1
|
Williams GDZ, Saltman S, Wang Z, Warren DM, Hill RC, Vengosh A. The potential water quality impacts of hard-rock lithium mining: Insights from a legacy pegmatite mine in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177281. [PMID: 39486531 DOI: 10.1016/j.scitotenv.2024.177281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The global green energy transition has spurred increased lithium exploration and extraction, yet the water quality impacts from lithium mining are understudied. This study investigates the potential water quality impacts from a legacy hard-rock lithium mine through comprehensive geochemical analyses of groundwater, surface waters, ore grade rocks, tailings, and waste rocks from a mine site in North Carolina, USA. The concentrations of regulated contaminants (e.g. As, Pb) in both groundwater and surface water emerging from the mine site were low, below drinking water and ecological standards. Yet Li (up to 46.8 mg/L), Rb (up to 169 μg/L), and Cs (up to 21 μg/L) were elevated relative to local background waters. Leaching experiments of the pegmatite ores, waste rocks, and tailing consistently demonstrate low mobilization of regulated contaminants and high leachability of Li, Rb, and Cs. Leaching experiments also reveal that water-rock interactions of the rocks and solid wastes from the mine site generate alkaline conditions, and that both phosphate and spodumene minerals are primary sources of Li and play a major role in formation of alkaline conditions during early stages of water-rock interactions. Over longer time scales, their direct impact on water quality is decreased. Given the global interest in hard-rock lithium mines, our findings highlight the potential occurrence of Li, Rb, and Cs in water resources adjacent to hard-rock lithium mines.
Collapse
Affiliation(s)
| | - Sam Saltman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Albemarle Corporation, 348 Holiday Inn Rd., Kings Mountain, NC 28086, USA
| | - Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
| | | | - Robert C Hill
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
2
|
Cowan EA, Wang Z, Brachfeld SA, Hageman SJ, Seramur KC, Pearson WF, Wilson J, Karcher R, Hill R, Vengosh A. Role of coal ash morphology and composition in delivery and transport of trace metals in the aquatic environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:124982. [PMID: 39293653 DOI: 10.1016/j.envpol.2024.124982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Fly ash is predominately the inorganic byproduct of coal combustion for electrical power generation. It is composed of aluminosilicates with Fe, Mg, K, and Ca forming submicron to 100 μm spheres and amorphous particles. During combustion trace elements are incorporated into the heterogenous fine particles that can pose risks to the environment and human health. This study combines optical, rock magnetic, and geochemical analyses of fly ash originating from Appalachian coal to develop an integrated suite of environmental coal ash tracers. The non-magnetic portion of power plant fly ash has higher abundance of clear spheres and clear amorphous particles, combined with enrichment of As, B, Th, Ba, Li, Se, Cd, Pb, and Tl. The magnetic fraction is enriched in opaque and orange spheres and Cu, U, V, Mo, Cr, Ni, and Co. Plerospheres occur in either fraction. We investigated ash-bearing fluvial sediment from Emory-Clinch River system that was impacted by the instantaneous TVA spill in 2008 and Hyco Lake in North Carolina that was contaminated by chronic releases of fly ash since 1964. Five years after the TVA spill, most ash in the riverbed reflects one population with trace element concentrations proportional to percent total ash. This relationship does not hold for As and Se, volatile elements associated with the outer surface of clear spheres, which are affected by river transport. At Hyco Lake, small clear and opaque spheres correlate with trace elements released from storage ponds. The combination of trace elements, fly ash morphology and rock magnetism provides a powerful set of tools to assess the distribution of ash and potential impact on the environment. We conclude that dispersal of fly ash to the aquatic environment, especially small clear and opaque spheres, should be avoided in favor of dry landfills.
Collapse
Affiliation(s)
- Ellen A Cowan
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA.
| | - Zhen Wang
- School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC, 3800, Australia
| | - Stefanie A Brachfeld
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ, 07043, USA
| | - Steven J Hageman
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - Keith C Seramur
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - W Forest Pearson
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - Jessica Wilson
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - Randall Karcher
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, 28608, USA
| | - Robert Hill
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Avner Vengosh
- Division of Earth and Climate Sciences, Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Yan J, Guo X, He M, Niu Z, Xu M, Peng B, Yang Y, Jin Z. Metals and microorganisms in a Maar lake sediment core indicating the anthropogenic impact over last 800 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168392. [PMID: 37956839 DOI: 10.1016/j.scitotenv.2023.168392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
A closed Maar lake, receiving mostly atmospheric deposition, offers a unique setting for investigating the impact of human activities on the environment. In this study, we aimed to investigate the historical record of metals in core sediments of Maar Lake in Huguangyan (HGY), Southeast China, and elucidate the possible microbial responses to anthropogenic metal stress. Five stages were divided according to the historical record of metals and corresponding distribution of microbial community, among which Pb and Sn showed a peak value around 1760 CE, indicating the ancient mining and smelting activities. Since the 1980s, a substantial enrichment of metals such as Zn, As, Mo, Cd, Sn, Sb, and Pb was observed, due to the rapid industrial growth in China. In terms of microorganisms, Chloroflexi phylum, particularly dominated by Anaerolineales, showed significant correlations with Pb and Sn, and could potentially serve as indicator species for mining and smelting-related contamination. Desulfarculales and Desulfobacterales were found to be more prevalent in recent period and exhibited positive correlations with anthropogenic metals. Moreover, according to the multivariate regression modeling and variance decomposition analysis, Pb and Sn could regulate Anaerolineales and further pose impact on the carbon cycle; while sulfate-reducing bacteria (SRB) could response to anthropogenic metals and influence sulfur cycle. These findings provide new insights into the interaction between metals and microbial communities over human history.
Collapse
Affiliation(s)
- Jia Yan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingpan Guo
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Maoyong He
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Zuoshun Niu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Miao Xu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bo Peng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zhangdong Jin
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
4
|
Frankel TE, Tyler E, Willmore C, Odhiambo BK, Giancarlo L. Assessing the presence, concentration, and impacts of trace element contamination in a Chesapeake Bay tributary adjacent to a coal ash landfill (Possum Point, VA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122768. [PMID: 37858702 DOI: 10.1016/j.envpol.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Coal ash (CA) is an industrial waste product that has been shown to contain several neurotoxic constituents such as cadmium, selenium, mercury, lead, and arsenic. Contaminant-laced leachates enter the environment via seepage, runoff, permitted discharge, or accidental spills from CA storage ponds or landfills which may pose a risk to wildlife residing in receiving waterways. In this study, we assessed 1) the presence and concentration of thirteen trace elements (Al, Ca, Mg, Cr, Cd, As, Se, Pb, Cu, Zn, Mn, Fe, B) in surface water and sediment grab samples using ICP-OES, 2) the temporal variability of trace elements using Pb-210 dated sediment core samples, 3) differences in species diversity using environmental DNA (eDNA) analyses, and 4) the presence and concentration of trace metals in banded killifish (Fundulus diaphanus) epaxial muscle tissue collected from waterways surrounding the Possum Point Power Station (Stafford, VA). Results showed the highest concentrations of As, Cd, Cr, Cu, Fe, Mg, Se, Zn, and B in Quantico Creek (QC) adjacent to the coal ash ponds and elevated average cadmium and zinc concentrations compared to both upstream and downstream locations along the Potomac River. Sediment core profiles and Pb-210 analyses showed historical enrichment of several trace elements in QC beginning after the commissioning of the power plant in 1948. When compared to upstream and downstream sites, species diversity was drastically reduced in Quantico Creek based on eDNA identification. Muscle tissues of banded killifish collected in Quantico Creek displayed increased Al, Cd, and Zn concentrations compared to upstream and downstream sites. Collectively, our results demonstrate the potential impacts of coal ash landfills on aquatic ecosystems and suggest that further research is needed to fully inform risk assessment and remediation efforts.
Collapse
Affiliation(s)
- T E Frankel
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA.
| | - E Tyler
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - C Willmore
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - B K Odhiambo
- Department of Earth and Environmental Sciences, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| | - L Giancarlo
- Department of Chemistry and Physics, University of Mary Washington, 1301 College Ave, Fredericksburg, VA, 22401, USA
| |
Collapse
|
5
|
Wang Z, Dai S, Cowan EA, Dietrich M, Schlesinger WH, Wu Q, Zhou M, Seramur KC, Das D, Vengosh A. Isotopic Signatures and Outputs of Lead from Coal Fly Ash Disposal in China, India, and the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12259-12269. [PMID: 37556313 DOI: 10.1021/acs.est.3c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources.
Collapse
Affiliation(s)
- Zhen Wang
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Shifeng Dai
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Ellen A Cowan
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Matthew Dietrich
- The Polis Center, IU Luddy School of Informatics, Computing, and Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - William H Schlesinger
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University 100084 Beijing, China
| | - Mingxuan Zhou
- College of Geoscience and Survey Engineering, China University of Mining and Technology, Beijing 100083, China
| | - Keith C Seramur
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Debabrata Das
- Department of Geology, Panjab University, Chandigarh 160014, India
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Wilkie AA, Richardson DB, Luben TJ, Serre ML, Woods CG, Daniels JL. Sulfur dioxide reduction at coal-fired power plants in North Carolina and associations with preterm birth among surrounding residents. Environ Epidemiol 2023; 7:e241. [PMID: 37064422 PMCID: PMC10097570 DOI: 10.1097/ee9.0000000000000241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/05/2023] [Indexed: 02/17/2023] Open
Abstract
Coal-fired power plants (CFPP) are major contributors of air pollution, including the majority of anthropogenic sulfur dioxide (SO2) emissions, which have been associated with preterm birth (PTB). To address a 2002 North Carolina (NC) policy, 14 of the largest NC CFPPs either installed desulfurization equipment (scrubbers) or retired coal units, resulting in substantial reductions of SO2 air emissions. We investigated whether SO2 air emission reduction strategies at CFPPs in NC were associated with changes in prevalence of PTB in nearby communities. Methods We used US EPA Air Markets Program Data to track SO2 emissions and determine the implementation dates of intervention at CFPPs and geocoded 2003-2015 NC singleton live births. We conducted a difference-in-difference analysis to estimate change in PTB associated with change in SO2 reduction strategies for populations living 0-<4 and 4-<10 miles from CFPPs pre- and postintervention, with a comparison of those living 10-<15 miles from CFPPs. Results With the spatial-temporal exposure restrictions applied, 42,231 and 41,218 births were within 15 miles of CFPP-scrubbers and CFPP-retired groups, respectively. For residents within 4-<10 miles from a CFPP, we estimated that the absolute prevalence of PTB decreased by -1.5% [95% confidence interval (CI): -2.6, -0.4] associated with scrubber installation and -0.5% (95% CI: -1.6, 0.6) associated with the retirement of coal units at CFPPs. Our findings were imprecise and generally null-to-positive among those living within 0-<4 miles regardless of the intervention type. Conclusions Results suggest a reduction of PTB among residents 4-<10 miles of the CFPPs that installed scrubbers.
Collapse
Affiliation(s)
- Adrien A Wilkie
- Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow at US EPA, Research Triangle Park, North Carolina
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
- Program in Public Health, University of California at Irvine, Irvine, California
| | - Thomas J Luben
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina
| | - Marc L Serre
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Courtney G Woods
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|