1
|
Wang X, Tang S, Ding L, Qiu X, Zhang Z, Xu L, Liang X, Huang X, Guo X. Contribution of plastic solid components to volatile organic compounds formation during plastics combustion. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135977. [PMID: 39342857 DOI: 10.1016/j.jhazmat.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The combustion of plastic waste releases volatile organic compounds (VOCs) that are harmful to human health. However, information on the micro-mechanisms of VOC formation remains lacking. Here, the study hypothesized and verified the relationship between VOC formation and solid component degradation during plastics combustion. The VOCs released during plastics combustion exhibit characteristics such as low carbon content (nc< 10), volatility (9 μg m-3 < log10C0 < 11 μg m-3), and medium oxidation degree (-1.5 < OSC¯ < -0.5). The dominant VOCs ketones/aldehydes/acids (33-43 %) may be attributed to the depolymerization of the polymer structure of plastics, the oxidation of C-O/CO groups, and the secondary cleavage of gaseous oxygen-containing macromolecules. The VOCs released from the combustion of polyethylene terephthalate (PET) and poly(butyleneadipate-co-terephthalate) (PBAT) contained more aromatics than polyethylene (PE) and polypropylene (PP). And the temperature response of aromatics released from PET and PBAT lagged other VOCs compared that of PP and PE. However, compared to biomass thermal conversion, combustion of plastics releases fewer aromatics and nitrogenous compounds. Collectively, this work shows that the formation mechanisms of VOCs contributed by the solid components during plastic combustion are similar for PET and PBAT due to their similar chemical structures. The proposed mechanism in this paper will provide insight into the control of contaminants during plastic combustion.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Simeng Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
2
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Xu F, Li J, He Z. Comparative analysis of adding cotton straw and corn stover to improve the combustion performance of municipal sludge. Sci Rep 2024; 14:6321. [PMID: 38491118 PMCID: PMC10943231 DOI: 10.1038/s41598-024-56842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
To address issues of high water content and low calorific value during combustion of municipal sludge, we added water-absorbent, easy-to-burn agricultural waste to improve the overall combustion performance. Cotton straw or corn stover were added to the sludge and mixed at high-speed to compare their capacities for improving combustion performance. Scanning Electron Microscopy (SEM) revealed that cotton straw or corn stover attached to the surface of the municipal sludge particles after blending, while analysis of thermogravimetric curves and activation energies of the blends showed that combustion and exhaustion rates increased significantly when 40% cotton straw or corn stover were blended into the sludge. Using the quadrilateral cut-ring boiler as a prototype, the mix of sludge with cotton straw or corn stover was simulated, and FLUENT software was used to obtain the temperature and pollutant emissions of the boiler. Sludge blended with cotton straw or corn stover increased furnace temperature and reduced SO2 and NO emissions, while that with cotton straw burned at higher temperatures with lower SO2 and NO emissions. Overall, the CO content of sludge combustion was lower when blended with proportions of cotton straw or corn stover under 50%. The findings of this study lay a theoretical foundation for treatment of municipal sludge according to local conditions.
Collapse
Affiliation(s)
- Feng Xu
- School of Civil Engineering and Architecture, Xinjiang University, Urumqu, 830049, China
- Faculty of Environment, Harbin Institute of Technology, Harbin, 15001, China
| | - Jing Li
- School of Civil Engineering and Architecture, Xinjiang University, Urumqu, 830049, China.
| | - Zihan He
- School of Civil Engineering and Architecture, Xinjiang University, Urumqu, 830049, China
| |
Collapse
|
4
|
Qu B, Liu C, Wang Y, Li A, Qu Y, Zhang YS, Ji G. Fast pyrolysis kinetics of waste tires and its products studied by a wireless-powered thermo-balance. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132494. [PMID: 37683345 DOI: 10.1016/j.jhazmat.2023.132494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Fast pyrolysis is commonly used in industrial reactors to convert waste tires into fine chemicals and fuels. However, current thermogravimetric analyzers are facing limitations that prevent the acquisition of kinetic information. To better understand the reaction kinetics, we designed a novel thermo-balance device that was capable of in-situ weight measurement during rapid heating. The results showed that the reaction rate substantially increased, with significant reductions in reaction time and apparent activation energy compared to slow pyrolysis. The change of reaction mechanism from the reaction order model to the nucleation and growth model was responsible for the increase in the degradation rate. Fast pyrolysis led to the generation of more trimers of isoprene as primary pyrolytic volatiles, which we further supported through density functional theory calculations. The findings suggested that fast pyrolysis has a higher chance of overcoming the high energy barrier to form trimers of isoprene. This comprehensive and in-depth understanding of fast pyrolysis kinetics and product distribution could reveal a more realistic process of waste pyrolysis, which benefited the industry.
Collapse
Affiliation(s)
- Boyu Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuanqun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Yinxiang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Ye Shui Zhang
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Guozhao Ji
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|