1
|
Cui M, Zheng G, Wu X, Zhang J, Wang Z, Pang Z, Wang S, Hu R, Xu D. Microplastics' vector effect on Co-bioaccumulation of it and polychlorinated biphenyls in Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117119. [PMID: 39342754 DOI: 10.1016/j.ecoenv.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are known with high persistence and toxicity, posing urgent threats to food safety and human health. However, little is known about the synergistic effect of MPs on PCBs bioaccumulation on Crassostrea hongkongensis. In the present study, diverse types of MPs were analyzed on sea water and C. hongkongensis sampled from three distinct estuary sites, and film-shaped MPs were discovered to be preferentially ingested by the oysters. Interestingly, the content of MPs and PCBs showed negative correlation (R2 = 0.452, p< 0.001) in the oysters sampled from site 2. Upon MPs and PCBs co-treatment, the in vivo accumulation of PCBs in C. hongkongensis was inhibited by 25.90 % when compared to the group treated with PCBs solely. PCBs stresses significantly induced the expression of genes of CYP2C31, GST, SOD and HSP70 in C. hongkongensis, while, the elevated state was compromised when co-treated with PCBs. The present research alleviates concerns about the potential effects of MPs on promoting PCBs bioaccumulation and provide a better understanding of the combined impact of MPs and PCBs on C. hongkongensis.
Collapse
Affiliation(s)
- Miao Cui
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Gaojun Zheng
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Xin Wu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Jiaying Zhang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zibin Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhicong Pang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Shixu Wang
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Ren Hu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Delin Xu
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
2
|
Liu R, Gao H, Liang X, Zhang J, Meng Q, Wang Y, Guo W, Martyniuk CJ, Zha J. Polystyrene nanoplastics alter intestinal toxicity of 2,4-DTBP in a sex-dependent manner in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135585. [PMID: 39178772 DOI: 10.1016/j.jhazmat.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Nanoplastics (NPs) and 2,4-di-tert-butylphenol (2,4-DTBP) are ubiquitous emerging environmental contaminants detected in aquatic environment. While the intestinal toxicity of 2,4-DTBP alone has been studied, its combined effects with NPs remain unclear. Herein, adult zebrafish were exposed to 80 nm polystyrene nanoplastics (PS-NPs) or/ and 2,4-DTBP for 28 days. With co-exposure of PS-NPs, impact of 2,4-DTBP on feeding capacity and intestinal histopathology was enhanced in males while attenuated in females. Addition of PS-NPs significantly decreased the uptake of 2,4-DTBP in females, while the intestinal concentrations of 2,4-DTBP were not different between the sexes in co-exposure groups. Furthermore, lower intestinal pH and higher contents of digestive enzymes were detected in male fish, while bile acid was significantly increased in co-exposed females. In addition, co-exposure of PS-NPs stimulated female fish to remodel microbial composition to potentially enhance xenobiotics degradation, while negative Aeromonas aggravated inflammation in males. These results indicated that in the presence of PS-NPs, the gut microenvironment in females can facilitate the detoxification of 2,4-DTBP, while exaggerating toxiciy in males. Overall, this study demonstrates that toxicological outcomes of NPs-chemical mixtures may be modified by sex-specific physiology and microbiota composition, furthering understanding for environmental risk assessment and management of aquatic environments.
Collapse
Affiliation(s)
- Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huina Gao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qingjian Meng
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
3
|
Liu P, Shao L, Zhang Y, Silvonen V, Oswin H, Cao Y, Guo Z, Ma X, Morawska L. Atmospheric microplastic deposition associated with GDP and population growth: Insights from megacities in northern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134024. [PMID: 38493631 DOI: 10.1016/j.jhazmat.2024.134024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Microplastic (MP) pollution is evolving into one of the most pressing environmental concerns worldwide. This study assessed the impact of economic activities on atmospheric MP pollution across 17 megacities in northern China, analyzing the correlation between the deposition flux of atmospheric MPs and variables such as city population, gross domestic product (GDP), and industrial structure. The results have shown that the MP pollution is obviously impacted by human activities related to increased GDP, population, as well as tertiary service sector, in which the MP pollution shows most close relationship with the GDP growth. Polypropylene, polyamide, polyurethane, and polyethylene were identified as the primary components of atmospheric MPs. The average particle size of MPs in atmospheric dustfall is 78.3 µm, and the frequency of MP particles increases as the particle size decreases. The findings highlight the complex relationship between socio-economic development and atmospheric MP accumulation, providing essential insights for the formulation of targeted emission reduction strategies.
Collapse
Affiliation(s)
- Pengju Liu
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Longyi Shao
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxing Zhang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ville Silvonen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere 33014, Finland
| | - Henry Oswin
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yaxin Cao
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Ziyu Guo
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources & College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xuying Ma
- College of Geomatics, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
4
|
Zafar R, Lee YK, Li X, Hur J. Environmental condition-dependent effects of aquatic humic substances on the distribution of phenanthrene in microplastic-contaminated aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123809. [PMID: 38493869 DOI: 10.1016/j.envpol.2024.123809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.
Collapse
Affiliation(s)
- Rabia Zafar
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Yun Kyung Lee
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, PR China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
5
|
Xie G, Hou Q, Li L, Xu Y, Liu S, She X. Co-exposure of microplastics and polychlorinated biphenyls strongly influenced the cycling processes of typical biogenic elements in anoxic soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133277. [PMID: 38141308 DOI: 10.1016/j.jhazmat.2023.133277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The co-exposure of microplastics (MPs) and polychlorinated biphenyls (PCBs) in soil is inevitable, but their combined effect on cycles of typical biogenic elements (e.g. C, N, Fe, S) is still unclear. And the co-exposure of MPs and PCBs caused more severe effects than single exposure to pollution. Therefore, in this study, a 255-day anaerobic incubation experiment was conducted by adding polyethylene microplastics (PE MPs, including 30 ± 10 μm and 500 μm) and PCB138. The presence of PE MPs inhibited the PCB138 degradation. Also, PE MPs addition (1%, w/w) enhanced the methanogenesis, Fe(Ⅲ) reduction, and sulfate reduction while inhibited nitrate reduction and the biodegradation of PCB138. And PCB138 addition (10 mg·kg-1) promoted the methanogenesis and Fe(Ⅲ) reduction, but inhibited sulfate reduction and nitrate reduction. Strikingly, the presence of PE MPs significantly reduced the impact of PCB138 on the soil redox processes. The abundance changes of special microbial communities, including Anaeromyxobate, Geobacter, Bacillus, Desulfitobacterium, Thermodesulfovibrio, Metanobacterium, etc., were consistent with the changes in soil redox processes, revealing that the effect of PE MPs and/or PCB138 on the cycle of typical biogenic elements was mainly achieved by altering the functional microorganisms. This study improves the knowledge of studies on the impact of MPs and combined organic pollutants to soil redox processes, which is greatly important to the stabilization and balance of biogeochemical cycling in ecology.
Collapse
Affiliation(s)
- Guangxue Xie
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Qian Hou
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Shaochong Liu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Xilin She
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|