1
|
Tarantini A, Jamet-Anselme E, Lam S, Haute V, Suhard D, Valle N, Chamel-Mossuz V, Bouvier-Capely C, Phan G. Ex vivo skin diffusion and decontamination studies of titanium dioxide nanoparticles. Toxicol In Vitro 2024; 101:105918. [PMID: 39142447 DOI: 10.1016/j.tiv.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO2 NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO2 NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO2 agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles. Decontamination assays showed that the two products tested were comparably effective in limiting Ti penetration, whatever the treatment time. However, only calixarene nanoemulsion was statistically more efficient than water in retaining TiO2 in the donor compartment (>89%), limiting retention inside the skin (<1%) and preventing NP diffusion through the skin (<0.13%) when treatments were initiated 30 min after skin exposure. When decontamination was delayed from 30 min to 6 h, the amount of Ti diffusing and retained in the skin increased. This study demonstrates that TiO2 NPs may diffuse through healthy skin after exposure. Thus, effective decontamination using cleansing products should be carried out as soon as possible.
Collapse
Affiliation(s)
- Adeline Tarantini
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | | | - Sabine Lam
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Vincent Haute
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Nathalie Valle
- Luxembourg Institute of Science and Technology, Luxembourg
| | - Véronique Chamel-Mossuz
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - Céline Bouvier-Capely
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France.
| |
Collapse
|
2
|
Li Y, Fan W, Yang X, Liu S, Wang Y, Wang WX. Aging effects of titanium dioxide on Cu toxicity to Daphnia magna: Exploring molecular docking and significance of surface properties. WATER RESEARCH 2024; 254:121377. [PMID: 38452524 DOI: 10.1016/j.watres.2024.121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Cosmetics and personal care products containing titanium dioxide nanoparticles (TiO2 NPs) may enter aquatic environments, where the surface coatings of TiO2 NPs may change with aging due to environmental factors such as light, and potentially affect their bioaccumulation and toxicity. This study examined how aging impacted the physicochemical properties of three commercially available TiO2 NPs and subsequent influence on the bioaccumulation and toxicity of copper (Cu) in Daphnia magna (D. magna). We demonstrated that aging significantly affected the hydrophobicity of TiO2 NPs, which affected their binding to water molecules and adsorption of Cu. Changes of bioaccumulation of TiO2 NPs and Cu in D. magna ultimately affected the activities of intracellular antioxidant enzymes such as SOD, CAT, GSH-Px, and the transmembrane protein Na+/K+-ATPase. Molecular docking calculations demonstrated that changes of activities of these biological enzymes were due to the interaction between TiO2 NPs, Cu, and amino acid residues near the sites with the lowest binding energy and active center of the enzyme. Such effect was closely related to the hydrophobicity of TiO2 NPs. Our study demonstrated the close relationship between surface properties of TiO2 NPs and their biological effects, providing important evidence for understanding the behavior of nanomaterials in aquatic environments.
Collapse
Affiliation(s)
- Yao Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Xiaolong Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Shu Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Beigtan M, Gonçalves M, Weon BM. Heat Transfer by Sweat Droplet Evaporation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6532-6539. [PMID: 38538556 PMCID: PMC11025549 DOI: 10.1021/acs.est.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
Sweating regulates the body temperature in extreme environments or during exercise. Here, we investigate the evaporative heat transfer of a sweat droplet at the microscale to unveil how the evaporation complexity of a sweat droplet would affect the body's ability to cool under specific environmental conditions. Our findings reveal that, depending on the relative humidity and temperature levels, sweat droplets experience imperfect evaporation dynamics, whereas water droplets evaporate perfectly at equivalent ambient conditions. At low humidity, the sweat droplet fully evaporates and leaves a solid deposit, while at high humidity, the droplet never reaches a solid deposit and maintains a liquid phase residue for both low and high temperatures. This unprecedented evaporation mechanism of a sweat droplet is attributed to the intricate physicochemical properties of sweat as a biofluid. We suppose that the sweat residue deposited on the surface by evaporation is continuously absorbing the surrounding moisture. This route leads to reduced evaporative heat transfer, increased heat index, and potential impairment of the body's thermoregulation capacity. The insights into the evaporative heat transfer dynamics at the microscale would help us to improve the knowledge of the body's natural cooling mechanism with practical applications in healthcare, materials science, and sports science.
Collapse
Affiliation(s)
- Mohadese Beigtan
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Marta Gonçalves
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Byung Mook Weon
- Soft
Matter Physics Laboratory, School of Advanced Materials Science and
Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- Research
Center for Advanced Materials Technology, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
4
|
Bolan S, Sharma S, Mukherjee S, Zhou P, Mandal J, Srivastava P, Hou D, Edussuriya R, Vithanage M, Truong VK, Chapman J, Xu Q, Zhang T, Bandara P, Wijesekara H, Rinklebe J, Wang H, Siddique KHM, Kirkham MB, Bolan N. The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170013. [PMID: 38242452 DOI: 10.1016/j.scitotenv.2024.170013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Nanomaterials in the food industry are used as food additives, and the main function of these food additives is to improve food qualities including texture, flavor, color, consistency, preservation, and nutrient bioavailability. This review aims to provide an overview of the distribution, fate, and environmental and health impacts of food additive nanomaterials in soil and aquatic ecosystems. Some of the major nanomaterials in food additives include titanium dioxide, silver, gold, silicon dioxide, iron oxide, and zinc oxide. Ingestion of food products containing food additive nanomaterials via dietary intake is considered to be one of the major pathways of human exposure to nanomaterials. Food additive nanomaterials reach the terrestrial and aquatic environments directly through the disposal of food wastes in landfills and the application of food waste-derived soil amendments. A significant amount of ingested food additive nanomaterials (> 90 %) is excreted, and these nanomaterials are not efficiently removed in the wastewater system, thereby reaching the environment indirectly through the disposal of recycled water and sewage sludge in agricultural land. Food additive nanomaterials undergo various transformation and reaction processes, such as adsorption, aggregation-sedimentation, desorption, degradation, dissolution, and bio-mediated reactions in the environment. These processes significantly impact the transport and bioavailability of nanomaterials as well as their behaviour and fate in the environment. These nanomaterials are toxic to soil and aquatic organisms, and reach the food chain through plant uptake and animal transfer. The environmental and health risks of food additive nanomaterials can be overcome by eliminating their emission through recycled water and sewage sludge.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jajati Mandal
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
| | - Prashant Srivastava
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, Urrbrae, South Australia, Australia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Randima Edussuriya
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Vi Khanh Truong
- Biomedical Nanoengineering Laboratory, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - James Chapman
- University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qing Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Pramod Bandara
- Department of Food Science and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Canberra, Australia.
| |
Collapse
|
5
|
Karnwal A, Dohroo A, Malik T. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6911851. [PMID: 38075309 PMCID: PMC10699995 DOI: 10.1155/2023/6911851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The increasing public concern over the negative impacts of chemical fertilizers and pesticides on food security and sustainability has led to exploring innovative methods that offer both environmental and agricultural benefits. One such innovative approach is using plant-growth-promoting bioinoculants that involve bacteria, fungi, and algae. These living microorganisms are applied to soil, seeds, or plant surfaces and can enhance plant development by increasing nutrient availability and defense against plant pathogens. However, the application of biofertilizers in the field faced many challenges and required conjunction with innovative delivering approaches. Nanotechnology has gained significant attention in recent years due to its numerous applications in various fields, such as medicine, drug development, catalysis, energy, and materials. Nanoparticles with small sizes and large surface areas (1-100 nm) have numerous potential functions. In sustainable agriculture, the development of nanochemicals has shown promise as agents for plant growth, fertilizers, and pesticides. The use of nanomaterials is being considered as a solution to control plant pests, including insects, fungi, and weeds. In the food industry, nanoparticles are used as antimicrobial agents in food packaging, with silver nanomaterials being particularly interesting. However, many nanoparticles (Ag, Fe, Cu, Si, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes) have been reported to negatively affect plant growth. This review focuses on the effects of nanoparticles on beneficial plant bacteria and their ability to promote plant growth. Implementing novel sustainable strategies in agriculture, biofertilizers, and nanoparticles could be a promising solution to achieve sustainable food production while reducing the negative environmental impacts.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aradhana Dohroo
- Baddi University of Emerging Sciences and Technologies, Baddi, Himachal Pradesh 173405, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|