1
|
Ma W, Shen W, Gong L, Xiao Y, Hou S, Sun L, Li H, Huang F, Wu J. Independent and interactive effects of particulate matter and meteorological factors on hand, foot and mouth disease in Fuyang. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:2677-2692. [PMID: 39417841 DOI: 10.1007/s00484-024-02777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/10/2024] [Accepted: 08/31/2024] [Indexed: 10/19/2024]
Abstract
Previous research has demonstrated the influence of environmental factor on the occurrence of infectious diseases. However, there is insufficient and conflicting evidence regarding the association between Hand, foot and mouth disease (HFMD) and environmental variables, particularly the interaction of environmental variables. This study aims to investigate the individual and interactive effects of particulate matter (PM) and meteorological factors on HFMD incidence in Fuyang. The generalized additive models were combined with distributed lag non-linear models to assess the individual effects between PM and meteorological factor on HFMD incidence in Fuyang. Subsequently, a product term was incorporated into the model to investigate the interaction between PM and meteorological factors. Temperature and PM2.5 were identified as the two primary risk factors for HFMD, with relative risks (RR) of 1.586(1.493,1.685) and 1.349(1.325,1.373), respectively. Furthermore, PM exhibited a synergistic effect with meteorological factors. For instance, the RR values for PM2.5 in relation to HFMD were 1.029 (95% CI: 1.024-1.035) and 1 0.117 (95% CI: 1 0.108 - 11 0.127) under different temperature group categories. Notably, HFMD predominantly affects children under the age of five years old and infants aged between zero to one year old demonstrate heightened susceptibility to environmental variables. The results showed that both PM and meteorological factors were risk factors for HFMD, with evidence of an interaction between these variables. These findings have important implications for local HFMD incidence prediction and the development of effective prevention strategies.
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Wenbin Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230032, China
| | - Lei Gong
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Yongkang Xiao
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Sai Hou
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China
| | - Liang Sun
- Department of Infectious Disease Control and Prevention, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Huaibiao Li
- Department of Infectious Disease Control and Prevention, Fuyang Center for Disease Control and Prevention, Fuyang, Anhui, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei, Anhui, 230032, China.
| | - Jiabing Wu
- Department of Infectious Disease Control and Prevention, Anhui Center for Disease Control and Prevention, 12560 Fanhua Avenue, Shushan District, Hefei, Anhui, 230601, China.
| |
Collapse
|
2
|
Ma H, Dong Z, Zhang X, Liu C, Liu Z, Zhou X, He J, Zhang S. Airway bacterial microbiome signatures correlate with occupational pneumoconiosis progression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116875. [PMID: 39142114 DOI: 10.1016/j.ecoenv.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Recent evidence has pinpointed a key role of the microbiome in human respiratory health and disease. However, significant knowledge gaps still exist regarding the connection between bacterial communities and adverse effects caused by particulate matters (PMs). Here, we characterized the bacterial microbiome along different airway sites in occupational pneumoconiosis (OP) patients. The sequencing data revealed that OP patients exhibited distinct dysbiosis in the composition and function of the respiratory microbiota. To different extents, there was an overall increase in the colonization of microbiota, such as Streptococcus, implying a possible intrusion pathway provided by exogenous PMs. Compared to those of healthy subjects, unhealthy living habits (i.e., smoking) had a greater impact on microbiome changes in OP patients. Importantly, the associations between the bacterial community and disease indicators indicated that specific bacterial species, including Prevotella, Actinobacillus, and Leptotrichia, might be surrogate markers of OP disease progression. Collectively, our results highlighted the potential participation of the bacterial microbiota in the pathogenesis of respiratory diseases and helped in the discovery of microbiome-based diagnostics for PM-induced disorders.
Collapse
Affiliation(s)
- Huimin Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Stomatology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zheng Dong
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Xu Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Conghe Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhihao Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xi Zhou
- Occupational Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250062, China; Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Jin He
- Occupational Diseases Hospital of Shandong First Medical University, Jinan, Shandong 250062, China; Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong 250062, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
3
|
Qiu J, Ma J, Dong Z, Ren Q, Shan Q, Liu J, Gao M, Liu G, Zhang S, Qu G, Jiang G, Liu S. Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution. Nat Commun 2024; 15:7396. [PMID: 39191805 DOI: 10.1038/s41467-024-51686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Many lung immune cells are known to respond to inhaled particulate matter. However, current known responses cannot explain how particles induce thrombosis in the lung and how they translocate to distant organs. Here, we demonstrate that lung megakaryocytes (MKs) in the alveolar and interstitial regions display location-determined characteristics and act as crucial responders to inhaled particles. They move rapidly to engulf particles and become activated with upregulation in inflammatory responses and thrombopoiesis. Comprehensive in vivo, in vitro and ex vivo results unraveled that MKs were involved in particle-induced lung damages and shed particle-containing platelets into blood circulation. Moreover, MK-derived platelets exhibited faster clotting, stronger adhesion than normal resting platelets, and inherited the engulfed particles from parent MKs to assist in extrapulmonary particle transportation. Our findings collectively highlight that the specific responses of MKs towards inhaled particles and their roles in facilitating the translocation of particles from the lungs to extrapulmonary organs for clearance.
Collapse
Affiliation(s)
- Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, P. R. China
| | - Qing'e Shan
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoliang Liu
- Department of Pulmonary and Critical Care Medicine, Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
- National Center for Respiratory Medicine, Beijing, 100029, P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P.R. China
| |
Collapse
|
4
|
Qi Y, Liu X, Chen Y, Wu Y, Sun Y, Liu X, Bao Q, Zhang J, Yuan G, Wang T, Sun X, Liu S, Gao H. Enhanced Intrusion of Exogenous Airborne Fine Particles toward Eyes in Humans and Animals: Where Damaged Blood-Ocular Barrier Plays a Crucial Role. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13636-13647. [PMID: 38961559 PMCID: PMC11308520 DOI: 10.1021/acs.est.4c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Emerging data suggest a close correlation between ambient fine particle (AFP) exposure and eye disorders and pinpoint potential threats of AFPs to eye health in humans. However, the possible passage (including direct intrusion) and the interactions of AFPs with the eye microenvironment in addition to morphological and physiological injuries remain elusive. To this end, the likely transport of AFPs into the eyes via blood-ocular barrier (BOB) in humans and animals was investigated herein. Exogenous particles were recognized inside human eyes with detailed structural and chemical fingerprints. Importantly, comparable AFPs were found in sera with constant structural and chemical fingerprints, hinting at the translocation pathway from blood circulation into the eye. Furthermore, we found that the particle concentrations in human eyes from patients with diabetic retinopathy were much higher than those from patients with no fundus pathological changes (i.e., myopia), indicating that the damaged BOB increased the possibility of particle entrance. Our diseased animal model further corroborated these findings. Collectively, our results offer a new piece of evidence on the intrusion of exogenous particles into human eyes and provide an explanation for AFP-induced eye disorders, with substantially increased risk in susceptible individuals with BOB injuries.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxue Liu
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
- School
of Ophthalmology, Shandong First Medical
University & Shandong Academy of Medical Science, Jinan 250000, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Sun
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Xiaoyu Liu
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Qingdong Bao
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Jingjing Zhang
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Gongqiang Yuan
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Ting Wang
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Xiaolei Sun
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| | - Hua Gao
- State
Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory
of Ophthalmology, Eye Institute of Shandong
First Medical University, Eye Hospital of Shandong First Medical University, Qingdao 266000, China
- School
of Ophthalmology, Shandong First Medical
University & Shandong Academy of Medical Science, Jinan 250000, China
- Science
and Technology Innovation Center, Shandong
First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
| |
Collapse
|
5
|
Zhang Y, Frimpong AJ, Tang J, Olayode IO, Kyei SK, Owusu-Ansah P, Agyeman PK, Fayzullayevich JV, Tan G. An explicit review and proposal of an integrated framework system to mitigate the baffling complexities induced by road dust-associated contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123957. [PMID: 38631446 DOI: 10.1016/j.envpol.2024.123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Road dust-associated contaminants (RD-AC) are gradually becoming a much thornier problem, as their monotonous correlations render them carcinogenic, mutagenic, and teratogenic. While many studies have examined the harmful effects of road dust on both humans and the environment, few studies have considered the co-exposure risk and gradient outcomes given the spatial extent of RD-AC. In this spirit, this paper presents in-depth elucidation into the baffling complexities induced by both major and emerging contaminants of road dust through a panorama-to-profile up-to-date review of diverse studies unified by the goal of advancing innovative methods to mitigate these contaminants. The paper thoroughly explores the correlations between RD-AC and provides insights to understand their potential in dispersing saprotrophic microorganisms. It also explores emerging challenges and proposes a novel integrated framework system aimed at thermally inactivating viruses and other pathogenic micro-organisms commingled with RD-AC. The main findings are: (i) the co-exposure risk of both major and emerging contaminants add another layer of complexity, highlighting the need for more holistic framework strategies, given the geospatial morphology of these contaminants; (ii) road dust contaminants show great potential for extended prevalence and severity of viral particles pollution; (iii) increasing trend of environmentally persistent free radicals (EPFRs) in road dust, with studies conducted solely in China thus far; and (iv) substantial hurdle exists in acquiring data concerning acute procedural distress and long-term co-exposure risk to RD-ACs. Given the baffling complexities of RD-ACs, co-exposure risk and the need for innovative mitigation strategies, the study underscore the significance of establishing robust systems for deep road dust contaminants control and future research efforts while recognizing the interconnectivity within the contaminants associated with road dust.
Collapse
Affiliation(s)
- Yuxiao Zhang
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Alex Justice Frimpong
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Jingning Tang
- National Special Purpose Vehicle Product Quality Inspection and Testing Center, Suizhou City, Hubei Province, China
| | - Isaac Oyeyemi Olayode
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, P. O. Box 2028, Johannesburg, South Africa
| | - Sampson Kofi Kyei
- Department of Chemical Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Prince Owusu-Ansah
- Department of Automotive and Agricultural Mechanization Engineering, Kumasi Technical University, Kumasi, Ghana
| | - Philip Kwabena Agyeman
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China
| | - Jamshid Valiev Fayzullayevich
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China; School of Automobile and Automotive Economy, Tashkent State Transport University, Tashkent, Uzbekistan
| | - Gangfeng Tan
- School of Automotive Engineering, Wuhan University of Technology, Wuhan, 430070, China; Suizhou-WUT Industrial Research Institute, Suizhou Economic Development Zone, Zengdu District, Suizhou City, Hubei Province, China.
| |
Collapse
|
6
|
Tian Y, Xu P, Wu X, Gong Z, Yang X, Zhu H, Zhang J, Hu Y, Li G, Sang N, Yue H. Lung injuries induced by ozone exposure in female mice: Potential roles of the gut and lung microbes. ENVIRONMENT INTERNATIONAL 2024; 183:108422. [PMID: 38217903 DOI: 10.1016/j.envint.2024.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Ozone (O3) is one of the most harmful pollutants affecting health. However, the potential effects of O3 exposure on microbes in the gut-lung axis related to lung injuries remain elusive. In this study, female mice were exposed to 0-, 0.5- and 1-ppm O3 for 28 days, followed by routine blood tests, lung function tests and histopathological examination of the colon, nasal cavity and lung. Mouse faeces and lungs were collected for 16s rRNA sequencing to assess the overall microbiological profile and screen for key differential enriched microbes (DEMs). The key DEMs in faecal samples were Butyricimonas, Rikenellaceae RC9 and Escherichia-Shigella, whereas those in lung samples were DNF00809, Fluviicola, Bryobacter, Family XII AD3011 group, Sharpea, MND1 and unclassified Phycisphaeraceae. After a search in microbe-disease databases, these key DEMs were found to be associated with lung diseases such as lung neoplasms, cystic fibrosis, pneumonia, chronic obstructive pulmonary disease, respiratory distress syndrome and bronchiectasis. Subsequently, we used transcriptomic data from Gene Expression Omnibus (GEO) with exposure conditions similar to those in this study to cross-reference with Comparative Toxicogenomic Database (CTD). Il-6 and Ccl2 were identified as the key causative genes and were validated. The findings of this study suggest that exposure to O3 leads to significant changes in the microbial composition of the gut and lungs. These changes are associated with increased levels of inflammatory factors in the lungs and impaired lung function, resulting in an increased risk of lung disease. Altogether, this study provides novel insights into the role of microbes present in the gut-lung axis in O3 exposure-induced lung injury.
Collapse
Affiliation(s)
- Yuchai Tian
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Pengchong Xu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Gong
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China; Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tong ji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, PR China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huizhen Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Jiyue Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yangcheng Hu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|