1
|
Kahn R, Derado G, Hannapel EJ, Vander Kelen P, Kunz JM, Edens C. Factors Associated with Legionella Detection in the Water Systems of National Lodging Organization Facilities with Water Management Programs in the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:939. [PMID: 39063515 PMCID: PMC11276625 DOI: 10.3390/ijerph21070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
A better understanding of risk factors and the predictive capability of water management program (WMP) data in detecting Legionella are needed to inform the efforts aimed at reducing Legionella growth and preventing outbreaks of Legionnaires' disease. Using WMPs and Legionella testing data from a national lodging organization in the United States, we aimed to (1) identify factors associated with Legionella detection and (2) assess the ability of WMP disinfectant and temperature metrics to predict Legionella detection. We conducted a logistic regression analysis to identify WMP metrics associated with Legionella serogroup 1 (SG1) detection. We also estimated the predictive values for each of the WMP metrics and SG1 detection. Of 5435 testing observations from 2018 to 2020, 411 (7.6%) had SG1 detection, and 1606 (29.5%) had either SG1 or non-SG1 detection. We found failures in commonly collected WMP metrics, particularly at the primary test point for total disinfectant levels in hot water, to be associated with SG1 detection. These findings highlight that establishing and regularly monitoring water quality parameters for WMPs may be important for preventing Legionella growth and subsequent disease. However, while unsuitable water quality parameter results are associated with Legionella detection, this study found that they had poor predictive value, due in part to the low prevalence of SG1 detection in this dataset. These findings suggest that Legionella testing provides critical information to validate if a WMP is working, which cannot be obtained through water quality parameter measurements alone.
Collapse
Affiliation(s)
- Rebecca Kahn
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Gordana Derado
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| | - Elizabeth J. Hannapel
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| | - Patrick Vander Kelen
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Jasen M. Kunz
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (G.D.); (E.J.H.); (C.E.)
| |
Collapse
|
2
|
Smith M, Crnich C, Donskey C, Evans CT, Evans M, Goto M, Guerrero B, Gupta K, Harris A, Hicks N, Khader K, Kralovic S, McKinley L, Rubin M, Safdar N, Schweizer ML, Tovar S, Wilson G, Zabarsky T, Perencevich EN. Research agenda for transmission prevention within the Veterans Health Administration, 2024-2028. Infect Control Hosp Epidemiol 2024:1-10. [PMID: 38600795 DOI: 10.1017/ice.2024.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Matthew Smith
- Center for Access & Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Chris Crnich
- William. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Curtis Donskey
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Charlesnika T Evans
- Center of Innovation for Complex Chronic Healthcare, Hines VA Hospital, Hines, IL, USA
- Department of Preventive Medicine and Center for Health Services and Outcomes Research, Northwestern University of Feinberg School of Medicine, Chicago, IL, USA
| | - Martin Evans
- MRSA/MDRO Division, VHA National Infectious Diseases Service, Patient Care Services, VA Central Office and the Lexington VA Health Care System, Lexington, KY, USA
| | - Michihiko Goto
- Center for Access & Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Bernardino Guerrero
- Environmental Programs Service (EPS), Veterans Affairs Central Office, Washington, DC, USA
| | - Kalpana Gupta
- VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| | - Anthony Harris
- Department of Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Natalie Hicks
- National Infectious Diseases Service, Specialty Care Services, Veterans Health Administration, US Department of Veterans Affairs, Washington, DC, USA
| | - Karim Khader
- DEAS Center of Innovation, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Stephen Kralovic
- Veterans Health Administration National Infectious Diseases Service, Washington, DC, USA
- Cincinnati VA Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Linda McKinley
- William. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Michael Rubin
- DEAS Center of Innovation, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Division of Epidemiology, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Nasia Safdar
- William. S. Middleton Memorial VA Hospital, Madison, WI, USA
| | - Marin L Schweizer
- William. S. Middleton Memorial VA Hospital, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, and William S. Middleton Hospital, Madison, WI, USA
| | - Suzanne Tovar
- National Infectious Diseases Service (NIDS), Veterans Affairs Central Office, Washington, DC, USA
| | - Geneva Wilson
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Hines Jr. Veterans Affairs Hospital, Hines, IL, USA
- Department of Preventive Medicine, Center for Health Services and Outcomes Research, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Trina Zabarsky
- Environmental Programs Service (EPS), Veterans Affairs Central Office, Washington, DC, USA
| | - Eli N Perencevich
- Center for Access & Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
3
|
Chochlakis D, Sandalakis V, Ntoukakis A, Daskalaki MO, Loppinet T, Thalassinaki N, Makridaki R, Panoulis C, Psaroulaki A. Multi-criterion analysis of the effect of physico-chemical microbiological agents on Legionella detection in hotel water distribution systems in Crete. Front Cell Infect Microbiol 2023; 13:1214717. [PMID: 38188625 PMCID: PMC10770838 DOI: 10.3389/fcimb.2023.1214717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/17/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Water distribution systems in hotels have been related to outbreaks caused by Legionella spp. Certain measures, including disinfection by chlorination, maintaining increased temperatures are usually undertaken to prevent Legionella outbreaks. However, these preventive strategies are not always effective, since there are several factors (e.g., synergistic interactions with other microbes, physico-chemical factors, biofilm formation, availability of nutrients) that promote survival and proliferation of the pathogen in water pipes., Accordingly, there is a need of a holistic approach in development of preventive models for Legionella outbreaks associated with water distribution systems. Methods Water samples were collected from hotel water systems and were tested for the presence of Legionella, E. coli, total coliforms, total mesophilic count and Pseudomonas. In each sample, temperature and chlorine were also tested. Other epidemiological factors were additionally recorded including number of rooms, stars, proximity of sampling point to the boiler, etc. Data were processed by generalized linear analysis, and modeling based on logistic regression analysis to identify independent predictive factors associated with the presence of Legionella in hotel water systems. Results According to the generalized linear model, temperature affected (p<0.05) the presence of Legionella regardless of the species or the water supply (hot or cold). Additionally, opportunistic (P. aeruginosa) or non-opportunistic (E. coli, coliforms) pathogens were significantly associated (p<0.05) with the presence of all Legionella species. Temperature also exhibited a positive effect to all pathogens tested except for Pseudomonas according to the linear model. Multivariate analysis showed that Pseudomonas, total coliforms, HPC and temperature had a statistically significant effect on the presence of Legionella. Based on a binomial model, cold water had a positive effect on Legionella. Type of sampling and proximity of the sample to the boiler seemed to pose different effect on Legionella depending on the cfu/L. The number of hotel stars and rooms did not appear to have any effect in all tested models. Discussion Collectively, these results indicate the need for development of individualized water safety plans tailored by the presence of other microbiological agents, and unique physico-chemical factors, which could facilitate the survival of Legionella.in hotel water systems.
Collapse
Affiliation(s)
- Dimosthenis Chochlakis
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Vassilios Sandalakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Apostolos Ntoukakis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria-Olga Daskalaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Thomas Loppinet
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Niki Thalassinaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Rena Makridaki
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Christos Panoulis
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| | - Anna Psaroulaki
- Regional Laboratory of Public Health of Crete, School of Medicine, University of Crete, Heraklion, Greece
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
McGinnis S, Free RJ, Burnell J, Basavaraju SV, Kanaskie T, Hannapel EJ, Plipat N, Warren K, Edens C. Suspected Legionella Transmission from a Single Donor to Two Lung Transplant Recipients - Pennsylvania, May 2022. Am J Transplant 2023; 23:1811-1814. [PMID: 37914432 DOI: 10.1016/j.ajt.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
In July 2022, the Pennsylvania Department of Health received two reports of laboratory-confirmed Legionnaires disease in patients who had recently received lung transplants from the same donor at a single Pennsylvania hospital. The donor's cause of death was freshwater drowning in a river, raising suspicion of potential donor-derived transmission, because Legionella bacteria naturally live in fresh water. Further investigation of patients receiving other organs from the same donor did not identify additional legionellosis cases. Health care-associated infection caused by water exposure at the hospital was also evaluated as a potential source of infection and was found to be unlikely. Hospital water quality parameter measurements collected during May-June 2022 were within expected ranges and no water disruptions were noted, although no testing for Legionella was performed during this period. Notifiable disease data did not identify any other Legionnaires disease cases with exposure to this hospital within the 6 months before or after the two cases. Although laboratory testing did not confirm the source of recipient infections, available data suggest that the most likely source was the donor lungs. This cluster highlights the need for increased clinical awareness of possible infection with Legionella in recipients of lungs from donors who drowned in fresh water before organ recovery.
Collapse
Affiliation(s)
| | - Rebecca J Free
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Jacqueline Burnell
- Division of Infectious Diseases, Temple University Hospital, Philadelphia, Pennsylvania
| | - Sridhar V Basavaraju
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Trevor Kanaskie
- Philadelphia Department of Public Health, Philadelphia, Pennsylvania
| | - Elizabeth J Hannapel
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC
| | | | | | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC
| |
Collapse
|
5
|
Kunz JM, Hannapel E, Vander Kelen P, Hils J, Hoover ER, Edens C. Effects of the COVID-19 Pandemic on Legionella Water Management Program Performance across a United States Lodging Organization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6885. [PMID: 37835155 PMCID: PMC10572137 DOI: 10.3390/ijerph20196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Legionella, the bacterium that causes Legionnaires' disease, can grow and spread in building water systems and devices. The COVID-19 pandemic impacted building water systems through reductions in water usage. Legionella growth risk factors can be mitigated through control measures, such as flushing, to address stagnation, as part of a water management program (WMP). A national lodging organization (NLO) provided WMP data, including Legionella environmental testing results for periods before and during the pandemic. The statistical analysis revealed an increased risk of water samples testing positive for Legionella during the pandemic, with the greatest increase in risk observed at the building's cold-water entry test point. Sample positivity did not vary by season, highlighting the importance of year-round Legionella control activities. The NLO's flushing requirements may have prevented an increased risk of Legionella growth during the pandemic. However, additional control measures may be needed for some facilities that experience Legionella detections. This analysis provides needed evidence for the use of flushing to mitigate the impacts of building water stagnation, as well as the value of routine Legionella testing for WMP validation. Furthermore, this report reinforces the idea that WMPs remain the optimal tool to reduce the risk of Legionella growth and spread in building water systems.
Collapse
Affiliation(s)
- Jasen M. Kunz
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Mailstop H24-11, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Elizabeth Hannapel
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-6, 1600 Clifton Road, Atlanta, GA 30333, USA; (E.H.); (C.E.)
| | - Patrick Vander Kelen
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
| | - Janie Hils
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
- Oak Ridge Institute for Science and Education, P.O. Box 117, Oak Ridge, TN 37830, USA
| | - Edward Rickamer Hoover
- Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Mailstop S106-5, 4770 Buford Highway, Atlanta, GA 30341, USA; (P.V.K.); (E.R.H.)
| | - Chris Edens
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mailstop H24-6, 1600 Clifton Road, Atlanta, GA 30333, USA; (E.H.); (C.E.)
| |
Collapse
|
6
|
McGinnis S, Free RJ, Burnell J, Basavaraju SV, Kanaskie T, Hannapel EJ, Plipat N, Warren K, Edens C. Suspected Legionella Transmission from a Single Donor to Two Lung Transplant Recipients - Pennsylvania, May 2022. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2023; 72:1001-1004. [PMID: 37708069 PMCID: PMC10511268 DOI: 10.15585/mmwr.mm7237a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In July 2022, the Pennsylvania Department of Health received two reports of laboratory-confirmed Legionnaires disease in patients who had recently received lung transplants from the same donor at a single Pennsylvania hospital. The donor's cause of death was freshwater drowning in a river, raising suspicion of potential donor-derived transmission, because Legionella bacteria naturally live in fresh water. Further investigation of patients receiving other organs from the same donor did not identify additional legionellosis cases. Health care-associated infection caused by water exposure at the hospital was also evaluated as a potential source of infection and was found to be unlikely. Hospital water quality parameter measurements collected during May-June 2022 were within expected ranges and no water disruptions were noted, although no testing for Legionella was performed during this period. Notifiable disease data did not identify any other Legionnaires disease cases with exposure to this hospital within the 6 months before or after the two cases. Although laboratory testing did not confirm the source of recipient infections, available data suggest that the most likely source was the donor lungs. This cluster highlights the need for increased clinical awareness of possible infection with Legionella in recipients of lungs from donors who drowned in fresh water before organ recovery.
Collapse
|
7
|
Ashbolt NJ. Conceptual model to inform Legionella-amoebae control, including the roles of extracellular vesicles in engineered water system infections. Front Cell Infect Microbiol 2023; 13:1200478. [PMID: 37274310 PMCID: PMC10232903 DOI: 10.3389/fcimb.2023.1200478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Extracellular vesicles (EVs or exosomes) are well described for bacterial pathogens associated with our gastrointestinal system, and more recently as a novel mechanism for environmental persistence, dissemination and infection for human enteric viruses. However, the roles played by EVs in the ancient arms race that continues between amoebae and one of their prey, Legionella pneumophila, is poorly understood. At best we know of intracellular vesicles of amoebae containing a mix of bacterial prey species, which also provides an enhanced niche for bacteriophage infection/spread. Free-living amoeba-associated pathogens have recently been recognized to have enhanced resistance to disinfection and environmental stressors, adding to previously understood (but for relatively few species of) bacteria sequestered within amoebal cysts. However, the focus of the current work is to review the likely impacts of large numbers of respiratory-sized EVs containing numerous L. pneumophila cells studied in pure and biofilm systems with mixed prey species. These encapsulated pathogens are orders of magnitude more resistant to disinfection than free cells, and our engineered systems with residual disinfectants could promote evolution of resistance (including AMR), enhanced virulence and EV release. All these are key features for evolution within a dead-end human pathogen post lung infection. Traditional single-hit pathogen infection models used to estimate the probability of infection/disease and critical environmental concentrations via quantitative microbial risk assessments may also need to change. In short, recognizing that EV-packaged cells are highly virulent units for transmission of legionellae, which may also modulate/avoid human host immune responses. Key data gaps are raised and a previous conceptual model expanded upon to clarify where biofilm EVs could play a role promoting risk as well as inform a more wholistic management program to proactively control legionellosis.
Collapse
|
8
|
Molina JJ, Bennassar M, Palacio E, Crespi S. Impact of prolonged hotel closures during the COVID-19 pandemic on Legionella infection risks. Front Microbiol 2023; 14:1136668. [PMID: 36910223 PMCID: PMC9998907 DOI: 10.3389/fmicb.2023.1136668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
In general, it is accepted that water stagnation and lack or poor maintenance in buildings are risk factors for Legionella growth. Then, in theory, the prolonged hotel closures due to the COVID-19 pandemic may have increased the risk of Legionella infections. However, there are very few field studies comparing the level of Legionella colonization in buildings before the pandemic and the new situation created after the lockdown. The objective of this study was to analyze these differences in a group of hotels that experienced prolonged closures in 2020 due to the COVID-19 pandemic. We have studied the Legionella spp. results, analyzed by standard culture, from the domestic water distribution systems of 73 hotels that experienced closures (from 1 to >4 months) during 2020, immediately after the reopening. The results were compared with those obtained in similar samplings of 2019. For the comparative analysis, we divided the hotels in two groups: Group A that have suffered closures for ≤3 months and Group B that remained closed for more than 3 months, both in relation to the opening period of 2019. In the Group B (36 sites), the frequency of positive samples in the hot water system increased from 6.7% in 2019 to 14.0% in 2020 (p < 0.05). In the Group A (37 sites), no significant differences were observed. No statistically significant differences were observed in terms of positive sites (defined as hotels with at least 1 positive sample), Legionella spp. concentrations and prevalence of Legionella pneumophila sg1 between the samplings of the two periods studied. The results suggest that hotels that suffered the longest prolonged closures (> 3 months) could have carried a higher risk of exposure to Legionella in the domestic hot water system. These findings highlight the importance of adequate preopening cleaning and disinfection procedures for hotel water systems, and the convenience of considering the most effective disinfection methods especially for hot water systems and after prolonged closure periods.
Collapse
Affiliation(s)
- Jhon J. Molina
- Environmental Health and Laboratory Services, Biolinea Int., Palma, Spain
- Environmental Analytical Chemistry Laboratory, Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | | | - Edwin Palacio
- Environmental Analytical Chemistry Laboratory, Department of Chemistry, University of the Balearic Islands, Palma, Spain
| | - Sebastian Crespi
- Environmental Health and Laboratory Services, Biolinea Int., Palma, Spain
| |
Collapse
|