1
|
Wickramarachchi C, Niven RK, Kramer M. Numerical plastic transport modelling in fluvial systems: Review and formulation of boundary conditions. WATER RESEARCH 2025; 273:122947. [PMID: 39746270 DOI: 10.1016/j.watres.2024.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
In recent years, it has become clear that plastic pollution poses a significant threat to aquatic environments and human health. Rivers act as entry points for land-based plastic waste, while a certain fraction of entrained plastics is carried into marine environments. As such, the accurate modelling of plastic transport processes in riverine systems plays a crucial role in developing adequate remediation strategies. In this paper, we review the two main multiphase flow numerical approaches used in plastic transport modelling, comprising Lagrangian Transport Models (LTMs) and Eulerian Transport Models (ETMs). Although LTMs and ETMs can be regarded as complementary and equivalent approaches, LTMs focus on the transport trajectories of individual particles, whereas ETMs represent the behaviour of particles in terms of their mass or volume concentrations. Similar results of the two approaches are expected, while our review shows that plastic transport models are yet to be improved, specifically with respect to the formulation and implementation of boundary conditions, comprising plastic interactions with the channel bed, river bank, and the free surface, as well as interactions with biota. We anticipate that an implementation of these boundary conditions will allow for a better representation of different plastic transport modes, including bed load, suspended load, and surface load. Finally, we provide suggestions for future research directions, including a novel threshold formulation for free surface detachment of plastics, and we hope that this review will inspire the plastic research community, thereby triggering new developments in the rapidly advancing field of numerical plastic transport modelling.
Collapse
Affiliation(s)
| | - Robert K Niven
- UNSW Canberra, School of Engineering (SET), Northcott Drive, Campbell, 2612, ACT, Australia
| | - Matthias Kramer
- UNSW Canberra, School of Engineering (SET), Northcott Drive, Campbell, 2612, ACT, Australia.
| |
Collapse
|
2
|
Yu Z, Loewen M, Zhou Y, Guo Z, Baki AB, Zhang W. Continuous Near-Bed Movements of Microplastics in Open Channel Flows: Statistical Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1835-1843. [PMID: 39817418 DOI: 10.1021/acs.est.4c13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The ubiquitous distribution of microplastics (MPs) in aquatic environments is linked to their transport in rivers and streams. However, the specific mechanism of bedload microplastic (MP) transport, notably their stochastic behaviors, remains an underexplored area. To investigate this, particle tracking velocimetry was employed to examine the continuous near-bed movements of four types of MPs under nine setups with different experimental conditions in a laboratory flume, with an emphasis on their streamwise transport. It was found that the streamwise velocity of MPs follows a normal distribution, which can be characterized using the proposed equations to estimate the ensemble mean and standard deviation of MP streamwise velocity. The proposed equations show low relative errors of ∼5% when compared to experimental data. This study also revealed similarities in the continuous movement of MPs and sediments in the streamwise diffusion process. A superdiffusive regime was observed, with particle inertia identified as the primary source of this anomalous diffusion. These results indicate that adopting a probabilistic framework may provide a promising avenue for improving numerical models and enhancing the understanding of MP transport behavior.
Collapse
Affiliation(s)
- Zijian Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mark Loewen
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongchao Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiyong Guo
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130012, China
| | - Abul Basar Baki
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Wang X, Li Z, Sun B, Wang F, Li Z, Gualtieri C. Impact of Fenton aging on the incipient motion of microplastic particles in open-channel flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176220. [PMID: 39265684 DOI: 10.1016/j.scitotenv.2024.176220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
Upon entering the environment, Microplastics (MPs) experience aging processes that modify their properties and integrity. Previous methods for predicting the incipient motion of MPs have been validated using pristine plastics, which do not account for the effects of aging. This can lead to uncertainties in both quantification and characterization. This study investigates the effect of aging on the incipient motion of MPs with different bed roughness (smooth and rough beds) and MP properties (e.g., grain sizes and densities) in an open-channel flow. Five types of MPs were subjected to four different degrees of aging using the Fenton reagent, and their incipient velocities were tested on beds with two distinct roughness. The results suggest that the incipient velocity of MPs increases linearly with aging. However, this increase is not uniform across different particles and bed roughness. Upon comparing various commonly employed sediment incipient velocity equations, experimental results are in agreement with Ruijin Zhang's equation as the most precise. The parameters in Ruijin Zhang's equation are modified to enhance its applicability for predicting the incipient velocity of aged MPs. This study provides novel insights into the incipient motion of aged MPs in an open-channel flow, highlighting the intricate interaction between aged MP characteristics and bed roughness.
Collapse
Affiliation(s)
- Xuefeng Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiwei Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Bin Sun
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Feifei Wang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan 450001, China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Zhiwei Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, Hubei 430072, China.
| | - Carlo Gualtieri
- Department of Structures for Engineering and Architecture, University of Napoli Federico II, Napoli 80125, Italy.
| |
Collapse
|
4
|
Wang Y, Zhang L, Sun H, Zhang J, Guo Z. Nanoplastics Distribution during Ice Formation: Insights into Natural Surface Water Freezing Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20245-20255. [PMID: 39467813 DOI: 10.1021/acs.est.4c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The migration characteristics of nanoplastics (NPs) in the natural freezing process are complex and have attracted increasing attention in simulating natural freezing in recent years. However, simulated freezing conditions often fall short of replicating natural freezing processes, and studies on the vertical distribution of NPs remain inadequate. This study established a more realistic simulation of the natural freezing process in surface water by controlling both the air temperature (T1) and the water temperature (T2). Additionally, we introduced a new parameter, the local distribution coefficient (Kiw1), to compare with the effective distribution coefficient (Kiw2). The values of Kiw1 and Kiw2 for PS-500 nm were 0.18 and 0.21, respectively, at T1 = -20 °C and T2 = 1 °C. The results revealed the NPs concentration differed in ice, near-ice liquid, and far-ice liquid. Both properties of NPs and environmental factors could regulate the vertical distribution of NPs. The findings underscored the importance of freezing temperature regulated by T1 and T2, elucidating the roles of various influencing factors on the vertical distribution characteristics of NPs and unraveling the mechanisms of NPs distribution in the ice-water system. This study can provide valuable insights for understanding the migration of NPs in surface water in cold regions.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
5
|
Liu H, Wen Y. Evaluation of the migration behaviour of microplastics as emerging pollutants in freshwater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58294-58309. [PMID: 39298032 DOI: 10.1007/s11356-024-34994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Microplastics, as an emerging pollutant, are widely distributed in freshwater environments such as rivers and lakes, posing immeasurable potential risks to aquatic ecosystems and human health. The migration behaviour of microplastics can exacerbate the degree or scope of risk. A complete understanding of the migration behaviour of microplastics in freshwater environments, such as rivers and lakes, can help assess the state of occurrence and environmental risk of microplastics and provide a theoretical basis for microplastic pollution control. Firstly, this review presents the hazards of microplastics in freshwater environments and the current research focus. Then, this review systematically describes the migration behaviours of microplastics, such as aggregation, horizontal transport, sedimentation, infiltration, stranding, resuspension, bed load, and the affecting factors. These migration behaviours are influenced by the nature of the microplastics themselves (shape, size, density, surface modifications, ageing), environmental conditions (ionic strength, cation type, pH, co-existing pollutants, rainfall, flow regime), biology (vegetation, microbes, fish), etc. They can occur cyclically or can end spontaneously. Finally, an outlook for future research is given.
Collapse
Affiliation(s)
- Haicheng Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China.
| | - Yu Wen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215000, China
| |
Collapse
|
6
|
Kim S, Kim DH. Short-term buoyant microplastic transport patterns driven by wave evolution, breaking, and orbital motion in coast. MARINE POLLUTION BULLETIN 2024; 201:116248. [PMID: 38479323 DOI: 10.1016/j.marpolbul.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Recently, there has been a notable rise in social and scientific interest regarding microplastic pollution in coasts where waves significantly influence flow patterns and material transport. This study explores typical short-term movement of buoyant microplastics driven by surf zone processes including wave transformation, breaking, and orbital motion. To track microplastics, Lagrangian Particle Tracking Model (PTM) coupled with Eulerian wave-current interaction model appropriate for coastal hydrodynamics was used. From the simulations, several important findings were observed. (i) In alongshore uniform beaches, lighter and larger buoyant microplastics tended to reach beach more readily. (ii) Accurate predictions of microplastic transport in the surf zone required the consideration of wave breaking. (iii) In alongshore non-uniform coastal bathymetry, rip-currents can send buoyant microplastics offshore, beyond the surf zone.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Civil Engineering, The University of Seoul, Seoul 02504, Republic of Korea; Department of Civil and Environmental Engineering, Texas A&M University, College Station 77843, USA
| | - Dae-Hong Kim
- Department of Civil Engineering, The University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Qian S, Qiao X, Zhang W, Yu Z, Dong S, Feng J. Machine learning-based prediction for settling velocity of microplastics with various shapes. WATER RESEARCH 2024; 249:121001. [PMID: 38113602 DOI: 10.1016/j.watres.2023.121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R2 > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = dn(g/v2)1/3 > 80, where dn is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.
Collapse
Affiliation(s)
- Shangtuo Qian
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu 210024, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Xuyang Qiao
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu 210024, China; College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Zijian Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Jiangang Feng
- National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu 210024, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China.
| |
Collapse
|
8
|
Yuan B, Gan W, Sun J, Lin B, Chen Z. Depth profiles of microplastics in sediments from inland water to coast and their influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166151. [PMID: 37562610 DOI: 10.1016/j.scitotenv.2023.166151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Microplastics, plastic particles with a size smaller than 5 mm, are widely observed in the global environments and pose a growing threat as they accumulate and affect the environments in numerous ways. These particles can be transported from inland water to coast and disperse from surface water to deep sediments, especially the latter, while knowledge of the hidden microplastics in sediment layers is still lacking. Understanding the characteristics and behavior of microplastics in deep sediments from inland water to coast is crucial for estimating the present and future global plastic budget from land to seas. Herein, present knowledge of microplastic sedimentation from inland water to coast is reviewed, with a focus on the physical characteristics of microplastics and environmental factors that affect sedimentation. The abundance, shape, composition, and timeline of microplastics in sediment layers in rivers, floodplains, lakes, estuaries and coastal wetlands are presented. The abundance of microplastics in sediment layers varies across sites and may exhibit opposite trends along depth, and generally the proportion of relatively small microplastics increases with depth, while less is known about the vertical trends in the shape and composition of microplastics. Timeline of microplastics is generally linked to the sedimentation rate, which varies from millimeters to centimeters per year in the reviewed studies. The spatiotemporal characteristics of microplastic sedimentation depend on the settling and erosion of microplastics, which are determined by two aspects, microplastic characteristics and environmental factors. The former aspect includes size, shape and density influenced by aggregation and biofouling, and the latter includes dynamic forces, topographic features, bioturbation and human activities. The comprehensive review of these factors highlights the needs to further quantify the characteristics of microplastic sedimentation and explore the role of these factors in microplastic sedimentation on various spatiotemporal scales.
Collapse
Affiliation(s)
- Bing Yuan
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Wenhui Gan
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Jian Sun
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China.
| | - Binliang Lin
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Zhihe Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China.
| |
Collapse
|
9
|
Li C, Shi Y, Luo D, Kang M, Li Y, Huang Y, Bai X. Interventions of river network structures on urban aquatic microplastic footprint from a connectivity perspective. WATER RESEARCH 2023; 243:120418. [PMID: 37536245 DOI: 10.1016/j.watres.2023.120418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/02/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Microplastic footprint in urban river networks can be disturbed by multiple urbanization features, and regional river structures are generally overlooked. In this research, we analyzed the distribution of microplastics and potential impact pattern of river structures on it in a typical urban river network in Nanjing, China. Surface waters of the river network were jointly detected by multiple methods, and the Renkonen similarity index was used to study spatial variabilities of microplastics characteristics. Microplastics were ubiquitous and abundant, showing five (>50 μm) and six (20∼50 μm) hotspots, and heterogeneities in the shape and type of microplastics larger than 100 μm were prominent, presumably influenced by river network scale and connectivity. River structure parameters associated with network connectivity were obtained by combining graph theory and an entropy-based set-pair analysis model. Aiming at the action pathway of river structures, by using correlation and partial least squares regression analysis, we found that river node (confluences and sluices) ratio, river frequency, river network density, and water system circularity were significantly positively correlated with microplastic abundance, and confluences with poor connectivity had a greater indirect intervention intensity on the microplastic distribution. The land use characteristics dominated the fitting of microplastic abundance, which was about 1.2 times better than river structures, and the comprehensive land use intensity and river network connectivity were the critical factors, respectively. Potential ecological risks of microplastics were evaluated, resulting in relatively severe levels. This study proposed targeted measures to control urban microplastic pollution by combining the perspective of river network characteristics. To summarize, our exploration of microplastic footprint based on urban river network structures from the perspective of river network connectivity provides new insights into microplastic management.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Meng'en Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yujian Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yue Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
10
|
Han N, Zhao Q, Wu C. Threshold migration conditions of (micro) plastics under the action of overland flow. WATER RESEARCH 2023; 242:120253. [PMID: 37352677 DOI: 10.1016/j.watres.2023.120253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
Surface runoff is a major pathway for the transport of plastics. However, most previous studies focus on the transport of microplastics in aquatic environment, whereas the migration of plastics from terrestrial environment to aquatic ecosystems receives limited attention. In this work, we investigated the migration of plastic on different surfaces via surface runoff. Results indicate that the threshold migration condition increases with the size and density of plastics, while decreases as the surface inclination increases. Plastics show a higher degree of mobility on smooth surfaces, but plastic films exhibit lower mobility due to the frictional forces induced by the downward pressure exerted by the water flow. Conversely, rough surfaces such as concrete and macadam can trap small fragments and rigid film plastics, and plastics can be embedded within the soil matrix under the water flow. In summary, smaller size, steeper incline, and greater water flow rate facilitate the movement of plastics on surfaces. Results from this work improve the understanding of the process of plastic migration from land to water, and are of great significance for the prevention and control of plastic pollution.
Collapse
Affiliation(s)
- Naipeng Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qichao Zhao
- Bureau of Hydrology, Changjiang Water Resources Commission, Ministry of Water Resources of People's Republic of China, Wuhan 430010, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|