1
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2024; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
2
|
Liu F, Ding Y, Liu J, Latif J, Qin J, Tian S, Sun S, Guan B, Zhu K, Jia H. The effect of redox fluctuation on carbon mineralization in riparian soil: An analysis of the hotspot zone of reactive oxygen species production. WATER RESEARCH 2024; 265:122294. [PMID: 39182351 DOI: 10.1016/j.watres.2024.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Riparian zones are important depositional environments at the catchment scale and provide environmental services such as carbon sequestration. This zone is a highly dynamic interface for oxygen and electron exchange, which confers the basis for reactive oxygen species (ROS) production. However, the differences in soil ROS production and their impact on carbon turnover across various redox locations within the riparian zone remain to be fully elucidated. In this study, we investigated the distribution characteristics and generation mechanism of ROS in riparian soil based on soil samples collected in a three-month field monitoring experiment, with additional incubation experiments conducted to examine the effect of hydroxyl radical (•OH) on soil organic carbon (SOC) mineralization. The obtained results demonstrated that the riverine wetland was the hotspot zone for •OH production, with the production flux of 13.05 μmol kg-1 d-1, which was significantly higher than that in floodplain (7.29 μmol kg-1 d-1) and riverbank soils (8.61 μmol kg-1 d-1). Moreover, •OH levels displayed distinct rhythmic fluctuations, with significantly higher concentrations at low water levels compared to those at high water levels, and remained essentially flat over three cycles. The statistic analysis revealed that the ROS production was highly dependent on reduced species and microbial community structure, which function as biogeochemical batteries and electron shuttles under redox fluctuations. Furthermore, the generated •OH involved in the abiotic mineralization of SOC, contributing to 13.1‒21.8 % of total CO2 efflux. Compared to particulate organic carbon (POC), mineral-associated organic carbon (MAOC) fractions of SOC were more susceptible to •OH attacks. The findings provide a novel insight to comprehensively assess the redox process on riparian carbon turnover.
Collapse
Affiliation(s)
- Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuanyuan Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junaid Latif
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Suxin Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shiyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Baotong Guan
- College of Information Engineering, Northwest A&F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
3
|
Pu S, Li X, Liu Z, Zhang P, Yu C. Adsorption of oxidized humic acid onto redox-inert mineral surfaces induces formation of hydroxyl radicals and carbon dynamics. WATER RESEARCH 2024; 268:122653. [PMID: 39467425 DOI: 10.1016/j.watres.2024.122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
The dark formation of hydroxyl radicals (·OH) from O2 activation by reduced humic substances at oxic-anoxic interfaces has been extensively documented. However, their generation in oxic subsurface environments is typically overlooked due to the scarcity of electron donors, especially in the presence of minerals. In this study, the formation of ·OH during the adsorption of oxidized humic acids (HA) onto redox-inert minerals was investigated under oxic and pH-neutral conditions. Batch experiment results demonstrated that the adsorption of oxidized HA onto aluminum (hydr)oxide and Fe-free clay minerals induces the formation of ·OH (e.g., 16/28 μmol/g C) without the addition of exogenous electron donors. In contrast, the interaction of oxidized HA alone with O2 did not result in measurable ·OH production. The enhanced electron-donating capacity (EDC) and humification of the whole HA (mainly in adsorbed state) were measured after adsorption. The surface-catalyzed polymerization of oxidizable polyphenols in HA is proposed as the plausible mechanism for the observed EDC enhancement, which in turn triggers O2 activation for ·OH production. Furthermore, substantial chemical alterations of lignins and condensed aromatics within HA were observed, producing more compounds exhibiting higher molecular weight, aromaticity, O/C ratio, and nominal oxidation state of carbon. It is indicated that the contribution of oxidative polymerization outweighs ·OH oxidation in the molecular transformation of adsorbed HA. Overall, our findings extend the understanding of HA-induced ·OH production from oxic-anoxic interfaces to the oxic zone and present a novel pathway for the abiotic transformation of recalcitrant organic matter in subsurface environments with extensive surface water-groundwater interactions.
Collapse
Affiliation(s)
- Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Dongsanlu 1#, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xinyi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Dongsanlu 1#, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Zhongquan Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Dongsanlu 1#, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, Hubei, PR China
| | - Chenglong Yu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Dongsanlu 1#, Erxianqiao, Chengdu 610059, Sichuan, PR China.
| |
Collapse
|
4
|
Yu Y, Li A, Fan SQ, Zhao HP. Biogenic amorphous FeOOH activated additional intracellular electron flow pathways for accelerating reductive dechlorination of tetrachloroethylene. WATER RESEARCH 2024; 267:122489. [PMID: 39326185 DOI: 10.1016/j.watres.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) with extracellular electron transfer (EET) capabilities have shown significant potential for bioremediating halogenated hydrocarbon contaminated sites rich in iron and humic substances. However, the role and microbial molecular mechanisms of iron-humic acid (Fe-HA) complexes in the reductive dehalogenation process of DIRB remains inadequately elucidated. In this study, we developed a sustainable carbon cycling approach using Fe-HA complexes to modulate the electron flux from sawdust (SD), enabling almost complete reductive dechlorination by most DIRB (e.g., Shewanella oneidensis MR-1) that lack complex iron-sulfur molybdo enzymes. The SD-Fe-HA/MR-1 system achieved a 96.52% removal efficiency of tetrachloroethylene (PCE) at concentrations up to 250 μmol/L within 60 days. Material characterization revealed that DIRB facilitated the hydrolysis of macromolecular carbon sources by inducing the formation of amorphous ferrihydrite (FeOOH) in Fe-HA complexes. More importantly, the bioavailable FeOOH activated additional intracellular electron flow pathways, increasing the activity of potential dehalogenases. Transcriptome further highlight the innovative role of biogenic amorphous FeOOH in integrating intracellular redox metabolism with extracellular charge exchange to facilitate reductive dechlorination in DIRB. These findings provide novel insights into accelerating reductive dechlorination in-situ contaminated sites lacking obligate dehalogenating bacteria.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Sheng-Qiang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310030, China.
| |
Collapse
|
5
|
He H, Liu J, Shu Z, Chen Y, Pan Z, Peng C, Wang X, Zhou F, Zhou M, Du Z, Sun K, Xing B, Wang Z. Microbially Driven Iron Cycling Facilitates Organic Carbon Accrual in Decadal Biochar-Amended Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12430-12440. [PMID: 38968084 DOI: 10.1021/acs.est.3c09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.
Collapse
Affiliation(s)
- Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jie Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200433, China
| | - Chao Peng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Fengwu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200433, China
| |
Collapse
|
6
|
Xie F, Yuan Q, Meng Y, Luan F. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals. WATER RESEARCH 2024; 256:121645. [PMID: 38653093 DOI: 10.1016/j.watres.2024.121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Mercury contamination is a global concern, and the degradation and detoxification of methylmercury have gained significant attention due to its neurotoxicity and biomagnification within the food chain. However, the currently known pathways of abiotic demethylation are limited to light-induced photodegradation process and little is known about light-independent abiotic demethylation of methylmercury. In this study, we reported a novel abiotic pathway for the degradation of methylmercury through the oxidation of both mineral structural iron(II) and surface-adsorbed iron(II) in the absence of light. Our findings reveal that methylmercury can be oxidatively degraded by reactive oxygen species, specifically hydroxyl and superoxide radicals, which are generated from the oxidation of iron(II) minerals under dark conditions. Surprisingly, Hg(0) trapping experiments demonstrated that inorganic Hg(II) resulting from the oxidative degradation of methylmercury was rapidly reduced to gaseous Hg(0) by iron(II) minerals. The demethylation of methylmercury, coupled with the generation of Hg(0), suggests a potential natural attenuation process for methylmercury. Our results highlight the underappreciated roles of iron(II) minerals in the abiotic degradation of methylmercury and the release of gaseous Hg(0) into the atmosphere.
Collapse
Affiliation(s)
- Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
7
|
Huang H, Tian Z, Guo D, Tang Z, Li R, Ali A, Cao Z, Lu H, Shen Y, Zhu Y, Han J. Rice straw returning enhances cadmium activation by accelerating iron cycling thus hydroxyl radical production in paddy soils during drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171543. [PMID: 38453068 DOI: 10.1016/j.scitotenv.2024.171543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Straw returning is widely found elevating the bioavailability of cadmium (Cd) in paddy soils with unclear biogeochemical mechanisms. Here, a series of microcosm incubation experiments were conducted and spectroscopic and microscopic analyses were employed. The results showed that returning rice straw (RS) efficiently increased amorphous Fe and low crystalline Fe (II) to promote the production of hydroxyl radicals (OH) thus Cd availability in paddy soils during drainage. On the whole, RS increased OH and extractable Cd by 0.2-1.4 and 0.1-3.3 times, respectively. While the addition of RS effectively improved the oxidation rate of structural Fe (II) mineral (i.e., FeS) to enhance soil Cd activation (up to 38.5 %) induced by the increased OH (up to 69.2 %). Additionally, the existence of CO32- significantly increased the efficiency level on OH production and Cd activation, which was attributed to the improved reactivity of Fe (II) by CO32- in paddy soils. Conclusively, this study emphasizes risks of activating soil Cd induced by RS returning-derived OH, providing a new insight into evaluating the safety of straw recycling.
Collapse
Affiliation(s)
- Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Zhuoqi Tian
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Di Guo
- School of Petroleumn Engineering and Environmental Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhixian Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Zhengxian Cao
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haiying Lu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Yu Shen
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yongli Zhu
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China.
| |
Collapse
|
8
|
Liu F, Wang Z, Liu J, Latif J, Qin J, Yang H, Jiang W, Deng Y, Yang K, Ni Z, Ding Y, Xie J, Wang Y, Jia H. Seasonal and Spatial Fluctuations of Reactive Oxygen Species in Riparian Soils and Their Contributions on Organic Carbon Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7066-7077. [PMID: 38597811 DOI: 10.1021/acs.est.3c10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the natural environment and play a pivotal role in biogeochemical processes. However, the spatiotemporal distribution and production mechanisms of ROS in riparian soil remain unknown. Herein, we performed uninterrupted monitoring to investigate the variation of ROS at different soil sites of the Weihe River riparian zone throughout the year. Fluorescence imaging and quantitative analysis clearly showed the production and spatiotemporal variation of ROS in riparian soils. The concentration of superoxide (O2•-) was 300% higher in summer and autumn compared to that in other seasons, while the highest concentrations of 539.7 and 20.12 μmol kg-1 were observed in winter for hydrogen peroxide (H2O2) and hydroxyl radicals (•OH), respectively. Spatially, ROS production in riparian soils gradually decreased along with the stream. The results of the structural equation and random forest model indicated that meteorological conditions and soil physicochemical properties were primary drivers mediating the seasonal and spatial variations in ROS production, respectively. The generated •OH significantly induced the abiotic mineralization of organic carbon, contributing to 17.5-26.4% of CO2 efflux. The obtained information highlighted riparian zones as pervasive yet previously underestimated hotspots for ROS production, which may have non-negligible implications for carbon turnover and other elemental cycles in riparian soils.
Collapse
Affiliation(s)
- Fuhao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Junaid Latif
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Wenjun Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yongxi Deng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yuanyuan Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jia Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
9
|
Dai Y, Ma S, Lu H, Zhang Z, Xu J, Zhu K, Wang Z, Zhu L, Jia H. Arsenite adsorption and oxidation affected by soil humin: The significant role of persistent free radicals and reactive oxygen species. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133799. [PMID: 38377907 DOI: 10.1016/j.jhazmat.2024.133799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Humin (HM), as the main component of soil organic matter, carries various reactive groups and plays a crucial regulatory role in the transformation of arsenic (As). However, current research on the redox pathway of As and its interactions with HM is relatively limited. This study aimed to explore the impact of different HM samples on the redox characteristics of As. The results showed that HM can not only adsorb arsenite [As(III)] but also oxidize As(III) into arsenate [As(V)]. However, once As(III) is adsorbed on the HM, it cannot undergo further oxidation. HMNM (extracted from peat soil) exhibited the highest adsorption capacity of As(III), with a maximum amount of 1.95 mg/kg. The functional groups of HM involved in As complexation were primarily phenolic hydroxyl and carboxyl groups. The adsorption capacity of HM samples for As(III) was consistent with their carboxyl group contents. The oxygen-containing functional groups and environmentally persistent free radicals (EPFRs) on HM can directly oxidize As(Ⅲ) through electron transfer, or indirectly induce the production of reactive oxygen species (ROS), such as hydroxyl radicals, to further oxidize As(Ⅲ). This study provides new insight into the transport and transformation process of As mediated by soil HM, and establishes a theoretical basis for As remediation.
Collapse
Affiliation(s)
- Yunchao Dai
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Sirui Ma
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haodong Lu
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zixuan Zhang
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xu
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kecheng Zhu
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhiqiang Wang
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Resource and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
10
|
Li Y, Liu Y, Guo D, Dong H. Differential degradation of petroleum hydrocarbons by Shewanella putrefaciens under aerobic and anaerobic conditions. Front Microbiol 2024; 15:1389954. [PMID: 38659987 PMCID: PMC11040095 DOI: 10.3389/fmicb.2024.1389954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
The complexity of crude oil composition, combined with the fluctuating oxygen level in contaminated environments, poses challenges for the bioremediation of oil pollutants, because of compound-specific microbial degradation of petroleum hydrocarbons under certain conditions. As a result, facultative bacteria capable of breaking down petroleum hydrocarbons under both aerobic and anaerobic conditions are presumably effective, however, this hypothesis has not been directly tested. In the current investigation, Shewanella putrefaciens CN32, a facultative anaerobic bacterium, was used to degrade petroleum hydrocarbons aerobically (using O2 as an electron acceptor) and anaerobically (using Fe(III) as an electron acceptor). Under aerobic conditions, CN32 degraded more saturates (65.65 ± 0.01%) than aromatics (43.86 ± 0.03%), with the following order of degradation: dibenzofurans > n-alkanes > biphenyls > fluorenes > naphthalenes > alkylcyclohexanes > dibenzothiophenes > phenanthrenes. In contrast, under anaerobic conditions, CN32 exhibited a higher degradation of aromatics (53.94 ± 0.02%) than saturates (23.36 ± 0.01%), with the following order of degradation: dibenzofurans > fluorenes > biphenyls > naphthalenes > dibenzothiophenes > phenanthrenes > n-alkanes > alkylcyclohexanes. The upregulation of 4-hydroxy-3-polyprenylbenzoate decarboxylase (ubiD), which plays a crucial role in breaking down resistant aromatic compounds, was correlated with the anaerobic degradation of aromatics. At the molecular level, CN32 exhibited a higher efficiency in degrading n-alkanes with low and high carbon numbers relative to those with medium carbon chain lengths. In addition, the degradation of polycyclic aromatic hydrocarbons (PAHs) under both aerobic and anaerobic conditions became increasingly difficult with increased numbers of benzene rings and methyl groups. This study offers a potential solution for the development of targeted remediation of pollutants under oscillating redox conditions.
Collapse
Affiliation(s)
- Yang Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Yuan Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| |
Collapse
|
11
|
Wang X, Wang Q, Zhang D, Liu J, Fang W, Li Y, Cao A, Wang Q, Yan D. Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170882. [PMID: 38342465 DOI: 10.1016/j.scitotenv.2024.170882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Manganese is one of the essential trace elements for plants to maintain normal life activities. Soil fumigation, while effectively controlling soil-borne diseases, can also improve the cycling of soil nutrient elements. MiSeq amplicon sequencing is used to determine the composition of soil microbial communities, and structural equation modeling and the random forest algorithm are employed to conduct a correlation analysis between key manganese-oxidizing microorganisms and soil manganese availability. This experiment investigated the microbial mechanisms behind the observed increase in available manganese in soil after fumigation. The key findings revealed that Bacillus, GeoBacillus, GraciliBacillus, Chungangia, and Pseudoxanthomonas play crucial roles in influencing the variation in soil available manganese content. Fumigation was found to elevate the abundance of Bacillus. Moreover, laccase activity emerged as another significant factor impacting soil manganese availability, showing an indirect correlation with available manganese content and contributing to 58 % of the observed variation in available manganese content. In summary, alterations in the communities of manganese-oxidizing microorganisms following soil fumigation are pivotal for enhancing soil manganese availability.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingyi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Guo S, Lyu H, Liu W, He Y, Tang J. Self-motivated photoaging of microplastics by biochar-dissolved organic matter under different pyrolysis temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170043. [PMID: 38218483 DOI: 10.1016/j.scitotenv.2024.170043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/07/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Dissolved organic matter (DOM) released from biochar (BDOM) can interact with microplastics (MPs) in the environment, inevitably affecting their environmental behaviour. Information regarding the influence of BDOM on MPs during photoaging and associated variations in the MP aging mechanism remains unclear. This study evaluated the effect of BDOM on the aging of polystyrene (PS) MPs. The results showed that among three pyrolysis temperatures, low-temperature BDOM significantly enhanced the photoaging process of PS MPs, with the smallest average particle size and highest carbonyl index value after 15 days of aging under light conditions. The DOM level decreased after 5 days, increased after 5-10 days, and stabilised after 15 d. BDOM accelerates PS MPs aging, leading to more DOM released from PS, which can be transformed into 1O2 via triplet-excited state (3DOM⁎ and 3PS⁎) to further enhance PS MPs aging, resulting in the realisation of the self-accelerated aging process of PS MPs. 1O2 plays a crucial role in the self-motivated accelerated aging process of PS MPs. These findings provide new insights into the effects of the DOM structure and composition on reactive oxygen species generation during MPs aging.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
14
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
15
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
16
|
Deng W, Wang Y, Liu W. Effects of incorporating Mn into goethite on adsorption of dissolved organic matter and potentially toxic elements in soil: Isotherms, kinetics, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 231:116260. [PMID: 37247650 DOI: 10.1016/j.envres.2023.116260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Goethite is ubiquitous in the environment and plays key role in preserving dissolved organic matter (DOM) and deactivating potentially toxic elements (PTEs) by adsorbing DOM and PTEs. Various non-Fe metals are usually incorporated into natural goethite, substituting Fe in the goethite structure, which dramatically influence the physico-chemical properties and adsorption behavior of the goethite. In the present study, adsorption of DOM and Pb(II) on Mn-substituted goethite samples was investigated. The results displayed that the specific surface area (SSA) of mineral samples increased by 67.6% as the incorporation of Mn for Fe, from 25.71 m2 g-1 for pure goethite to 43.09 m2 g-1for Mn-goethite. Besides, the Mn substitution caused more hydroxyl groups and relatively fewer positive charges on mineral surface, and Mn in the Mn-goethite samples was predominantly present as Mn(III). The amount of DOM adsorbed to per unit mass of goethite was increased as Mn content increased, which was attributed to Mn incorporation increasing the SSA of mineral samples. However, the SSA-normalized absorption capacity for goethite to DOM was decreased by Mn because Mn substitution decreased the number of positive charges of mineral samples, which weakened the electrostatic attraction between DOM and the minerals. The amount of Pb(II) adsorbed to per unit mass of goethite was increased by Mn substitution, and the amount of Pb(II) adsorbed to per unit SSA of goethite increased as the amount of Mn substitution increased, indicating that the increased capacity for adsorbing Pb was not only caused by the SSA increasing but also by there were more surface hydroxyl groups on the Mn-goethite than pure goethite and Pb(II) preferentially adsorbed to Mn sites on the Mn-goethite. The present study results showed that Mn-goethite could be used to sequester DOM and remediate soil contaminated with PTEs because Mn-goethite has a high adsorption capacity and is environmentally benign.
Collapse
Affiliation(s)
- Wenbo Deng
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Yajing Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China
| | - Wenjuan Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
17
|
Xu Q, Li G, Fang L, Sun Q, Han R, Zhu Z, Zhu YG. Enhanced Formation of 6PPD-Q during the Aging of Tire Wear Particles in Anaerobic Flooded Soils: The Role of Iron Reduction and Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5978-5987. [PMID: 36992570 DOI: 10.1021/acs.est.2c08672] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rapid urbanization drives increased emission of tire wear particles (TWPs) and the contamination of a transformation product derived from tire antioxidant, termed as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), with adverse implications for terrestrial ecosystems and human health. However, whether and how 6PPD-Q could be formed during the aging of TWPs in soils remains poorly understood. Here, we examine the accumulation and formation mechanisms of 6PPD-Q during the aging of TWPs in soils. Our results showed that biodegradation predominated the fate of 6PPD-Q in soils, whereas anaerobic flooded conditions were conducive to the 6PPD-Q formation and thus resulted in a ∼3.8-fold higher accumulation of 6PPD-Q in flooded soils than wet soils after aging of 60 days. The 6PPD-Q formation in flooded soils was enhanced by Fe reduction-coupled 6PPD oxidation in the first 30 days, while the transformation of TWP-harbored environmentally persistent free radicals (EPFRs) to superoxide radicals (O2•-) under anaerobic flooded conditions further dominated the formation of 6PPD-Q in the next 30 days. This study provides significant insight into understanding the aging behavior of TWPs and highlights an urgent need to assess the ecological risk of 6PPD-Q in soils.
Collapse
Affiliation(s)
- Qiao Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, P. R. China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, P. R. China
| | - Li Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal District Center for Disease Control and Prevention, Zhoushan 316000, P. R. China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
| | - Ruixia Han
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, P. R. China
| | - Zhe Zhu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, P. R. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, P. R. China
| |
Collapse
|
18
|
Zeng G, Shi M, Dai M, Zhou Q, Luo H, Lin L, Zang K, Meng Z, Pan X. Hydroxyl radicals in natural waters: Light/dark mechanisms, changes and scavenging effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161533. [PMID: 36640880 DOI: 10.1016/j.scitotenv.2023.161533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Hydroxyl radicals (•OH) are the most active, aggressive and oxidative reactive oxygen species. In the natural aquatic environment, •OH plays an important role in the biogeochemistry cycle, biotransformation, and pollution removal. This paper reviewed the distribution and formation mechanism of •OH in aquatic environments, including natural waters, colloidal substances, sediments, and organisms. Furthermore, factors affecting the formation and consumption of •OH were thoroughly discussed, and the mechanisms of •OH generation and scavenging were summarized. In particular, the effects of climate change and artificial work on •OH in the largest natural aquatic environment, i.e., marine environment was analyzed with the help of bibliometrics. Moreover, Fenton reactions make the •OH variation more complicated and should not be neglected, especially in those areas with suspended particles and sediments. Regarding the •OH variation in the natural aquatic environment, more attention should be given to global change and human activities.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ming Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academy of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
19
|
Liu C, Zhang X, Liu J, Li Z, Zhang Z, Gong Y, Bai X, Tan C, Li H, Li J, Hu Y. Ageing characteristics and microplastic release behavior from rainwater facilities under ROS oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161397. [PMID: 36608825 DOI: 10.1016/j.scitotenv.2023.161397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the natural environment that are generated by chemical or biochemical processes. Plastic rainwater facilities, as an important part of modern rainwater systems, are inevitably deteriorated by ROS. As a consequence, microplastics will be released. However, information on how ROS affect the ageing characteristics of plastic rainwater facilities and the subsequent microplastic release behavior is still insufficient. To address this knowledge gap, Fenton reagents were used to simulate the reactive oxygen species (ROS) induced ageing process of three typical plastic rainwater components (rainwater pipe, made of polyvinyl chloride; modular storage tank, made of polypropylene; inspection well, made of high-density polyethylene) and the subsequent microplastic release behavior. After 6 days of Fenton ageing, an increase in sharpness, holes, and fractures on the rainwater facilities' surface was observed by scanning electron microscope (SEM). The functional group changes on the rainwater facilities' surface were analyzed by Fourier transform infrared spectrometer (FTIR) and two-dimensional correlation spectroscopy (2D-COS) and compared with the results of X-ray photoelectron spectroscopy (XPS). During the ageing process, oxygen-containing functional groups were generated and the carbon chains were broken, which promoted peeling and the release of microplastics. The amount of released microplastics (ranging from 158 to 6617 items/g facility) varied with the type of rainwater facilities, and the order was modular storage tank > inspection well > rainwater pipe. The release amount increased with ageing time, and a significant linear relationship was observed (r2 > 0.91). The particle size of the released microplastics ranged from 2 to 1362 μm, among which 10-30 μm particles accounted for the largest proportion (62.7 %). The release amount increased exponentially with decreasing particle size (r2 > 0.71). This study indicates that large amounts of microplastics could be released from plastic rainwater components during ROS-induced ageing.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Zhifei Li
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Xiaojuan Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chaohong Tan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Haiyan Li
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Yuansheng Hu
- Department of Civil Engineering and Construction, Faculty of Engineering and Design, Atlantic Technological University Sligo, Ash Lane, Sligo F91YW50, Ireland
| |
Collapse
|
20
|
Yuan Y, Guan F, Yu C, Li D, Lai F, Huang H, He J, Gao Y, Fang H. Organic ligands activate the dark formation of hydroxyl radicals (HO •) in surface soil/sediment: Yields, mechanisms, and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130710. [PMID: 36603429 DOI: 10.1016/j.jhazmat.2022.130710] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Soil is an important sink for various pollutants. Recent findings suggest that soil and sediment would spontaneously form HO• through Fenton or Fenton-like reactions under natural conditions. In this study, the effects and mechanisms of organic ligands (OLs) on the occurrence of HO• in surface soil/sediment were experimentally and computationally examined. Results confirmed that HO• generation was ND-12.92 nmol/g in surface soil/sediment, and the addition of EDTA-2Na would significantly enhance the yields of HO• by 1.4-352 times. Moisture was the decisive factor of soil HO• generation. The release of Fe(II) from solid into the aqueous phase was essential for the stimulation of HO• in EDTA-2Na suspensions. Furthermore, complexation reactions between Fe(II) and OLs would enhance single electron transfer (SET) reactions and the formation of O2•-. Interestingly, for specific OLs, their stimulations on SET and formation of O2•- would depress HO• generation. Provoking HO• generation by OLs could be efficiently used to degrade sulfamethoxazole in rice field sediment. The study provided new knowledge on how commonly synthetic OLs affect the HO• generation in surface soil/sediment, and it additionally shed light on the engineered stimulation of in-situ Fenton reactions in natural soil/sediment.
Collapse
Affiliation(s)
- Yufan Yuan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fangling Guan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chenglong Yu
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Danping Li
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Faying Lai
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huajun Huang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinbao He
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|