1
|
An C, Hong W, Jiang X, Sun Y, Li X, Shen F, Zhu T. Catalytic Ozonation of Low Concentration Toluene over MnFeO x-USY Catalyst: Effects of Interactions between Catalytic Components and Introduction of Gas Phase NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39088742 DOI: 10.1021/acs.est.4c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A series of Mn and Fe metal oxide catalysts loaded onto USY, as well as single metal oxides, were prepared and characterized. The effects of interactions between the catalytic components and the introduction of gas phase NO on the catalytic ozonation of toluene were investigated. Characterization showed that there existed strong interactions between MnOx, FeOx, and USY, which enhanced the content of oxygen vacancies and acid sites of the catalysts and thus boosted the generation of reactive oxygen species and the adsorption of toluene. The MnFeOx-USY catalyst with MnOx and FeOx dimetallic oxides exhibited the most excellent performance of catalytic ozonation of toluene. On the other hand, the presence of NOx in reaction gas mixtures significantly promoted both toluene conversion and mineralization, which was attributed to the formation of nitrate species on the catalysts surface and thus the increase of both acid sites and toluene oxidation sites. Meanwhile, the reaction mechanism between O3 and C7H8 was modified in which the strong interactions between MnOx, FeOx, and USY accelerated the reaction progress based on the L-H route. In addition, the formation of the surface nitrate species not only promoted reaction progress following the L-H route but also resulted in the occurrence of the reaction via the E-R route.
Collapse
Affiliation(s)
- Chenguang An
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wei Hong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinxin Jiang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Fangxia Shen
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Tang Y, Cui W, Wang S, Dong F. Efficient photocatalytic NO removal with inhibited NO 2 formation and catalyst loss over sponge-supported and functionalized g-C 3N 4. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133323. [PMID: 38141292 DOI: 10.1016/j.jhazmat.2023.133323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Though photocatalytic purification of NO has been widely studied, how to avoid secondary pollution during gas-solid reaction is still a challenge, especially in inhibiting the formation of toxic intermediates (NO2) and avoiding the blow away of powdery photocatalyst. Herein, we proposed a one-step solvothermal method to prepare melamine sponge (MS) supported and functionalized g-C3N4 (CN), which simultaneously realizes the inhibition of NO2 formation and catalyst loss. Sodium hydroxide, which plays a dual role, has been introduced during the preparation of supported photocatalyst. Specifically, sodium atom, as the modifier of performance, could facilitate the randomly distributed charge of pristine CN to be converged, which accelerates the adsorption/activation of reactants for efficient and deep NO oxidation. Hydroxyl group, as the binder between CN and MS, induces the interaction by forming hydrogen bonds, which contributes to the firm immobilization of powdery photocatalyst. The supported sample exhibits outstanding NO removal rate (58.90%) and extremely low NO2 generation rate (1.41%), and the mass loss rate of photocatalyst before and after reaction is less than 1%. The promotion mechanism of performance also has been elaborated. This work takes environmental risks as a prerequisite to propose a feasible strategy for perfecting the practical application of photocatalytic technology.
Collapse
Affiliation(s)
- Yin Tang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wen Cui
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Songxia Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
3
|
Yan Q, Xiao J, Gui R, Chen Z, Li Y, Zhu T, Wang Q, Xin Y. Mechanistic Insight into the Promotion of the Low-Temperature NH 3-SCR Activity over NiMnFeO x LDO Catalysts: A Combined Experimental and DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20708-20717. [PMID: 38032314 DOI: 10.1021/acs.est.3c06849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.
Collapse
Affiliation(s)
- Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jiewen Xiao
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Rongrong Gui
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Zhenyu Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| |
Collapse
|
4
|
Li Z, Gao M, Lv Z, Duan R, Shan Y, Li H, He G, He H. Uncovering the Dinuclear Mechanism of NO 2-Involved NH 3-SCR over Supported V 2O 5/TiO 2 Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17577-17587. [PMID: 37844285 DOI: 10.1021/acs.est.3c05070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Commercial vanadium oxide catalysts exhibit high efficiency for the selective catalytic reduction (SCR) of NO with NH3, especially in the presence of NO2 (i.e., occurrence of fast NH3-SCR). The high-activity sites and their working principle for the fast NH3-SCR reaction, however, remain elusive. Here, by combining in situ spectroscopy, isotopic labeling experiments, and density functional theory (DFT) calculations, we demonstrate that polymeric vanadyl species act as the main active sites in the fast SCR reaction because the coupling effect of the polymeric structure alters the elementary reaction step and effectively avoids the high energy barrier of the rate-determining step over monomeric vanadyl species. This study unveils the high-activity dinuclear mechanism of the NO2-involved SCR reaction over vanadia-based catalysts and provides a fundamental basis for developing high-efficiency and low V2O5-loading SCR catalysts.
Collapse
Affiliation(s)
- Zhuocan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Lv
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rucheng Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|