1
|
Zhang W, Qu R, Cheng G, Wang J, Yin T, Liu J, Tang D, Zhang Y. Association Between Fine Particle Waves and Sexual Function: A Nationwide Cross-Sectional Survey in China. TOXICS 2025; 13:39. [PMID: 39853037 PMCID: PMC11769323 DOI: 10.3390/toxics13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND The effect of the long-term persistently elevated air pollutants, often referred to as air pollution waves, on sexual function has not been sufficiently addressed. METHODS This nationwide cross-sectional study involved 12,157 participants, with 5496 females and 5039 males. PM waves were characterized by daily average PM concentrations surpassing Grade II thresholds of China's ambient air quality standards (PM2.5 > 75 μg/m3, PM10 > 150 μg/m3) for three or more consecutive days (3-8 days). Male sexual function was assessed through the International Index of Erectile Function-5 (IIEF-5) and the Premature Ejaculation Diagnostic Tool (PEDT), while female sexual function was evaluated using the Female Sexual Function Index (FSFI). A multivariate linear regression model was employed to investigate the link between PM wave exposure and sexual function. RESULTS Exposure to PM10 waves, defined as 3 (β = -0.0145, 95%CI = -0.0280, -0.0010), 4 (β = -0.0145, 95%CI = -0.0280, -0.0010), 5 (β = -0.0193, 95%CI = -0.0371, -0.0015), 6 (β = -0.0218, 95%CI = -0.0415, -0.0021), 7 (β = -0.0243, 95%CI = -0.0458, -0.0028), and 8 (β = -0.0243, 95%CI = -0.0458, -0.0028) consecutive days, negatively impacted IIEF-5 scores and male sexual function. Moreover, depression levels, as evaluated by the PHQ-9, played a mediating role in the connection between PM10 waves and IIEF-5 scores. The potentially vulnerable subgroups were the younger 20-30 and the low-income groups. CONCLUSIONS Our results suggest for the first time that PM10 waves are associated with decreased IIEF-5 scores, which are mediated by depression score PHQ-9, informing policy formulation for public health interventions and individual safeguarding.
Collapse
Affiliation(s)
- Weiqian Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (W.Z.); (R.Q.); (J.W.); (T.Y.)
| | - Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (W.Z.); (R.Q.); (J.W.); (T.Y.)
| | - Guan Cheng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (W.Z.); (R.Q.); (J.W.); (T.Y.)
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; (W.Z.); (R.Q.); (J.W.); (T.Y.)
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China;
- Institute for Global Health and Development, Peking University, Beijing 100871, China
- Key Laboratory of Epidemiology of Major Diseases, Peking University, Ministry of Education, Beijing 100083, China
| | - Dongdong Tang
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People’s Republic of China, Hefei 230032, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
2
|
Wang M, Liu A, Li X, Ran M, Tian Y, Wang J, Han B, Bai Z, Zhang Y. Periovulatory PM 2.5 constituent exposures and human clinically recognized early pregnancy loss: Susceptible exposure time windows and high-risk constituents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125238. [PMID: 39491581 DOI: 10.1016/j.envpol.2024.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Evidence for effects of PM2.5 chemical constituent exposures during the periovulatory period on pregnancy complications was limited. We explored the associations of maternal PM2.5 and constituent exposures from the 12th week before to 4th week after ovulation with human clinically recognized early pregnancy loss (CREPL). From July 2017 to January 2024, 828 CREPL and 828 normal early pregnancy (NEP) participants were recruited in Tianjin, China. Daily residential exposures to PM2.5 and five main constituents of all participants were estimated using data of the Tracking Air Pollution in China platform. Nonlinear and linear associations between weekly pollutant exposures and CREPL were estimated using conditional logistic regression models combined with distributed lag nonlinear and distributed lag models, respectively. The risk of CREPL increased with per 10 μg/m³ increment in PM2.5 and per 1 μg/m³ increment in sulfate, nitrate, and ammonium exposures during specific weeks from the 5th week before to 2nd week after ovulation, with the largest OR (95% CI) of CREPL associated with PM2.5, sulfate, nitrate, and ammonium being 1.73 (1.07, 2.78), 1.71 (1.18, 2.46), 1.80 (1.12, 2.90), and 1.61 (1.01, 2.56), respectively. CREPL was positively associated with the 10th to 90th percentiles exposure to organic matter during the 2nd and 3rd week after ovulation. In analyses for constituent residuals, the five constituents were all independently related to CREPL, with organic matter being the highest risk constituent, and nitrate and ammonium affecting at the initial stage of preantral follicle development. In conclusion, periovulatory PM2.5 and constituent exposures were associated with increased risk of CREPL. Women planning a pregnancy are advised to take exposure precautions starting from the follicular development period.
Collapse
Affiliation(s)
- Mengyuan Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ao Liu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuesong Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mingyue Ran
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yinuo Tian
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, 98195, Washington, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Chu M, Yang J, Gong C, Li X, Wang M, Han B, Huo Y, Wang J, Bai Z, Zhang Y. Effects of fine particulate matter mass and chemical components on oxidative DNA damage in human early placenta. ENVIRONMENTAL RESEARCH 2024; 263:120136. [PMID: 39393454 DOI: 10.1016/j.envres.2024.120136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
The effects of chemical components of ambient fine particulate matter (PM2.5) on human early maternal-fetal interface are unknown. We estimated the associations of PM2.5 and component exposures with placental villi 8-hydroxy-2'-deoxyguanosine (8-OHdG) in 142 normal early pregnancy (NEP) and 142 early pregnancy loss (EPL) from December 2017 to December 2022. We used datasets accessed from the Tracking Air Pollution in China platform to estimate maternal daily PM2.5 and component exposures. Effect of average PM2.5 and component exposures during the post-conception period (i.e., from ovulation to villi collection) on the concentration of villi 8-OHdG were analyzed using multivariable linear regression models. Distributed lag and cumulative effects of PM2.5 and component exposures during the periovulatory period and within ten days before villi collection on villi 8-OHdG were analyzed using distributed lag non-linear models combined with multivariable linear regression models. Per interquartile range increase in average PM2.5, black carbon (BC), and organic matter (OM) exposures during the post-conception period increased villi 8-OHdG in all subjects (β = 34.48% [95% CI: 9.33%, 65.42%], β = 35.73% [95% CI: 9.08%, 68.89%], and β = 54.71% [95% CI: 21.56%, 96.91%], respectively), and in EPL (β = 63.37% [95% CI: 16.00%, 130.10%], β = 47.43% [95% CI: 4.30%, 108.39%], and β = 72.32% [95% CI: 18.20%, 151.21%], respectively), but not in NEP. Specific weekly lag effects of PM2.5, BC, and OM exposures during the periovulatory period increased villi 8-OHdG in all subjects. Ten-day cumulative and lag effects of PM2.5, BC, and OM increased villi 8-OHdG in all subjects and EPL, but not in NEP; and the effects of OM were robust after adjusting for BC, ammonium, nitrate, or sulfate in two-pollutant models. In conclusion, placental oxidative DNA damage in early pregnancy was associated with maternal exposure to PM2.5, especially its chemical components BC and OM.
Collapse
Affiliation(s)
- Mengyu Chu
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Junnan Yang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chen Gong
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xuesong Li
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengyuan Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yan Huo
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Yujuan Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
4
|
Wang L, Wang Q, Yao Y, Zhou J, Cai X, Dai T, Song C, Li Y, Li F, Meng T, Sheng H, Guo P, Zhang Q, Zhang X. Critical windows for exposure to chemical composition of ambient particulate matter and human semen quality decline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176991. [PMID: 39433225 DOI: 10.1016/j.scitotenv.2024.176991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/26/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Critical windows for exposure to chemical components of particulate matter (PM <2.5 μm in diameter [PM2.5]) associated with the human semen quality decline remain unclear. OBJECTIVES To address this gap, we developed a new analytical framework by integrating a Linear Mixed Model (LMM) with subject- and center-specific intercepts and a Distributed Lag Model (DLM) to fully account for correlations between finely vulnerable exposure windows based on complete profile of the spermatogenesis cycle. METHODS We constructed a multicenter cohort involving 33,234 sperm donors with 78,952 semen samples covering 6 representative regions across China from 2014 to 2020 to investigate the week-scale critical windows for the exposure. Daily exposure to PM2.5 chemical components of donors was derived from grid data based on 1-km spatial resolution surface measurements. RESULTS Decreased sperm count was significantly associated with NO3- and SO42- at 9-10 weeks (e.g., β: -0.05 %, 95%CI: [-0.10 %, -0.00 %] at the 9th week) and 0-2 weeks (e.g., β: -0.66 %, 95%CI: [-1.24 %, -0.07 %] at the 1st week), respectively. Critical windows of progressive motility decline were 0-10 weeks for BC (e.g., β: -0.07 %, 95%CI: [-0.11 %, -0.03 %] at the 5th week), Cl- at 1-4 weeks (e.g., β: -2.21 %, 95%CI: [-3.77 %, -0.66 %] at the 2nd week), 0-6 weeks and 9-10 weeks for NO3- (e.g., β: -0.05 %, 95%CI: [-0.09 %, -0.01 %] at the 4th week), 1-3 weeks and the 8th week for NH4+ (e.g., β: -0.06 %, 95%CI: [-0.11 %, -0.01 %] at the 2nd week). Total motility is significantly negatively associated with BC at entire windows, Cl- at 0-3 weeks, the 5th week and 9-10 weeks. CONCLUSIONS There are week-scale vulnerable windows of exposure to PM2.5 chemical components for human semen quality. This highlights the need for more targeted pollution control strategies addressing PM2.5 and its chemical components.
Collapse
Affiliation(s)
- Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Yunchong Yao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jiayi Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Chunying Song
- Human Sperm Bank, The Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, The Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, The Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Qingying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| |
Collapse
|
5
|
D A, T B S. Impact of air pollution and heavy metal exposure on sperm quality: A clinical prospective research study. Toxicol Rep 2024; 13:101708. [PMID: 39224457 PMCID: PMC11367516 DOI: 10.1016/j.toxrep.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Exposure to air pollution poses significant risks to human health, including detrimental effects on the reproductive system, affecting both men and women. Our prospective clinical study aimed to assess the impact of prolonged air pollution exposure on sperm quality in male patients attending a fertility clinic. The current study was conducted at Sri Narayani Hospital and Research Centre in Vellore, Tamil Nadu, India, and the study examined sperm samples obtained from individuals with extended exposure to air pollution. Microscopic analysis, including scanning electron microscopy (SEM), was conducted to evaluate sperm morphology. At the same time, atomic absorption spectroscopy (AAS) determined the presence of heavy metals, including Zinc (Zn), Magnesium (Mg), Lead (Pb) and Cadmium (Cd), known to affect sperm production. Our findings revealed that long-term exposure to air pollution adversely affects sperm quality, manifesting in alterations during the spermatogenesis cycle, morphological abnormalities observed through SEM, and impaired sperm motility. Additionally, epidemiological evidence suggests that elevated levels of cadmium and lead in the environment induce oxidative stress, leading to sperm DNA damage and reduced sperm concentrations. These results underscore the urgent need for environmental interventions to mitigate air pollution and protect reproductive health.
Collapse
Affiliation(s)
- Abilash D
- Gene Cloning Technology Lab, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sridharan T B
- Gene Cloning Technology Lab, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
6
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
7
|
Chen S, Zhang Y, Lin Z, Liu R, Zheng L, Chen X, Lin S, Qu Y, Hao C, Tang H, Wei J, Zhang W, Hao Y. The joint impact of PM 2.5 constituents on the risk of cerebrovascular diseases hospitalization: A large community-based cohort study. ENVIRONMENTAL RESEARCH 2024; 260:119644. [PMID: 39059620 DOI: 10.1016/j.envres.2024.119644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Air pollution poses significant health risks to urban areas, with limited focus on the chronic association of PM2.5 and its constituents on cerebrovascular diseases (CERs), especially regarding the joint associations. This study explores the individual and joint associations between PM2.5 constituents and CER hospitalization risks through a cohort analysis of 36,271 adults in the Pearl River Delta, South China, from 2015 to 2020. Cox proportional hazards regression and quantile-based g-computation models were used to quantify the individual and joint associations of annual mean concentrations of PM2.5 constituents with hospitalization for CERs. 1151 participants were hospitalized due to CERs during the five-year follow-up period. Joint associations analyses identified that one quartile increase in co-exposure may result in hazard ratios of 1.530 (1.441-1.623), 1.840 (1.710-1.980), and 1.609 (1.491-1.737) for CERs, total, and ischemic stroke hospitalization, respectively. The adverse effect was primarily driven by organic matter and chlorine. Men, those with a history of tobacco or alcohol use or with low residential greenness, were more susceptible to CERs hospitalization following PM2.5 constituents co-exposure. Upcoming strategies should focus on monitoring and regulating PM2.5 constituents, encouraging healthy lifestyles, and enhancing urban greenery.
Collapse
Affiliation(s)
- Shirui Chen
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Yuqin Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Ziqiang Lin
- Department of Preventive Medicine, School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Ruqing Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lingling Zheng
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology Chinese Academy of Science, Shenzhen, China
| | - Xiuyuan Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Chun Hao
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Hui Tang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, USA
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health & Center for Health Information Research & Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou, China.
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education Peking, China.
| |
Collapse
|
8
|
Dai T, Li W, Wang L, Zhou J, Zhong K, Yao Y, Cai X, Tian L, Wu H, Xu T, Xiao L, Ni H, Song C, Li Y, Li F, Meng T, Sheng H, Lv Z, Guo P, Wang Q, Zhang X. Beneficial effect of residential greenness on sperm quality and the role of air pollution: A multicenter population-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174038. [PMID: 38906295 DOI: 10.1016/j.scitotenv.2024.174038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Poor sperm quality is a major cause of male infertility. However, evidence remains scarce on how greenness affects male sperm quality. OBJECTIVES To assess the associations of residential greenness with male sperm quality and the modification effect of air pollution exposure on the relationship. METHODS A total of 78,742 samples from 33,184 sperm donors from 6 regions across China during 2014-2020 were included and analyzed. Individual residential greenness exposures of study subjects were estimated using the Normalized Difference Vegetation Index (NDVI) during the entire (0-90 lag days) and two key stages (0-37, and 34-77 lag days) of sperm development. Contemporaneous personal exposure levels to air pollutants were estimated using a spatio-temporal deep learning method. Linear mixed models were employed to assess the impact of greenspace in relation to sperm quality. The modification effect of air pollution on the greenspace-sperm quality relationship was also estimated. RESULTS Per IQR increment in NDVI exposure throughout spermatogenesis were statistically associated with increasing sperm count by 0.0122 (95 % CI: 0.0007, 0.0237), progressive motility by 0.0162 (95 % CI: 0.0045, 0.0280), and total motility by 0.0147 (95 % CI: 0.0014, 0.0281), respectively. Similar results were observed when the model added air pollutants (PM1, PM2.5 or O3) for adjustment. Additionally, specific air pollutants, including PM1, PM2.5, and O3, were found to modify this association. Notably, the protective effects of greenness exposure were more pronounced at higher concentrations of PM1 and PM2.5 and lower concentrations of O3 (all Pinteraction < 0.05). Statistically significant positive effects of NDVI were observed on sperm motility in early spermatogenesis and sperm count in late spermatogenesis. CONCLUSIONS Exposure to residential greenness may have beneficial effects on sperm quality and air pollution modifies their relationship. These findings highlight the importance of adopting adaptable urban greenspace planning and policies to safeguard male fertility against environmental factors.
Collapse
Affiliation(s)
- Tingting Dai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Wei Li
- Longgang District Maternity & Child Healthcare Hospital (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Lingxi Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Jiayi Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Kaixin Zhong
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China
| | - Yunchong Yao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Cai
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Linwei Tian
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Haisheng Wu
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China
| | - Chunying Song
- Human Sperm Bank, the Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Yushan Li
- Human Sperm Bank, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuping Li
- Human Sperm Bank, the Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Tianqing Meng
- Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Human Sperm Bank, Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqiang Sheng
- Human Sperm Bank, the Zhejiang Provincial Maternal and Child and Reproductive Health Care Center, Hangzhou, China
| | - Zhihai Lv
- Longgang District Maternity & Child Healthcare Hospital (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, China.
| | - Qiling Wang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| | - Xinzong Zhang
- National Health Commission Key Laboratory of Male Reproduction and Genetics, Guangzhou, China; Department of Andrology, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), China.
| |
Collapse
|
9
|
Fang L, Ma Y, Peng Y, Ni J, Ma C, Wang G, Zhao H, Chen Y, Zhang T, Cai G, Wei J, Xiang H, Pan F. Long-term effect of fine particulate matter constituents on reproductive hormones homeostasis in women attending assisted reproductive technologies: A population-based longitudinal study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116915. [PMID: 39178764 DOI: 10.1016/j.ecoenv.2024.116915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Fine particulate matter (PM2.5) may disrupt women's reproductive hormones, posing potential reproductive risks. However, the exact compositions of PM2.5 responsible for these effects remain unclear. Our investigation explored the long-term impacts of PM2.5 constituents on reproductive hormones, based on a large longitudinal assisted reproductive cohort study in Anhui, China. We included 24,396 reproductive hormone samples from 19,845 women attending assisted reproductive technologies (ART) between 2014 and 2020. Using high-resolution gridded data (1-km resolution), we calculated the residence-specified PM2.5 constituents during the year before the month of hormone testing. Relationships between PM2.5 constituents [organic matter (OM), chloride (Cl-), sulfate (SO42-), ammonium (NH4+), black carbon, and nitrate] and reproductive hormones were investigated using the linear mixed model with subject-specific intercepts. The constituent-proportion model and the constituent-residual model were also constructed. Additionally, cubic spline analysis was used to examine the potential non-linear exposure-response relationship. We found that per interquartile range (IQR) increment in OM was associated with a 5.31 % (3.74 %, 6.89 %) increase in estradiol, and per IQR increment in Cl- and NH4+ were associated with 13.56 % (7.63 %, 19.82 %) and 9.07 % (4.35 %, 14.01 %) increases in luteinizing hormone. Conversely, per IQR increment in OM and Cl- were associated with -7.27 % (-9.34 %, -5.16 %) and -8.52 % (-10.99 %, -5.98 %) decreases in progesterone, and per IQR increment in SO42- was associated with a -9.15 % (-10.31 %, -7.98 %) decrease in testosterone. These associations were held in both proportional and residual models. Moreover, exposure-response curves for estradiol and progesterone with PM2.5 constituents exhibited approximately U-shaped. These results suggested that specific PM2.5 constituents might disrupt reproductive hormone homeostasis in women attending ART, providing new evidence for formulating PM2.5 pollution reduction strategies that could benefit women's reproductive health.
Collapse
Affiliation(s)
- Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yongzhen Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jianping Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cong Ma
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA; Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
10
|
Shi Y, Zhang Y, Yuan K, Han Z, Zhao S, Zhang Z, Cao W, Li Y, Zeng Q, Sun S. Exposure to ambient ozone and sperm quality among adult men in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116753. [PMID: 39083872 DOI: 10.1016/j.ecoenv.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Limited evidence exists regarding the association between ozone exposure and adverse sperm quality. We aimed to assess the association between ozone exposure and sperm quality, and identify susceptible exposure windows. METHODS We recruited 32,541 men aged between 22 and 65 years old attending an infertility clinic in Wuhan, Hubei Province, China from 2014 to 2020. Ozone data were obtained from a satellite-based spatiotemporal model. Generalized linear models were used to estimate the association between ozone exposure and sperm quality parameters, including sperm concentration, sperm count, sperm total motility, and sperm progressive motility during the entire stage of sperm development (0-90 days before ejaculation) and three crucial stages (0-9 days, 10-14 days and 70-90 days before ejaculation). Stratified analyses were performed to evaluate whether associations varied by age, body mass index, and education levels. RESULTS The final analysis included 27,854 adult men. A 10 μg/m3 increase in ozone concentrations during the entire stage of sperm development was associated with a -4.17 % (95 % CI: -4.78 %, -3.57 %) decrease in sperm concentration, -6.54 % (95 % CI: -8.03 %, -5.60 %) decrease in sperm count, -0.50 % (95 % CI: -0.66 %, -0.34 %) decrease in sperm total motility, and -0.07 % (95 % CI: -0.22 %, 0.09 %) decrease in sperm progressive motility. The associations were stronger during 70-90 days before ejaculation and among men with middle school and lower education for sperm concentration. CONCLUSIONS Ozone exposure was associated with decreased sperm quality among Chinese adult men attending an infertility clinic. These results suggest that ozone may be a risk factor contributing to decreased sperm quality in Chinese men.
Collapse
Affiliation(s)
- Yadi Shi
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Kun Yuan
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue, Wuhan, Hubei 1095, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
11
|
Liu RL, Wang T, Yao YL, Lv XY, Hu YL, Chen XZ, Tang XJ, Zhong ZH, Fu LJ, Luo X, Geng LH, Yu SM, Ding YB. Association of ambient air pollutant mixtures with IVF/ICSI-ET clinical pregnancy rates during critical exposure periods. Hum Reprod Open 2024; 2024:hoae051. [PMID: 39301245 PMCID: PMC11412601 DOI: 10.1093/hropen/hoae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/04/2024] [Indexed: 09/22/2024] Open
Abstract
STUDY QUESTION Does exposure to a mixture of ambient air pollutants during specific exposure periods influence clinical pregnancy rates in women undergoing IVF/ICSI-embryo transfer (ET) cycles? SUMMARY ANSWER The specific exposure period from ET to the serum hCG test was identified as a critical exposure window as exposure to sulfur dioxide (SO2) or a combination of air pollutants was associated with a decreased likelihood of clinical pregnancy. WHAT IS KNOWN ALREADY Exposure to a single pollutant may impact pregnancy outcomes in women undergoing ART. However, in daily life, individuals often encounter mixed pollution, and limited research exists on the effects of mixed air pollutants and the specific exposure periods. STUDY DESIGN SIZE DURATION This retrospective cohort study involved infertile patients who underwent their initial IVF/ICSI-ET cycle at an assisted reproduction center between January 2020 and January 2023. Exclusions were applied for patients meeting specific criteria, such as no fresh ET, incomplete clinical and address information, residency outside the 17 cities in the Sichuan Basin, age over 45 years, use of donor semen, thin endometrium (<8 mm) and infertility factors unrelated to tubal or ovulation issues. In total, 5208 individuals were included in the study. PARTICIPANTS/MATERIALS SETTING METHODS Daily average levels of six air pollutants (fine particulate matter (PM2.5), inhalable particulate matter (PM10), SO2, nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3)) were acquired from air quality monitoring stations. The cumulative average levels of various pollutants were determined using the inverse distance weighting (IDW) method across four distinct exposure periods (Period 1: 90 days before oocyte retrieval; Period 2: oocyte retrieval to ET; Period 3: ET to serum hCG test; Period 4: 90 days before oocyte retrieval to serum hCG test). Single-pollutant logistic regression, two-pollutant logistic regression, Quantile g-computation (QG-C) regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate the influence of pollutants on clinical pregnancy rates. Stratified analyses were executed to discern potentially vulnerable populations. MAIN RESULTS AND THE ROLE OF CHANCE The clinical pregnancy rate for participants during the study period was 54.53%. Single-pollutant logistic models indicated that for PM2.5 during specific exposure Period 1 (adjusted odds ratio [aOR] = 0.83, 95% CI: 0.70-0.99) and specific exposure Period 4 (aOR = 0.83, 95% CI: 0.69-0.98), and SO2 in specific exposure Period 3 (aOR = 0.92, 95% CI: 0.86-0.99), each interquartile range (IQR) increment exhibited an association with a decreased probability of clinical pregnancy. Consistent results were observed with dual air pollution models. In the multi-pollution analysis, QG-C indicated a 12% reduction in clinical pregnancy rates per IQR increment of mixed pollutants during specific exposure Period 3 (aOR = 0.89, 95% CI: 0.79-0.99). Among these pollutants, SO2 (33.40%) and NO2 (33.40%) contributed the most to the negative effects. The results from BKMR and QG-C were consistent. Stratified analysis revealed increased susceptibility to ambient air pollution among individuals who underwent transfer of two embryos, those with BMI ≥ 24 kg/m2 and those under 35 years old. LIMITATIONS REASONS FOR CAUTION Caution was advised in interpreting the results due to the retrospective nature of the study, which was prone to selection bias from non-random sampling. Smoking and alcohol, known confounding factors in IVF/ICSI-ET, were not accounted for. Only successful cycles that reached the hCG test were included, excluding a few patients who did not reach the ET stage. While IDW was used to estimate pollutant concentrations at residential addresses, data on participants' work locations and activity patterns were not collected, potentially affecting the accuracy of exposure prediction. WIDER IMPLICATIONS OF THE FINDINGS Exposure to a mixture of pollutants, spanning from ET to the serum hCG test (Period 3), appeared to be correlated with a diminished probability of achieving clinical pregnancy. This association suggested a potential impact of mixed pollutants on the interaction between embryos and the endometrium, as well as embryo implantation during this critical stage, potentially contributing to clinical pregnancy failure. This underscored the importance of providing women undergoing ART with comprehensive information to comprehend the potential environmental influences and motivating them to adopt suitable protective measures when feasible, thereby mitigating potential adverse effects of contaminants on reproductive health. STUDY FUNDING/COMPETING INTERESTS This work received support from the National Key Research and Development Program of China (No. 2023YFC2705900), the National Natural Science Foundation of China (Nos. 82171664, 81971391, 82171668), the Natural Science Foundation of Chongqing Municipality of China (Nos. CSTB2022NSCQ-LZX0062, CSTB2023TIAD-KPX0052) and the Foundation of State Key Laboratory of Ultrasound in Medicine and Engineering (No. 2021KFKT013). The authors report no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Rui-Ling Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Tong Wang
- Department of Toxicology, Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ying-Ling Yao
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xing-Yu Lv
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, China
| | - Yu-Ling Hu
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, China
| | - Xin-Zhen Chen
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Jun Tang
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhao-Hui Zhong
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Li-Juan Fu
- Department of Toxicology, Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Hong Geng
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, China
| | - Shao-Min Yu
- Department of Obstetrics and Gynecology, The People's Hospital of Yubei, Chongqing, China
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, China
| |
Collapse
|
12
|
Sørensen M, Poulsen AH, Nøhr B, Khan J, Ketzel M, Brandt J, Raaschou-Nielsen O, Jensen A. Long term exposure to road traffic noise and air pollution and risk of infertility in men and women: nationwide Danish cohort study. BMJ 2024; 386:e080664. [PMID: 39231578 PMCID: PMC11372855 DOI: 10.1136/bmj-2024-080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To investigate associations between long term residential exposure to road traffic noise and particulate matter with a diameter <2.5 µm (PM2.5) and infertility in men and women. DESIGN Nationwide prospective cohort study. SETTING Denmark. PARTICIPANTS 526 056 men and 377 850 women aged 30-45 years, with fewer than two children, cohabiting or married, and residing in Denmark between 2000 and 2017. MAIN OUTCOME MEASURE Incident infertility in men and women during follow-up in the Danish National Patient Register. RESULTS Infertility was diagnosed in 16 172 men and 22 672 women during a mean follow-up of 4.3 years and 4.2 years, respectively. Mean exposure to PM2.5 over five years was strongly associated with risk of infertility in men, with hazard ratios of 1.24 (95% confidence interval 1.18 to 1.30) among men aged 30-36.9 years and 1.24 (1.15 to 1.33) among men aged 37-45 years for each interquartile (2.9 µg/m3) higher PM2.5 after adjustment for sociodemographic variables and road traffic noise. PM2.5 was not associated with infertility in women. Road traffic noise (Lden, most exposed facade of residence) was associated with a higher risk of infertility among women aged 35-45 years, with a hazard ratio of 1.14 (1.10 to 1.18) for each interquartile (10.2 dB) higher five year mean exposure. Noise was not associated with infertility among younger women (30-34.9 years). In men, road traffic noise was associated with higher risk of infertility in the 37-45 age group (1.06, 1.02 to 1.11), but not among those aged 30-36.9 years (0.93, 0.91 to 0.96). CONCLUSIONS PM2.5 was associated with a higher risk of an infertility diagnosis in men, whereas road traffic noise was associated with a higher risk of an infertility diagnosis in women older than 35 years, and potentially in men older than 37 years. If these results are confirmed in future studies, higher fertility could be added to the list of health benefits from regulating noise and air pollution.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Bugge Nøhr
- Department of Obstetrics and Gynaecology, University Hospital of Herlev and Gentofte, Herlev, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Allan Jensen
- Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
| |
Collapse
|
13
|
Nyadanu SD, Foo D, Pereira G, Mickley LJ, Feng X, Bell ML. Short-term effects of wildfire-specific fine particulate matter and its carbonaceous components on perinatal outcomes: A multicentre cohort study in New South Wales, Australia. ENVIRONMENT INTERNATIONAL 2024; 191:109007. [PMID: 39278048 DOI: 10.1016/j.envint.2024.109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Epidemiological evidence on the association between wildfire-specific fine particulate matter (PM2.5) and its carbonaceous components with perinatal outcomes is limited. We aimed to examine the short-term effects of wildfire-specific PM2.5 and its carbonaceous components on perinatal outcomes. METHODS A multicentre cohort of 9743 singleton births during the wildfire seasons from 1 September 2009 to 31 December 2015 across six cities in New South Wales, Australia were linked with daily wildfire-specific PM2.5 and carbonaceous components (organic carbon and black carbon). Adjusted distributed lag Cox regression models with spatial clustering were performed to estimate daily and cumulative adjusted hazard ratios (aHRs) during the last four gestational weeks for preterm birth, stillbirth, nonvertex presentation, low 5-min Apgar score, special care nursery/neonatal intensive care unit (SCN/NICU) admission, and caesarean section. RESULTS Daily aHRs per 10 µg/m3 PM2.5 showed nearly inverted 'U'-shaped positive associations and daily cumulative aHRs that increased with increasing duration of the exposures. The aHRs for lag 0-6 days were 1.17 (95 % CI: 1.04, 1.32) for preterm birth, 1.40 (95 % CI: 1.11, 1.78) for stillbirth, 1.20 (95 % CI: 1.08, 1.33) for nonvertex presentation, 1.12 (95 % CI: 0.93, 1.35) for low 5-min Apgar score, 0.99 (95 % CI: 0.83, 1.19) for SNC/NICU admission, and 1.01 (95 % CI: 0.94, 1.08) for caesarean section. Organic carbon and black carbon components for lag 0-6 days showed positive associations. The highest component-specific aHRs were 1.09 (95 % CI: 1.03, 1.15) and 4.57 (95 % CI: 1.96, 10.68) for stillbirth per 1 µg/m3 organic carbon and black carbon, respectively. The subgroups identified as most vulnerable were female births, births to mothers with low socioeconomic status, and births to mothers with high biothermal exposure. CONCLUSIONS Positive associations of short-term wildfire-specific PM2.5 exposure and its carbonaceous components with adverse perinatal outcomes suggest that policies to reduce exposure would benefit public health.
Collapse
Affiliation(s)
- Sylvester Dodzi Nyadanu
- Curtin School of Population Health, Curtin University, Perth, Western Australia 6102, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| | - Damien Foo
- Curtin School of Population Health, Curtin University, Perth, Western Australia 6102, Australia; Yale School of the Environment, Yale University, New Haven, CT, United States
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Perth, Western Australia 6102, Australia; enAble Institute, Curtin University, Perth, Kent Street, Bentley, Western Australia 6102, Australia
| | - Loretta J Mickley
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Xu Feng
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Michelle L Bell
- Yale School of the Environment, Yale University, New Haven, CT, United States; School of Health Policy and Management, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Jiang L, Lin X, Jiang J, Qiu C, Zheng S, Zhao N, Shu Z, Qian Y, Qiu L. METTL3-m6A-SIRT1 axis affects autophagic flux contributing to PM 2.5-induced inhibition of testosterone production in Leydig cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170701. [PMID: 38325452 DOI: 10.1016/j.scitotenv.2024.170701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Epidemiological studies have found that long-term inhalation of PM2.5 is closely related to spermatogenesis disorders and infertility, but the underlying molecular mechanism is still unidentified. Testosterone, an essential reproductive hormone produced by Leydig cells, whose synthesis is disrupted by multiple environmental pollutants. In the current study, we explored the role of METTL3-m6A-SIRT1 axis-mediated abnormal autophagy in PM2.5-induced inhibition of testosterone production in in vivo and in vitro models. Our in vivo findings shown that long-term inhalation of PM2.5 decreased sperm count, increased sperm deformity rates, and altered testicular interstitial morphology accompanied by reduced testosterone in serum and testes. Further, data from the in vitro model displayed that exposure to PM2.5 caused an increase in m6A modification and METTL3 levels, followed by a decrease in testosterone levels and autophagy dysfunction in Leydig cells. The knockdown of METTL3 promotes autophagy flux and testosterone production in Leydig cells. Mechanistically, PM2.5 increased METTL3-induced m6A modification of SIRT1 mRNA in Leydig cells, bringing about abnormal autophagy. Subsequently, administration of SRT1720 (a SIRT1 activator) enhanced autophagy and further promoted testosterone biosynthesis. Collectively, our discoveries indicate that METTL3-m6A-SIRT1 axis-mediated autophagic flux contributes to PM2.5-induced inhibition of testosterone biosynthesis. This research offers a novel viewpoint on the mechanism of male reproductive injury following PM2.5 exposure.
Collapse
Affiliation(s)
- Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Jinchen Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong 226001, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Zhenhao Shu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Yinyun Qian
- Graduate School, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong 226019, PR China.
| |
Collapse
|
15
|
Zhang Y, Wei J, Zhao S, Zeng Q, Sun S, Cao W. Ambient fine particulate matter constituents and semen quality among adult men in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133313. [PMID: 38147745 DOI: 10.1016/j.jhazmat.2023.133313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Exposure to ambient fine particulate matter (PM2.5) was associated with decreased semen quality, but the relationship between PM2.5 constituents and semen quality was unclear. We recruited 27,824 adult men attending an infertility clinic in Wuhan, China, between 2014 and 2020. We used a four-dimensional spatiotemporal deep forest model to estimate concentrations of PM2.5 mass and its chemical constituents, including organic matter (OM), black carbon (BC), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), and chloride (Cl-). We employed linear regression models to estimate the association between PM2.5 mass and its constituents with various sperm parameters. Exposure to PM2.5 was associated with a reduction in sperm quality, with a percent change of - 5.69% (95% confidence interval [CI]: -8.53%, -2.85%) for sperm density, - 15.09% (95% CI: -22.24%, -7.94%) for sperm total count, - 1.63% (95% CI: -2.36%, -0.91%) for sperm progressive motility, and - 2.30% (95% CI: -3.04%, -1.55%) for sperm total motility. Among specific constituents, exposure to OM, BC, Cl-, or NO3- was associated with a reduction in these four semen quality parameters. The association was more pronounced among older men or individuals with lower levels of education. Our findings suggest that PM2.5 mass and each constituent were associated with decreased semen quality in adult men.
Collapse
Affiliation(s)
- Yangchang Zhang
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Shi Zhao
- Centre for Health Systems and Policy Research, Chinese University of Hong Kong, 999077, the Hong Kong Special Administrative Region of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China; Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing 100005, China; School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
16
|
Cole AP, Loeb S. Dietary and Lifestyle Recommendations that Align Patient and Planetary Health. Eur Urol Focus 2023; 9:869-872. [PMID: 37770372 DOI: 10.1016/j.euf.2023.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Environmental factors such as air pollution and climate change have far-reaching implications for human health, and increasing evidence supports a link between planetary health and many common urological conditions. We summarize these links and outline the data for some dietary and lifestyle changes that have joint benefits for both urological and planetary health. PATIENT SUMMARY: Steps to reduce our impact on the environment can also reduce the risk of urological cancers (bladder, prostate, and kidney cancers), urinary tract infections, kidney stones, and erectile dysfunction, and may have a positive impact on sperm quality. Simple steps such as reducing meat and dairy consumption, increasing exercise levels (e.g. through active commuting), and supporting the preservation of greenspace can benefit both personal health and the environment.
Collapse
Affiliation(s)
- Alexander P Cole
- Division of Urological Surgery and Center for Surgery and Public Health, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Stacy Loeb
- Department of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs, NY, New York, USA
| |
Collapse
|