 1.2 to 2.4 times higher, while the levels of "Sb × Mn", "Sn × Pb/Cu", "Sb × Mn/Cu", and "Sn × Pb" were 3.5 to 4.7 times higher, suggesting that these mixed indexes could amplify the differences between e-waste exposed and non-e-waste exposed populations. With the continued inclusion of new biomarkers of e-waste pollution in the future, our prediction model is promising for screening informal e-waste recycling sites.
Collapse
Affiliation(s)
- Hong-Xuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meng-Yang Li
- College of Pharmacy and Life Science, China Three Gorges University, Yichang 443000, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lei-Zi Li
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhen-Chi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Chuan-Hua Wang
- College of Pharmacy and Life Science, China Three Gorges University, Yichang 443000, PR China
| | - Ming-Deng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| |
Collapse
|