1
|
Salamanca-Fernández E, Espín-Moreno L, Olivas-Martínez A, Pérez-Cantero A, Martín-Rodríguez JL, Poyatos RM, Barbone F, Rosolen V, Mariuz M, Ronfani L, Palkovičová Murínová Ľ, Fábelová L, Szigeti T, Kakucs R, Sakhi AK, Haug LS, Lindeman B, Snoj Tratnik J, Kosjek T, Jacobs G, Voorspoels S, Jurdáková H, Górová R, Petrovičová I, Kolena B, Esteban M, Pedraza-Díaz S, Kolossa-Gehring M, Remy S, Govarts E, Schoeters G, Fernández MF, Mustieles V. Associations between Urinary Phthalate Metabolites with BDNF and Behavioral Function among European Children from Five HBM4EU Aligned Studies. TOXICS 2024; 12:642. [PMID: 39330570 PMCID: PMC11436069 DOI: 10.3390/toxics12090642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
Based on toxicological evidence, children's exposure to phthalates may contribute to altered neurodevelopment and abnormal regulation of brain-derived neurotrophic factor (BDNF). We analyzed data from five aligned studies of the Human Biomonitoring for Europe (HBM4EU) project. Ten phthalate metabolites and protein BDNF levels were measured in the urine samples of 1148 children aged 6-12 years from Italy (NACII-IT cohort), Slovakia (PCB-SK cohort), Hungary (InAirQ-HU cohort) and Norway (NEBII-NO). Serum BDNF was also available in 124 Slovenian children (CRP-SLO cohort). Children's total, externalizing and internalizing behavioral problems were assessed using the Child Behavior Checklist at 7 years of age (only available in the NACII-IT cohort). Adjusted linear and negative binomial regression models were fitted, together with weighted quantile sum (WQS) regression models to assess phthalate mixture associations. Results showed that, in boys but not girls of the NACII-IT cohort, each natural-log-unit increase in mono-n-butyl phthalate (MnBP) and Mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) was cross-sectionally associated with higher externalizing problems [incidence rate ratio (IRR): 1.20; 95% CI: 1.02, 1.42 and 1.26; 95% CI: 1.03, 1.55, respectively]. A suggestive mixture association with externalizing problems was also observed per each tertile mixture increase in the whole population (WQS-IRR = 1.15; 95% CI: 0.97, 1.36) and boys (IRR = 1.20; 95% CI: 0.96, 1.49). In NACII-IT, PCB-SK, InAirQ-HU and NEBII-NO cohorts together, urinary phthalate metabolites were strongly associated with higher urinary BDNF levels, with WQS regression confirming a mixture association in the whole population (percent change (PC) = 25.9%; 95% CI: 17.6, 34.7), in girls (PC = 18.6%; 95% CI: 7.92, 30.5) and mainly among boys (PC = 36.0%; 95% CI: 24.3, 48.9). Among CRP-SLO boys, each natural-log-unit increase in ∑DINCH concentration was associated with lower serum BDNF levels (PC: -8.8%; 95% CI: -16.7, -0.3). In the NACII-IT cohort, each natural-log-unit increase in urinary BDNF levels predicted worse internalizing scores among all children (IRR: 1.15; 95% CI: 1.00, 1.32). Results suggest that (1) children's exposure to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP) metabolites is associated with more externalizing problems in boys, (2) higher exposure to DINCH may associate with lower systemic BDNF levels in boys, (3) higher phthalate exposure is associated with higher urinary BDNF concentrations (although caution is needed since the possibility of a "urine concentration bias" that could also explain these associations in noncausal terms was identified) and (4) higher urinary BDNF concentrations may predict internalizing problems. Given this is the first study to examine the relationship between phthalate metabolite exposure and BDNF biomarkers, future studies are needed to validate the observed associations.
Collapse
Affiliation(s)
- Elena Salamanca-Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
| | | | | | - Ainhoa Pérez-Cantero
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
| | - José L Martín-Rodríguez
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Rafael M Poyatos
- Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Rosolen
- Central Directorate for Health, Social Policies and Disability, Friuli Venezia Giulia Region, Via Cassa di Risparmio 10, 34121 Trieste, Italy
| | - Marika Mariuz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Luca Ronfani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 04 Bratislava, Slovakia
| | - Tamás Szigeti
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Réka Kakucs
- Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - Amrit K Sakhi
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Line S Haug
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | | | - Tina Kosjek
- Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Griet Jacobs
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Helena Jurdáková
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Renáta Górová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Ida Petrovičová
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Branislav Kolena
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nabrezie mladeze 91, 94974 Nitra, Slovakia
| | - Marta Esteban
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, 28034 Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mariana F Fernández
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
| | - Vicente Mustieles
- Biomedical Research Center (CIBM), Department of Radiology and Physical Medicine, University of Granada, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28034 Madrid, Spain
- Servicio de Radiodiagnóstico, Hospital Universitario Clínico San Cecilio, 18012 Granada, Spain
| |
Collapse
|
2
|
Goerdeler C, Engelmann B, Aldehoff AS, Schaffert A, Blüher M, Heiker JT, Wabitsch M, Schubert K, Rolle-Kampczyk U, von Bergen M. Metabolomics in human SGBS cells as new approach method for studying adipogenic effects: Analysis of the effects of DINCH and MINCH on central carbon metabolism. ENVIRONMENTAL RESEARCH 2024; 252:118847. [PMID: 38582427 DOI: 10.1016/j.envres.2024.118847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the μM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 μM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.
Collapse
Affiliation(s)
- Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Alexandra Schaffert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Matthias Blüher
- Department of Endocrinology, Nephrology and Rheumatology, Faculty of Medicine, University of Leipzig, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany.
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Medical Center, Ulm, Germany.
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
4
|
Ajmal Z, Ul Haq M, Zaman S, Al-Muhanna MK, Kumar A, Fadhali MM, Hassine SBH, Qasim M, Alshammari KF, Ashraf GA, Qadeer A, Murtaza A, Al-Sulaimi S, Zeng H. Addressing the synchronized impact of a novel strontium titanium over copolymerized carbon nitride for proficient solar-driven hydrogen evolution. J Colloid Interface Sci 2024; 655:886-898. [PMID: 37979294 DOI: 10.1016/j.jcis.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 11/20/2023]
Abstract
Currently, novel technologies are highly prerequisite as an outstanding approach in the field of photocatalytic water splitting (PWS). Previous research has shown that copolymerization technology could improve the photocatalytic performance of pristine carbon nitride (CN) more efficiently. As this technology further allows the charge carrier recombination constraints, due to novel monomer-incorporated highly abundant surface-active sites of metals in polymeric carbon nitride-based heterojunction. However, in present study, a novel previously unexplored thiophenedicarboxaldehyde (TAL) conjugated, strontium-titanium (SrTiO3) induced and CN based heterojunction, i.e., SrTiO3/CN-TAL10.0, was prepared for solar-driven hydrogen evolution reaction (HER). This heterojunction effectively enables the proficient isolation of photoinduced charge carriers and enhanced the charge transport over the surface junction, by enhancing the optical absorption range and average lifetime of photogenerated charges. The incorporation of TAL within the structure of CN via copolymerization highly increases the photocatalytic activity, as well as maintaining its photostability performance. The SrTiO3 concentration and the proportion of TAL among CN can be precisely controlled to provide the optimal photocatalytic efficiency with a maximum HER of 285.9 µmol/h under visible light (λ = 420 nm). Based on these results, our optical analysis shows that coupling of SrTiO3 and TAL monomer in the structure of CN considerably reduce the band gap of superior sample from (3.42 to 2.66 eV), thereby, signifying the outstanding photocatalytic performance of SrTiO3/CN-TAL10.0. Thus, this study provide a new guideline in order to develop the multidimensional photocatalysts with proper functioning for sustainable energy conversion and production.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shahid Zaman
- Institut d'Innovations en Écomatériaux, Écoproduits et Écoénergies, Université du Québec à Trois-Rivières (UQTR), 3351 boul. des forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - M K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Anuj Kumar
- Nanotechnology Research Laboratory, GLA, University, Mathura, Uttar Pradesh 281406, India
| | - Mohammed M Fadhali
- Department of Physics, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Siwar Ben Hadj Hassine
- Department of Computer Science, College of Science and Arts at Muhayel, King Khalid University, Saudi Arabia
| | - Muhammas Qasim
- School of Electronic Engineering, Jiujiang University, Jiujiang 332005, China
| | - K F Alshammari
- Department of Criminal Justice and Forensics, King Fahad Security College, Riyadh 11461, Saudi Arabia
| | - Ghulam Abbas Ashraf
- College of Environment, Hohai University, Nanjing 210098, China; New Uzbekistan University, Mustaqillik Ave. 54, Tashkent 100007, Uzbekistan.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, 710049 Xian, Shaanxi, China.
| | | | - Huaqiang Zeng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xian, China.
| |
Collapse
|
5
|
Wiesinger H, Bleuler C, Christen V, Favreau P, Hellweg S, Langer M, Pasquettaz R, Schönborn A, Wang Z. Legacy and Emerging Plasticizers and Stabilizers in PVC Floorings and Implications for Recycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1894-1907. [PMID: 38241221 PMCID: PMC10832040 DOI: 10.1021/acs.est.3c04851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.
Collapse
Affiliation(s)
- Helene Wiesinger
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Christophe Bleuler
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Verena Christen
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
| | - Philippe Favreau
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Stefanie Hellweg
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Miriam Langer
- Institute
for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland,
FHNW, 4132 Muttenz, Switzerland
- Eawag—Swiss
Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Roxane Pasquettaz
- Service
de l’air, du bruit et des rayonnements non ionisants (SABRA), Geneva Cantonal Office for the Environment, 1205 Geneva, Switzerland
| | - Andreas Schönborn
- Institute
of Natural Resource Sciences, ZHAW Zurich
University of Applied Science, 8820 Wädenswil, Switzerland
| | - Zhanyun Wang
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- National
Centre of Competence in Research (NCCR) Catalysis, Institute of Environmental
Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
6
|
Hayat A, Sohail M, Moussa SB, Al-Muhanna MK, Iqbal W, Ajmal Z, Raza S, Al-Hadeethi Y, Orooji Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv Colloid Interface Sci 2023; 319:102969. [PMID: 37598456 DOI: 10.1016/j.cis.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Sana Ben Moussa
- Faculty of Science and Arts, Mohail Asser, King Khalid University, Saudi Arabia
| | - Muhanna K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Saleem Raza
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Tan H, Yang L, Liang X, Huang D, Qiao X, Dai Q, Chen D, Cai Z. Nonphthalate Plasticizers in House Dust from Multiple Countries: An Increasing Threat to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3634-3644. [PMID: 36821817 PMCID: PMC9996830 DOI: 10.1021/acs.est.2c08110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Along with the restrictions of phthalate esters (PAEs), a variety of nonphthalate plasticizers (NPPs) have been increasingly used for industrial needs. Knowledge remains limited on the environmental occurrences, fate, and human exposure risks of many emerging NPPs. In this study, we investigated a suite of 45 NPPs along with the major PAEs in house dust from five regions in the Asia-Pacific region and the United States. The findings clearly demonstrated ubiquitous occurrences of many NPPs in the home environment, particularly acetyl tributyl citrate (ATBC), tricapryl trimellitate (TCTM), trioctyl trimellitate (TOTM), glycerol monooleate (GMO), methyl oleate (MO), and diisobutyl adipate (DiBA). The median total concentrations of NPPs ranged from 17.8 to 252 μg/g in the study regions, while the mean ratios of ΣNPPs to ΣPAEs ranged from 0.19 (Hanoi) to 0.72 (Adelaide). Spatial differences were observed not only for the chemical abundances but also for the composition profiles and the hazard quotient (HQ) prioritization of individual chemicals. Although the current exposure may unlikely cause significant health risks according to the HQ estimation, potential exposure risks cannot be overlooked, due to the lack of appropriate toxic threshold data, the existence of additional exposure pathways, and possible cocktail effects from coexisting NPPs and PAEs.
Collapse
Affiliation(s)
- Hongli Tan
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| | - Liu Yang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Xiaolin Liang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Diedie Huang
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Xinhang Qiao
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Qingyuan Dai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| | - Da Chen
- School
of Environment, Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
| | - Zongwei Cai
- State
Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, SAR 999077, China
| |
Collapse
|
8
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
9
|
Embedding Aromatic Conjugated Monomer within Carbon Nitride for Efficient Photocatalytic Reduction Reactions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Hayat A, Sohail M, Qadeer A, Taha TA, Hussain M, Ullah S, Al-Sehemi AG, Algarni H, Amin MA, Aqeel Sarwar M, Nawawi WI, Palamanit A, Orooji Y, Ajmal Z. Recent Advancement in Rational Design Modulation of MXene: A Voyage from Environmental Remediation to Energy Conversion and Storage. CHEM REC 2022; 22:e202200097. [PMID: 36103617 DOI: 10.1002/tcr.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Use of MXenes (Ti3 C2 Tx ), which belongs to the family of two-dimensional transition metal nitrides and carbides by encompassing unique combination of metallic conductivity and hydrophilicity, is receiving tremendous attention, since its discovery as energy material in 2011. Owing to its precursor selective chemical etching, and unique intrinsic characteristics, the MXene surface properties are further classified into highly chemically active compound, which further produced different surface functional groups i. e., oxygen, fluorine or hydroxyl groups. However, the role of surface functional groups doesn't not only have a significant impact onto its electrochemical and hydrophilic characteristics (i. e., ion adsorption/diffusion), but also imparting a noteworthy effect onto its conductivity, work function, electronic structure and properties. Henceforth, such kind of inherent chemical nature, robust electrochemistry and high hydrophilicity ultimately increasing the MXene application as a most propitious material for overall environment-remediation, electrocatalytic sensors, energy conversion and storage application. Moreover, it is well documented that the role of MXenes in all kinds of research fields is still on a progress stage for their further improvement, which is not sufficiently summarized in literature till now. The present review article is intended to critically discuss the different chemical aptitudes and the diversity of MXenes and its derivates (i. e., hybrid composites) in all aforesaid application with special emphasis onto the improvement of its surface characteristics for the multidimensional application. However, this review article is anticipated to endorse MXenes and its derivates hybrid configuration, which is discussed in detail for emerging environmental decontamination, electrochemical use, and pollutant detection via electrocatalytic sensors, photocatalysis, along with membrane distillation and the adsorption application. Finally, it is expected, that this review article will open up new window for the effective use of MXene in a broad range of environmental remediation, energy conversion and storage application as a novel, robust, multidimensional and more proficient materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, China
| | - A Qadeer
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, 10012, Beijing, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Majid Hussain
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, P. R. China
| | - Sami Ullah
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center forAdv. Mater. Science(RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Aqeel Sarwar
- Land Resource research Institute and Crop Science Center, National Agriculture Research Center (NARC), Park Road, Islamabad, Pakistan
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| |
Collapse
|
11
|
Ajmal Z, Haq MU, Naciri Y, Djellabi R, Hassan N, Zaman S, Murtaza A, Kumar A, Al-Sehemi AG, Algarni H, Al-Hartomy OA, Dong R, Hayat A, Qadeer A. Recent advancement in conjugated polymers based photocatalytic technology for air pollutants abatement: Cases of CO 2, NO x, and VOCs. CHEMOSPHERE 2022; 308:136358. [PMID: 36087730 DOI: 10.1016/j.chemosphere.2022.136358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
According to World Health Organization (WHO) survey, air pollution has become the major reason of several fatal diseases, which had led to the death of 7 million peoples around the globe. The 9 people out of 10 breathe air, which exceeds WHO recommendations. Several strategies are in practice to reduce the emission of pollutants into the air, and also strict industrial, scientific, and health recommendations to use sustainable green technologies to reduce the emission of contaminants into the air. Photocatalysis technology recently has been raised as a green technology to be in practice towards the removal of air pollutants. The scientific community has passed a long pathway to develop such technology from the material, and reactor points of view. Many classes of photoactive materials have been suggested to achieve such a target. In this context, the contribution of conjugated polymers (CPs), and their modification with some common inorganic semiconductors as novel photocatalysts, has never been addressed in literature till now for said application, and is critically evaluated in this review. As we know that CPs have unique characteristics compared to inorganic semiconductors, because of their conductivity, excellent light response, good sorption ability, better redox charge generation, and separation along with a delocalized π-electrons system. The advances in photocatalytic removal/reduction of three primary air-polluting compounds such as CO2, NOX, and VOCs using CPs based photocatalysts are discussed in detail. Furthermore, the synergetic effects, obtained in CPs after combining with inorganic semiconductors are also comprehensively summarized in this review. However, such a combined system, on to better charges generation and separation, may make the Adsorb & Shuttle process into action, wherein, CPs may play the sorbing area. And, we hope that, the critical discussion on the further enhancement of photoactivity and future recommendations will open the doors for up-to-date technology transfer in modern research.
Collapse
Affiliation(s)
- Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xian, 710072, China; MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Mahmood Ul Haq
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yassine Naciri
- Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP, Cité Dakhla, Agadir, 8106, Morocco
| | - Ridha Djellabi
- Department of Chemical Engineering, Universitat Rovira I Virgili, Tarragona, 43007, Spain.
| | - Noor Hassan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR, 100081, China
| | - Shahid Zaman
- Key Laboratory of Energy Conversion and Storage Technologies, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Adil Murtaza
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behaviour of Materials, Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xian Jiaotong University, Xian, Shaanxi, 710049, PR China
| | - Anuj Kumar
- Nanotechnology Laboratory, Department of Chemistry, GLA, University, Mathura, Uttar Pradesh, 281406, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - R Dong
- MoA Key Laboratory for Clean Production and Utilization of Renewable Energy, MoST National Center for International Research of BioEnergy Science and Technology, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
12
|
Ali H, Ahmed S, Hsini A, Kizito S, Naciri Y, Djellabi R, Abid M, Raza W, Hassan N, Rehman M, Jamal Khan A, Khan M, Zia Ul Haq M, Aboagye D, Irshad M, Hassan M, Hayat A, Wu B, Qadeer A, Ajmal Z. Adsorption/desorption characteristics of novel Fe3O4 impregnated N-doped biochar (Fe3O4@N/BC) for arsenic (III and V) removal from aqueous solution: Insight into mechanistic understanding and reusability potential. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
13
|
Sohail M, Anwar U, Taha T, I. A. Qazi H, Al-Sehemi AG, Ullah S, Gharni H, Ahmed I, Amin MA, Palamanit A, Iqbal W, Alharthi S, Nawawi W, Ajmal Z, Ali H, Hayat A. Nanostructured Materials Based on g-C3N4 for Enhanced Photocatalytic Activity and Potentials Application: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|