1
|
Li Z, Jing Y, Zhu R, Yu Q, Qiu X. Sustainable soil rehabilitation with multiple network structures of layered double hydroxide beads: Immobilization of heavy metals, fertilizer release, and water retention. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135385. [PMID: 39121733 DOI: 10.1016/j.jhazmat.2024.135385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The remediation of heavy metal-contaminated soils necessitated a holistic approach that encompassed water and fertilizer conservation alongside soil property restoration. This study introduced the synthesis of (poly)acrylamide-layered double hydroxide gel spheres (PAM-LDH beads), which were designed to simultaneously immobilize heavy metals, control the release of fertilizers, and enhance soil water retention. Laboratory soil experiments under diverse conditions highlighted the superior performance of PAM-LDH beads in the immobilization of hexavalent chromium (Cr(VI)). The layered double hydroxide (LDH) component was identified as the key player in Cr(VI) immobilization, with anion exchange being the predominant mechanism. Notably, the encapsulated urea within the beads was released independently of environmental influences, governed by a concentration gradient across the beads surface. This release process was characterized by an initial phase of absorptive swelling followed by a diffusive phase. The impact on plant growth was assessed, revealing that PAM-LDH beads significantly curtailed Cr(VI) accumulation and alleviated its phytotoxic effects. Changes in the carbon (C) and nitrogen (N) content of the plants suggested that the urea encapsulated within the beads served as a nutrient source, contributing to soil fertility. Moreover, the water-holding capacity and soil-water characteristic curves of PAM-LDH beads suggested that these superabsorbent beads could delay soil water evaporation. The observed shifts in microbial community structure provided evidence for the enhancement of soil carbon and nitrogen cycles, indicative of improved soil properties.
Collapse
Affiliation(s)
- Zhenhui Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Yuqi Jing
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Rongjie Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan 430074, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan 430074, China; Wuhan Institute of Technology Jingmen Research Institute of New Chemical Materials Industry Technology, Wuhan 430070, China; Hubei Three Gorges Laboratory, Yichang 443008, China.
| |
Collapse
|
2
|
Ge H, Chen C, Li S, Guo X, Zhang J, Yang P, Xu H, Zhang J, Wu Z. Photo-induced protonation assisted nano primary battery for highly efficient immobilization of diverse heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135066. [PMID: 38943880 DOI: 10.1016/j.jhazmat.2024.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Highly-stable heavy metal ions (HMIs) appear long-term damage, while the existing remediation strategies struggle to effectively remove a variety of oppositely charged HMIs without releasing toxic substances. Here we construct an iron-copper primary battery-based nanocomposite, with photo-induced protonation effect, for effectively consolidating broad-spectrum HMIs. In FCPBN, Fe/Cu cell acts as the reaction impetus, and functional graphene oxide modified by carboxyl and UV-induced protonated 2-nitrobenzaldehyde serves as an auxiliary platform. Due to the groups and built-in electric fields under UV stimuli, FCPBN exhibits excellent affinity for ions, with a maximum adsorption rate constant of 974.26 g∙mg-1∙min-1 and facilitated electrons transfer, assisting to reduce 9 HMIs including Cr2O72-, AsO2-, Cd2+ in water from 0.03 to 3.89 ppb. The cost-efficiency, stability and collectability of the FCPBN during remediation, and the beneficial effects on polluted soil and the beings further demonstrate the splendid remediation performance without secondary pollution. This work is expected to remove multi-HMIs thoroughly and sustainably, which tackles an environmental application challenge.
Collapse
Affiliation(s)
- Hongjian Ge
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chaowen Chen
- University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Sijia Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xinyue Guo
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jing Zhang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
| | - Pengqi Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Huan Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, People's Republic of China; Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031.
| |
Collapse
|
3
|
Zhou S, Wang Q, Hua M, Wang S, Zhang S. Sustainable Biomass Acts as an Electron Donor for Cr(VI) Reduction during the Subcritical Hydrothermal Process: Molecular Insights into the Role of Hydrochar and Liquid Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15855-15863. [PMID: 39163203 DOI: 10.1021/acs.est.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Heavy metal pollution is a critical environmental issue that has garnered significant attention from the international community. Subcritical hydrothermal liquefaction (HTL) as an emerging green technology has demonstrated remarkable promise in environmental remediation. However, there is limited research on the remediation of highly toxic Cr(VI) using HTL. This study reveals that the HTL reaction of biomass enables the simultaneous reduction and precipitation of Cr(VI). At 280 °C, the reduction of Cr(VI) was nearly complete, with a high reduction rate of 98.9%. The reduced Cr as Cr(OH)3 and Cr2O3 was primarily enriched in hydrochar, accounting for over 99.9% of the total amount. This effective enrichment resulted in the removal of Cr(VI) from the aqueous phase while simultaneously yielding clean liquid compounds like organic acids and furfural. Furthermore, the elevated temperature facilitated the formation of Cr(III) and enhanced its accumulation within hydrochar. Notably, the resulting hydrochar and small oxygenated compounds, especially aldehyde, served as electron donors for Cr(VI) reduction. Additionally, the dissolved Cr facilitated the depolymerization and deoxygenation processes of macromolecular compounds with lignin-like structures, leading to more small oxygenated compounds and subsequently influencing Cr(VI) reduction. These findings have substantial implications for green and sustainable development.
Collapse
Affiliation(s)
- Shaojie Zhou
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qi Wang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Mingda Hua
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Zhang D, Liu Z. Employing dolomite as magnesium source to prepare calcined layered double hydroxides for chromium contaminated soil treatment: Exploring the influence of temperature, bioavailability, and microbial diversity. Heliyon 2024; 10:e34664. [PMID: 39170300 PMCID: PMC11336319 DOI: 10.1016/j.heliyon.2024.e34664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Layered double hydroxides (LDH-D) and their calcined counterparts, using dolomite as a source of magnesium, were utilized for the immobilization of chromium (Cr(VI)) in soil. The results indicate that LDH-D, both with and without varying calcination temperatures, can effectively immobilize Cr(VI) in soil. Among the different calcination temperatures tested, LDH-D subjected to calcination at 500 °C (LDH-D-500) showed particularly high efficacy. Long-term TCLP experiments demonstrated the inhibition of soil-to-plant transmission of Cr(VI), thereby highlighting the long-lasting immobilization capacity of LDH-D and its calcined derivatives. Furthermore, the analysis of the microbial community's adaptation in post-remediation soil confirmed the durability and bioavailability of LDH-D-500 for Cr immobilization. Examination of the material's morphology and structure after immobilization shed light on the mechanism of immobilization in soil. The results revealed that interlayer anion exchange and surface adsorption were the main factors responsible for the effective immobilization of LDH-D and LDH-D-300. On the other hand, LDH-D-900, with a dominant spinel (MgAl2O4) structure, faced challenges in returning to its original layered configuration, making surface adsorption the primary mechanism for immobilization. LDH-D-500 primarily relied on the structure memory effects of LDHs to immobilize Cr(VI) through structural recovery processes, facilitated by electrostatic attraction and surface adsorption. It is also important to note that CaCO3 plays an important role in adsorption. Additionally, a portion of Cr(VI) was converted to Cr(III) through phenomena such as isomer substitution and complexation adsorption. The proficiency of LDH-D-500 in immobilizing Cr, its ability for instantaneous separation, and the potential for regeneration make it a promising material for remediation of heavy metal-contaminated soil. The investigations suggest that the use of dolomite to create hydrotalcite and calcining it at 500 °C could effectively render environmental Cr inactive, thereby optimizing resource utilization.
Collapse
Affiliation(s)
- Donghua Zhang
- Department of Mining Engineering, College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhimeng Liu
- Shanxi Coal Institute of Planing &design (group) Co.,ltd., Taiyuan, 030024, China
| |
Collapse
|
5
|
Wei X, You Y, Fan Z, Sheng G, Ma J, Huang Y, Xu H. Controllable integration of nano zero-valent iron into MOFs with different structures for the purification of hexavalent chromium-contaminated water: Combined insights of scavenging performance and potential mechanism investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173395. [PMID: 38795988 DOI: 10.1016/j.scitotenv.2024.173395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
This work combined the stability of the porous structure of metal-organic frameworks with the strong reducibility of nano zero-valent iron, for the controllable integration of NZVI into MOFs to utilize the advantages of each component with enhancing the rapid decontamination and scavenging of Cr(VI) from wastewater. Hence, four kinds of MOFs/NZVI composites namely ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, were prepared for Cr(VI) capture. The results indicated that the stable structure of ZIF67, MOF74, MIL101(Fe), CuBTC, was beneficial for the dispersion of NZVI that could help more close contact between MOFs/NZVI reactive sites and Cr(VI), subsequently, MOFs/NZVI was proved to be better scavengers for Cr(VI) scavenging than NZVI alone. The Cr(VI) capture achieved the maximum adsorption capacity at pH ~ 4.0, which might be due to the participation of more H+ in the reaction and better corrosion of NZVI at lower pH. Mechanism investigation demonstrated synergy of adsorption, reduction and surface precipitation resulted in enhanced Cr(VI) scavenging, and Fe(0), dissolved and surface-bound Fe(II) were the primary reducing species. The findings of this investigation indicated that the as-prepared composites of ZIF67/NZVI, MOF74/NZVI, MIL101(Fe)/NZVI, CuBTC/NZVI, with high oxidation resistance and excellent reactivity, could provide reference for the decontamination and purification of actual Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Yanran You
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Zheyu Fan
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Huiting Xu
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Zhejiang 312000, PR China
| |
Collapse
|
6
|
Liang H, Wu H, Fang W, Ma K, Zhao X, Geng Z, She D, Hu H. Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism. Int J Biol Macromol 2024; 264:130812. [PMID: 38484806 DOI: 10.1016/j.ijbiomac.2024.130812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Cr(VI) is of concern because of its high mobility and toxicity. In this work, a two-stage hydrothermal strategy was used to activate the O sites of starch, and by inserting K-ion into the pores, starch-based polyporous carbon (S-PC) adsorption sites was synthesized for removal of Cr(VI). Physicochemical characterization revealed that the O content of the S-PC reached 20.66 % after activation, indicating that S-PC has excellent potential for adsorption of Cr(VI). The S-PC removal rate for 100 mg/L Cr(VI) was 96.29 %, and the adsorption capacity was 883.86 mg/g. Moreover, S-PC showed excellent resistance to interference, and an equal concentration of hetero-ions reduced the activity by less than 5 %. After 8 cycles of factory wastewater treatment, the S-PC maintained 81.15 % of its original activity, which indicated the possibility of practical application. Characterization and model analyses showed that the removal of Cr(VI) from wastewater by the S-PC was due to CC, δ-OH, ν-OH, and C-O-C groups, and the synergistic effect of adsorption and reduction was the key to the performance. This study provides a good solution for treatment of Cr(VI) plant wastewater and provides a technical reference for the use of biological macromolecules such as starch in the treatment of heavy metals.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Wu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wendi Fang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Xu M, Wu J, Wang J, Liu W, Sun L, Zhou W, Du Y, Li Y, Li H. Covalent organic framework modified vermiculite for total Cr removal and subsequent recycling for efficient ciprofloxacin and NO photooxidation. J Colloid Interface Sci 2023; 652:218-230. [PMID: 37595439 DOI: 10.1016/j.jcis.2023.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Design and fabrication of feasible remediation composites for total Cr (Cr(T)) removal is still challenging but urgently required. Herein, eco-friendly expanded vermiculite (VE) is integrated with a photoactive covalent organic framework (COF) polymer, in which photoinduced electrons of surface anchored COF can freely transfer to Cr(VI) for chemical reduction, and layered expanded VE allows ion exchange between resultant Cr(III) cations and interlayered K+, Ca2+, Mg2+, Na+, etc. The Cr(T) removal capacities of the surface-modified VE with important parameters (solution pH value, initial Cr(VI) concentration, etc.) are discussed extensively to understand how to select the best conditions for optimum Cr(T) removal performance. More interestingly, from a circular economy view point, spent Cr-loading VE-based waste can serve as a photocatalyst towards oxidation conversion of ciprofloxacin and NO gas subsequently. Explanations for different effects on physicochemical properties as well as catalytic activities of the reused Cr-loading waste are given. This strategy could provide valuable and promising contribution towards the development of sustainable low-cost mineral materials for Cr(T) removal. These findings also shed new light on the research of recycling spent photocatalyst for resource and reutilization.
Collapse
Affiliation(s)
- Meng Xu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Junshu Wu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China.
| | - Jinshu Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China.
| | - Wanchen Liu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Lingmin Sun
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Wenyuan Zhou
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Yucheng Du
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Yongli Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| | - Hongyi Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100022, China
| |
Collapse
|
8
|
Liang H, Ma K, Zhao X, Geng Z, She D, Hu H. Enhancement of Cr(VI) adsorption on lignin-based carbon materials by a two-step hydrothermal strategy: Performance and mechanism. Int J Biol Macromol 2023; 252:126432. [PMID: 37604414 DOI: 10.1016/j.ijbiomac.2023.126432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Cr(VI) is a carcinogenic heavy metal that forms an oxygen-containing anion, which is difficult to remove from water by adsorbents. Here, industrial alkali lignin was transformed into a Cr(VI) adsorbent (N-LC) by using a two-step hydrothermal strategy. The characterization results of the adsorbent showed that O and N were uniformly distributed on the surface of the adsorbent, resulting in a favorable morphology and structure. The Cr(VI) adsorption of N-LC was 13.50 times that of alkali lignin, and the maximum was 326.10 mg g-1, which confirmed the superiority of the two-step hydrothermal strategy. After 7 cycles, the adsorption of N-LC stabilized at approximately 62.18 %. In addition, in the presence of coexisting ions, N-LC showed a selective adsorption efficiency of 85.47 % for Cr(VI), which is sufficient to support its application to actual wastewaters. Model calculations and characterization showed that N and O groups were the main active factors in N-LC, and CO, -OH and pyridinic-N were the main active sites. This study provides a simple and efficient method for the treatment of heavy metals and the utilization of waste lignin, which is expected to be widely applied in the environmental, energy and chemical industries.
Collapse
Affiliation(s)
- Hongxu Liang
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kaiyue Ma
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250300, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxiang Hu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Zhao M, He Y, Dong X, Pang K, He Q, Ma Y, Cui H. Using Multistage Energy Barrier of Heterojunctions in Improving Cr(VI) Detection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7154. [PMID: 38005083 PMCID: PMC10672457 DOI: 10.3390/ma16227154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Detecting heavy metals in seawater is challenging due to the high salinity and complex composition, which cause strong interference. To address this issue, we propose using a multistage energy barrier as an electrochemical driver to generate electrochemical responses that can resist interference. The Ni-based heterojunction foams with different types of barriers were fabricated to detect Cr(VI), and the effects of the energy barriers on the electrochemical response were studied. The single-stage barrier can effectively drive the electrochemical response, and the multistage barrier is even more powerful in improving sensing performance. A prototype Ni/NiO/CeO2/Au/PANI foam with multistage barriers achieved a high sensitivity and recovery rate (93.63-104.79%) in detecting seawater while resisting interference. The use of multistage barriers as a driver to resist electrochemical interference is a promising approach.
Collapse
Affiliation(s)
- Minggang Zhao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yichang He
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaotong Dong
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kun Pang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qian He
- School of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ye Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hongzhi Cui
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
10
|
Li M, Liu H, Liu C, Ding Y, Fang C, Wan R, Zhu H, Yang Y. Pd sub-nanolayer on Au core for enhanced catalytic hydrogenation reduction of oxyanions pollutants: Synergistic effect of Pd and Au. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122067. [PMID: 37352958 DOI: 10.1016/j.envpol.2023.122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Oxyanion pollutants in industrial wasterwater, such as (Cr(VI)), BrO3- (Br(V)) and SeO32- (Se(IV)) have detrimental or toxic effects on individual health when their concentrations accumulated to a certain level. The conversion of these oxyanions into harmless/industrial-valuable products or removal from wastewater is of significance. Herein, we designed Pd sub-nanolayer on Au core catalysts supported on Al2O3 (sub-Pd-Au/Al2O3) for highly effective catalytic hydrogenation reduction of oxyanions under ambient conditions. The sub-Pd(0.049)-Au(0.927)/Al2O3 catalyst exhibited the highest catalytic activity and TOF value for Cr(VI), Br(V) and Se(IV) reduction, respectively, by optimizing the Pd loading amount. The synergistic effect between Pd sub-nanolayer and Au core enhanced catalytic activity by regulating the Pd dispersion and site property, according to thorough characterizations that included high-angle annular dark-field transmission electron microscopy (HAADF-TEM) image, in-situ CO-IR adsorption, CO chemisorption, and X-ray photoelectron spectroscopy (XPS). This work might provide some new lights on design of highly efficient catalysts for the elimination of oxyanion pollutants.
Collapse
Affiliation(s)
- Minghui Li
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Chang Liu
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Yan Ding
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Caixia Fang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Rui Wan
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Yaning Yang
- College of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, PR China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui, 243000, PR China.
| |
Collapse
|
11
|
Wan Y, Luo H, Cai Y, Dang Z, Yin H. Selective removal of total Cr from a complex water matrix by chitosan and biochar modified-FeS: Kinetics and underlying mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131475. [PMID: 37104956 DOI: 10.1016/j.jhazmat.2023.131475] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Cr(VI) is difficult to remove from wastewater via a one-step method because it is a type of oxyanion. Developing ARPs to selectively remove total Cr is critical for Cr(VI) remediation, including Cr(VI) adsorption-reduction and Cr(III) complexation. Hereon, chitosan and biochar modified-FeS (CTS-FeS@BC) was prepared to apply in the selective removal of total Cr from wastewaters. The results showed that the activity of amorphous FeS on CTS-FeS@BC for Cr(VI) removal (110.0 mg/g FeS) was significantly enhanced by CTS and BC, and efficiency was inhibited slightly by many anions and humic acid (HA). Meanwhile, the removal of total Cr by CTS-FeS@BC (99.1 mg/g FeS) via ARPs was improved by 1.2 and 40.3 times when compared with CTS-FeS and raw FeS, respectively. Besides, CTS-FeS@BC exhibited an outstanding selectivity for total Cr removal in metal cations-Cr binary solutions and in a complex water matrix. The mechanism of ARPs on CTS-FeS@BC demonstrated by the results of the 1,10-phenanthroline experiment and the distribution of Cr species was that Cr(VI) was first adsorbed by outer-sphere complexation for reduction, and then adsorbed Cr(III) combined with Fe(III) species to generate Fe(III)-Cr(III) complex for total Cr removal. Overall, this study provides an ARP to effectively solve Cr pollution in wastewaters.
Collapse
Affiliation(s)
- Yi Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
12
|
Liu X, Li Y, Chen Z, Yang H, Cai Y, Wang S, Chen J, Hu B, Huang Q, Shen C, Wang X. Advanced porous nanomaterials as superior adsorbents for environmental pollutants removal from aqueous solutions. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 53:1289-1309. [DOI: doi.org/10.1080/10643389.2023.2168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Affiliation(s)
- Xiaolu Liu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yang Li
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Zhongshan Chen
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Hui Yang
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, P.R. China
| | - Jianrong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, P.R. China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing, P.R. China
- College of Environmental Science and Technology, North China Electric Power University, Beijing, P.R. China
| |
Collapse
|
13
|
Lin Z, Xu J, Zhu A, He C, Wang C, Zheng C. Physicochemical Effects of Sulfur Precursors on Sulfidated Amorphous Zero-Valent Iron and Its Enhanced Mechanisms for Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37368460 DOI: 10.1021/acs.langmuir.3c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Amorphous zerovalent iron (AZVI) has gained considerable attention due to its remarkable reactivity, but there is limited research on sulfidated amorphous zerovalent iron (SAZVI) and the influence of different sulfur precursors on its reactivity remains unclear. In this study, SAZVI materials with an amorphous structure were synthesized using various sulfur precursors, resulting in significantly increased specific surface area and hydrophobicity compared to AZVI. The Cr(VI) removal efficiency of SAZVI-Na2S, which exhibited the most negative free corrosion potential (-0.82 V) and strongest electron transfer ability, was up to 8.5 times higher than that of AZVI. Correlation analysis revealed that the water contact angle (r = 0.87), free corrosion potential (r = -0.92), and surface Fe(II) proportion (r = 0.98) of the SAZVI samples played crucial roles in Cr(VI) removal. Furthermore, the enhanced elimination ability of SAZVI-Na2S was analyzed, primarily attributed to the adsorption of Cr(VI) by the FeSx shell, followed by the rapid release of internal electrons to reduce Cr(VI) to Cr(III). This process ultimately led to the precipitation of FeCr2O4 and Cr2S3 on the surface of SAZVI-Na2S, resulting in their removal from the water. This study provides insights into the influence of sulfur precursors on the reactivity of SAZVI and offers a new strategy for designing highly active AZVI for efficient Cr(VI) removal.
Collapse
Affiliation(s)
- Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
- Shaanxi Qingling Chunchuang Environmental Protection Industry Technology Co., Ltd, Xi'an 710049, PR China
| |
Collapse
|
14
|
Li Y, Huang T, Liu X, Chen Z, Yang H, Wang X. Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous frameworks materials. Sep Purif Technol 2023; 314:123615. [DOI: doi.org/10.1016/j.seppur.2023.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
15
|
Li J, Liu X, Zhao G, Liu Z, Cai Y, Wang S, Shen C, Hu B, Wang X. Piezoelectric materials and techniques for environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161767. [PMID: 36702283 DOI: 10.1016/j.scitotenv.2023.161767] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
With the rapid development of industrialization and agriculture, a series of critical imminent environmental problems and water pollution have caught wide attention from the public and society. Piezoelectric catalysis technology with piezoelectric materials is a green and environmental method that can efficiently improve the separation of electron-hole pairs, then generating the active substances such as OH, H2O2 and O2-, which can degrade water pollutants. Therefore, we firstly surveyed the piezoelectric catalysis in piezoelectric materials and systematically concluded and emphasized the relationship between piezoelectric materials and the piezoelectric catalytic mechanism, the goal to elucidate the effect of polarization on piezoelectric catalytic performance and enhance piezoelectric catalytic performance. Subsequently, the applications of piezoelectric materials in water treatment and environmental pollutant remediation were discussed including degradation of organic pollutants, removal of heavy mental ions, radionuclides, bacteria disinfection and water splitting for H2 generation. Finally, the development prospects and future outlooks of piezoelectric catalysis were presented in detail.
Collapse
Affiliation(s)
- Juanlong Li
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yawen Cai
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
16
|
Yin R, Bu Y, Zhu H, Su P, Ye E, Li Z, Jun Loh X, Yuan C, Wang S. Simultaneous detection and removal of 2,4,6-trinitrophenyl phenol and dichromate by metal-organic framework. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122735. [PMID: 37080055 DOI: 10.1016/j.saa.2023.122735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
2,4,6-trinitrophenyl phenol (TNP) and dichromate (Cr2O72-) have serious toxicological effects on environment. Therefore, it is very important to detect and remove TNP and Cr2O72- in environmental matrix. In this work, a dual-functional UiO type metal-organic framework (Zr-Sti) was synthesized for simultaneous detection and removal of those pollutants in aqueous solution. As for detection, Zr-Sti exhibited sensitive and selective fluorescence response to TNP and Cr2O72- with detection limit below μM level, and possible mechanism behind was proposed and partially supported by experiment data. In addition, adsorption capacity of the prepared Zr-Sti for TNP and Cr2O72- was further investigated to evaluate its performance in pollutant removal from aqueous solution, and the mechanism behinds the obtained high removal efficiency was proposed. These results together with the satisfied recovery for simultaneous detection of TNP and Cr2O72- in real sample, indicate the potential of the prepared Zr-Sti material in the field of environment monitoring and remediation.
Collapse
Affiliation(s)
- Ranhao Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Yiming Bu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| | - Pengchen Su
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Chao Yuan
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China.
| | - Suhua Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, People's Republic of China.
| |
Collapse
|
17
|
Cheng X, Chen J, Li H, Sheng G. Preparation and evaluation of celite decorated iron nanoparticles for the sequestration performance of hexavalent chromium from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63535-63548. [PMID: 37055688 DOI: 10.1007/s11356-023-26896-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
The increasing usage of an important heavy metal chromium for industrial purposes, such as metallurgy, electroplating, leather tanning, and other fields, has contributed to an augmented level of hexavalent chromium (Cr(VI)) in watercourses negatively impacting the ecosystems and significantly making Cr(VI) pollution a serious environmental issue. In this regard, iron nanoparticles exhibited great reactivity in remediation of Cr(VI)-polluted waters and soils, but, the persistence and dispersion of the raw iron should be improved. Herein, this article utilized an environment-friendly celite as a modifying reagent and described the preparation of a novel composites namaly celite decorated iron nanoparticles (C-Fe0) and evaluation of C-Fe0 for the sequestration performance of Cr(VI) from aqueous solution. The results indicated that initial Cr(VI) concentration, adsorbent dosage, and especially solution pH are all critical factors to control C-Fe0 performance in Cr(VI) sequestration. We demonstrated that C-Fe0 could achieve a high Cr(VI) sequestration efficiency with an optimized adsorbent dosage. Fitness of the pseudo-second-order kinetics model with data indicated that adsorption was the rate-controlling step and chemical interaction controlled Cr(VI) sequestration on C-Fe0. The adsorption isotherm of Cr(VI) could be the best depicted by Langmuir model with a monolayer adsorption. The underlying sequestration path of Cr(VI) by C-Fe0 was then put forward, and the combined effect of adsorption and reduction implied the potentials of C-Fe0 in Cr(VI) removal.
Collapse
Affiliation(s)
- Xiankui Cheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China
| | - Hui Li
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, People's Republic of China
| | - Guodong Sheng
- School of Chemistry and Chemical Engineering, Zhejiang Engineering Research Center of Fat-Soluble Vitamin, Shaoxing University, Zhejiang, 312000, People's Republic of China.
| |
Collapse
|
18
|
Li J, Liu X, Zhao G, Liu Z, Cai Y, Wang S, Shen C, Hu B, Wang X. Piezoelectric materials and techniques for environmental pollution remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161767. [DOI: doi.org/10.1016/j.scitotenv.2023.161767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
19
|
Wang R, Shangguan Y, Feng X, Gu X, Dai W, Yang S, Tang H, Liang J, Tian Y, Yang D, Chen H. Interfacial Coordinational Bond Triggered Photoreduction Membrane for Continuous Light-Driven Precious Metals Recovery. NANO LETTERS 2023; 23:2219-2227. [PMID: 36913675 DOI: 10.1021/acs.nanolett.2c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical/electric energy-driven processes dominate the traditional precious metal (PM) recovery market. The renewable energy-driven selective PM recycling approach crucial for carbon neutrality is under exploration. Herein, via an interfacial structure engineering approach, coordinational-active pyridine groups are covalently integrated onto the photoactive semiconductor SnS2 surface to construct Py-SnS2. Triggered by the preferred coordinational binding force between PMs and pyridine groups, together with the photoreduction capability of SnS2, Py-SnS2 shows significantly enhanced selective PM-capturing performance toward Au3+, Pd4+, and Pt4+ with recycling capacity up to 1769.84, 1103.72, and 617.61 mg/g for Au3+, Pd4+, and Pt4+, respectively. Further integrating the Py-SnS2 membrane into a homemade light-driven flow cell, 96.3% recovery efficiency was achieved for continuous Au recycling from a computer processing unit (CPU) leachate. This study reported a novel strategy to fabricate coordinational bonds triggered photoreductive membranes for continuous PM recovery, which could be expanded to other photocatalysts for broad environmental applications.
Collapse
Affiliation(s)
- Ranhao Wang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yangzi Shangguan
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xuezhen Feng
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xiaosong Gu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Wei Dai
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Songhe Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huan Tang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Jiaxin Liang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yixin Tian
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Dazhong Yang
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Hong Chen
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| |
Collapse
|
20
|
Li Y, Huang T, Liu X, Chen Z, Yang H, Wang X. Sorption-catalytic reduction/extraction of hexavalent Cr(VI) and U(VI) by porous frameworks materials. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
21
|
Hu Y, Tang D, Shen Z, Yao L, Zhao G, Wang X. Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. APPLIED CATALYSIS B: ENVIRONMENTAL 2023; 322:122092. [DOI: doi.org/10.1016/j.apcatb.2022.122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
22
|
Wang S, Chen Z, Cai Y, Wu XL, Wang S, Tang Z, Hu B, Li Z, Wang X. Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. ENVIRONMENTAL FUNCTIONAL MATERIALS 2023. [DOI: doi.org/10.1016/j.efmat.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
23
|
Cai Y, Chen Z, Wang S, Chen J, Hu B, Shen C, Wang X. Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 2023; 308:122862. [DOI: doi.org/10.1016/j.seppur.2022.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
24
|
Chen Z, Li Y, Cai Y, Wang S, Hu B, Li B, Ding X, Zhuang L, Wang X. Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. CARBON RESEARCH 2023; 2:8. [DOI: doi.org/10.1007/s44246-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/25/2023]
Abstract
AbstractWith the fast development of agriculture, industrialization and urbanization, large amounts of different (in)organic pollutants are inevitably discharged into the ecosystems. The efficient decontamination of the (in)organic contaminants is crucial to human health and ecosystem pollution remediation. Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) have attracted multidisciplinary research interests because of their outstanding physicochemical properties like high stability, large surface areas, high sorption capacity or catalytic activity. In this review, we summarized the recent works about the elimination/extraction of organic pollutants, heavy metal ions, and radionuclides by MOFs and COFs nanomaterials through the sorption-catalytic degradation for organic chemicals and sorption-catalytic reduction-precipitation-extraction for metals or radionuclides. The interactions between the (in)organic pollutants and COFs/MOFs nanomaterials at the molecular level were discussed from the density functional theory calculation and spectroscopy analysis. The sorption of organic chemicals was mainly dominated by electrostatic attraction, π-π interaction, surface complexation and H-bonding interaction, whereas the sorption of radionuclides and metal ions was mainly attributed to surface complexation, ion exchange, reduction and incorporation reactions. The porous structures, surface functional groups, and active sites were important for the sorption ability and selectivity. The doping or co-doping of metal/nonmetal, or the incorporation with other materials could change the visible light harvest and the generation/separation of electrons/holes (e−/h+) pairs, thereby enhanced the photocatalytic activity. The challenges for the possible application of COFs/MOFs nanomaterials in the elimination of pollutants from water were described in the end.
Collapse
|
25
|
Patel M, Karamalidis AK. Catechol-Functionalized Chitosan Synthesis and Selective Extraction of Germanium (IV) from Acidic Solutions. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Madhav Patel
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Athanasios K. Karamalidis
- Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
26
|
Song W, Zhang X, Zhang L, Yu Z, Li X, Li Y, Cui Y, Zhao Y, Yan L. Removal of various aqueous heavy metals by polyethylene glycol modified MgAl-LDH: Adsorption mechanisms and vital role of precipitation. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Jia B, Liu T, Wan J, Ivanets A, Xiang Y, Zhang L, Su X. Enhancing the extracellular electron transfer ability via Polydopamine@S. oneidensis MR-1 for Cr(VI) reduction. ENVIRONMENTAL RESEARCH 2023; 217:114914. [PMID: 36427635 DOI: 10.1016/j.envres.2022.114914] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Microbial reduction of hexavalent chromium (Cr (VI)) shows better efficiency and cost-effectiveness. However, immobilization of Cr (III) remains a challenge as there is a limited supply of electron donors. A greener and cleaner option for donating external electrons was using bioelectrochemical systems to perform the microbial reduction of Cr(VI). In this system, we constructed a polydopamine (PDA) decorated Shewanella oneidensis MR-1 (S. oneidensis MR-1) bioelectrode with bidirectional electron transport, abbreviated as PDA@S. oneidensis MR-1. The conjugated PDA distributed on the intracellular and extracellular of individual S. oneidensis MR-1 has been shown to accelerate electron transfer by outer membrane C-type cytochromes and flavin-bound MtrC/OmcA pathway by various electrochemical analyses. As expected, the PDA@S. oneidensis MR-1 biofilm achieved 88.1% Cr (VI) removal efficiency (RE) and 58.1% Cr (III) immobilization efficiency (IE) within 24 h under the autotrophic conditions at the optimal voltage (-150 mV) compared with the control potential (0 mV). The PDA@S. oneidensis MR-1 biofilm showed increased RE activity was attributed to the shortening of the distance between individual bacteria by PDA. This research provides a viable strategy for in situ bioremediation of Cr(VI) polluted aquatic environment.
Collapse
Affiliation(s)
- Boyu Jia
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Tianbao Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Juanjuan Wan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072, Minsk, Belarus
| | - Yujia Xiang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Lijuan Zhang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
28
|
Covalent organic frameworks (COF) materials for selective radionuclides removal from water. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Wang S, Hao M, Xiao D, Zhang T, Li H, Chen Z. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Cai YW, Fang M, Hu BW, Wang XK. Efficient extraction of U(VI) ions from solutions. NUCLEAR SCIENCE AND TECHNIQUES 2023; 34:2. [DOI: doi.org/10.1007/s41365-022-01154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 06/25/2023]
|
31
|
Cai Y, Chen Z, Wang S, Chen J, Hu B, Shen C, Wang X. Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Xiong L, Ma L, Zhao M, Zhang H, Chen S. Shewanella oneidensis MR-1 for enhanced the reactivity of FA-stabilized nZVI toward Cr(VI) removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Wang S, Li Y, Liu Q, Wang J, Zhao Y, Cai Y, Li H, Chen Z. fvPhoto-/electro-/piezo-catalytic elimination of environmental pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|