1
|
Liu SS, Chen SB, Yue YB, Li XH, Zhang C, Ying GG, Chen CE. Development and validation of diffusive gradients in thin-films for in situ monitoring of ionic liquids in waters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39446103 DOI: 10.1039/d4ay01730g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Due to their wide applications, occurrence and "PFAS-like" environmental behaviors, ionic liquids (ILs) represent a new challenge for the environmental monitoring community, who require robust analytical methods that can determine accurately and efficiently their environmentally relevant concentrations. A new passive sampling method based on the diffusive gradients in thin films (DGT) technique was developed for the measurement of imidazole-based ILs in waters using a mixed-mode cation exchange (MCX) resin as the adsorbent. The selected binding gel had a high binding capacity (>170 μg per disc) for ILs. Diffusion coefficients measured using a diffusion cell correlated well with alkyl chain lengths (r2 = 0.95) and retention times (r2 = 0.88), providing a simple and rapid prediction approach for other ILs. The assembled MCX-DGT sampler exhibited a linear accumulation for at least 120 h. MCX-DGT also showed good performance under typical freshwater conditions (pH 5-8, ionic strength 0.001-0.01 M, and humic acid 0-5 mg L-1), while still being problematic for aquatic conditions with higher ionic strength (>0.1 M) or DOM (>10 mg L-1). Laboratory deployment (for up to 3 days) in spiked natural freshwater (SNW) resulted in linear mass uptakes for the short-chain ILs (C2-C8), and their DGT-measured concentrations agreed well with solution concentrations. However, MCX-DGT significantly overestimated the concentrations of the long-chain ILs (C10-C12) when deployed in SNW for one day or more, which is attributed to the strong competitive adsorption of the long-chain ILs by natural organic matter. In situ field evaluation along with grab sampling found no target ILs in a wastewater treatment plant and its receiving river, implying that these new chemicals might not be widely used in South China now. This is the first report on the DGT technique for ILs and might provide an effective tool for monitoring short chain length ILs in the aquatic environment in the near future.
Collapse
Affiliation(s)
- Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Shi-Bao Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Yu-Bo Yue
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiao-Hao Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Chi Zhang
- Electric Power Research Institute, State Grid Hubei Electric Power Co., Ltd, Wuhan 430077, China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Golab EG, Parvaneh R, Riahi S, Vatankhah-Varnosfaderani M, Nakhaee A. Study on interfacial tension, wettability and viscosity in different salinities of synthesized a new polymeric surfactant for improving oil recovery. Sci Rep 2024; 14:24990. [PMID: 39443483 PMCID: PMC11499888 DOI: 10.1038/s41598-024-75027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Over 50% of the original oil in place (OOIP) is immobile or trapped in the reservoir. Therefore, today, more efficient methods have been introduced in the tertiary oil recovery sector as a scheme of enhanced oil recovery (EOR). Due to the decline of conventional hydrocarbon reserves, polymers are increasingly used in EOR methods, such as surfactant-polymer (SP) and alkaline-surfactant-polymer (ASP) flooding. SP flooding has a complex formulation and design, leading to undesirable phase separation if improperly mixed. Polymeric surfactants are a promising alternative to SP flooding. They consist of hydrophobic groups attached to hydrophilic polymers, which help to improve the mobility ratio and reduce interfacial tension (IFT). This paper examines the rheological and synthesis properties of a new polymeric surfactant produced through bond co-polymerization reaction using different hydrolyzed polyacrylamide (HPAM) ratios and a zwitterion hydrophobic group. The synthesized hydrophobically modified zwitterionic polyacrylamide (HMZPAM) was characterized by FTIR and HMNR analysis. HMZPAM performed better than other substances in IFT, viscosity, wettability, oil recovery, and resistance to different one and two-valence cations. The results indicate that HPAM reduced the IFT to 13.65, while HMZPAM reduced it to 0.441 mN/m. Wettability change evaluated on a rock carbonate/crude oil/HMZPAM system that changed the water-wet state of the primary oil-wet rock carbonate to strongly water-wet state as wettability change measurements showed a decrease in contact angle from 62.76 to 21.23 degree. Comparative studies on the effectiveness of HPAM and HMZPAM were also conducted according to the measurement of viscosity and shear rate in the presence of salt, which indicates the higher shear rate and viscosity of HMZPAM. Core flooding tests revealed that HMZPAM resulted in better additional recovery due to microscopic displacement, resulting in a total oil recovery of 84%, compared to 48% of residual oil saturation for HPAM. Also, salts decreased oil recovery in HPAM injection but increased oil recovery in HMZPAM injection.
Collapse
Affiliation(s)
- Elias Ghaleh Golab
- Department of Petroleum Engineering, EOR Research Center, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
| | - Ronak Parvaneh
- Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Siavash Riahi
- Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Ali Nakhaee
- Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Li B, Qu R, Wang T, Guo R, Tian J, Li S, Abukhadra MR, Mahmoud RK, Wang Z. Experimental insights and modeling innovations: Deciphering Fe(VI) oxidation in imidazole ionic liquids through QSAR and RFR. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134980. [PMID: 38905978 DOI: 10.1016/j.jhazmat.2024.134980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In this investigation, we conducted a detailed analysis of the oxidation of 16 imidazole ionic liquid variants by Fe(VI) under uniform experimental setups, thereby securing a dataset of second-order reaction rate constants (kobs). This methodology ensures superior data consistency and comparability over traditional methods that amalgamate disparate data from varied studies. Utilizing 16 chemical structural parameters obtained via Density Functional Theory (DFT) as descriptors, we developed a Quantitative Structure Activity Relationship (QSAR) model. Through rigorous correlation analysis, Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Applicability Domain (AD) evaluation, we identified a pronounced negative correlation between the molecular orbital gap energy (Egap) and kobs. MLR analysis further underscored Egap as a pivotal predictive variable, with its lower values indicating heightened oxidative reactivity towards Fe(VI) in the ionic liquids, leading the QSAR model to achieve a predictive accuracy of 0.95. Furthermore, we integrated an advanced machine learning approach - Random Forest Regression (RFR), which adeptly highlighted the critical factors influencing the oxidation efficiency of imidazole ionic liquids by Fe(VI) through elaborate decision trees, feature importance assessment, Recursive Feature Elimination (RFE), and cross-validation strategies. The RFR model demonstrated a remarkable predictive performance of 0.98. Both QSAR and RFR models pinpointed Egap as a key descriptor significantly affecting oxidation efficiency, with the RFR model presenting lower root mean square errors, establishing it as a more reliable predictive tool. The application of the RFR model in this study significantly improved the model's stability and the intuitive display of key influencing factors, introducing promising advanced analytical tools to the field of environmental chemistry.
Collapse
Affiliation(s)
- Beibei Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Ting Wang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Jie Tian
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | - Shuyi Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China
| | | | | | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Jiangsu Nanjing 210023, PR China.
| |
Collapse
|
4
|
Wang H, Li X, Li J, Yu F, Li Q, Qin M, Gui L, Qian Y, Huang M. Long-term exposure to ionic liquid [C 8mim]Br induces the potential risk of anxiety and memory deterioration through disturbing neurotransmitter systems. Neurotoxicology 2024; 104:66-74. [PMID: 39084264 DOI: 10.1016/j.neuro.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/11/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
1-octyl-3-methylimidazolium bromide ([C8mim]Br), one of the ionic liquids (ILs), has been used in various fields as an alternative green solvent of conventional organic solvents. Increased application and stabilization of imidazole ring structure lead to its release into the aquatic environment and long-term retention. Structure-activity relationship consideration suggested that ILs may be acetylcholinesterase inhibitors; however, neurotoxicity in vivo, especially the underlying mechanisms is rarely studied. In this study, the zebrafish were exposed to 2.5-10 mg/L [C8mim]Br for 28 days to comprehensively evaluate the neurotoxicity of ILs on adult zebrafish from the behavioral profiles and neurotransmitter systems for the first time. The results indicate that zebrafish exhibit suppressed spatial working memory and anxious behaviors. To assess the potential neurotoxic mechanisms underlying the behavioral responses of zebrafish, we measured the levels of neurotransmitters and precursors, key enzyme activities, and expression levels of relevant genes. Nissl staining showed significant neural cell death in zebrafish after 28-day [C8mim]Br exposure, with corresponding decreases in the levels of neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptophan, gamma-aminobutyric acid, dopamine, and norepinephrine). Furthermore, these results were associated with mRNA expression levels of the disrupted neurotransmitter key genes (th, tph2, mao, slc6a3, ache, gad67). Overall, our study determined that [C8mim]Br caused potential mental disorders like anxiety and memory deterioration in zebrafish by impairing neurotransmitter systems, providing recommendations for the industrial production and application of [C8mim]Br.
Collapse
Affiliation(s)
- Huangyingzi Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xuhua Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Fan Yu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Qi Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mijia Qin
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lin Gui
- Shanghai American School, Pudong District, Shanghai 201201, China
| | - Yajie Qian
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Vieira Sanches M, Pretti C, Mezzetta A, Guazzelli L, Cuccaro A, De Marchi L, Freitas R, Oliva M. Subcellular effects of imidazolium-based ionic liquids with varying anions on the marine bivalve Mytilus galloprovincialis. Heliyon 2024; 10:e36242. [PMID: 39224242 PMCID: PMC11367460 DOI: 10.1016/j.heliyon.2024.e36242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Green Chemistry involves applying a set of principles aimed at minimizing the use of hazardous substances in the design, production, and application of chemical products. In recent decades, Ionic Liquids (ILs) have emerged as more environmentally friendly substitutes for traditional organic solvents. This preference is primarily due to their low vapor pressure, which results in minimal atmospheric pollution and enhanced industrial safety. However, existing literature highlights the toxicity of ILs towards aquatic invertebrates. Consequently, this study points to assess the biochemical effects of a selection of ILs through an in vitro approach. Specifically, digestive gland and gill cellular fractions (S9) of the marine bivalve Mytilus galloprovincialis were exposed to varying concentrations (0.05-2 μM) of three ILs featuring identical cations but different anions. The ILs tested were 1-ethyl-3-methylimidazolium octanoate ([EMIM][Oct]), 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]), and 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIM][EtSO4]). The results indicate that [EMIM][Oct] induces higher toxicity in both S9 tissues, highlighting a strong effect of the anion. Overall, antioxidant and biotransformation defenses were significantly altered for all three ILs assessed. While acetylcholinesterase activity was significantly inhibited of about half of control activity, indicating neurotoxic damage as part of the toxicity mode of action of these ILs, neither lipid peroxidation nor alterations to DNA integrity were observed (≥100 %). This study supports the use of in vitro techniques as important tools capable of generating reliable ecotoxicological data, which can be further considered as a screening before in vivo testing and used for in silico modeling.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, (PI), Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126, Pisa, Italy
| | - Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128, Livorno, Italy
| |
Collapse
|
6
|
Swami S, Suthar S, Singh R, Thakur AK, Gupta LR, Sikarwar VS. Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12871-12891. [PMID: 38285255 DOI: 10.1007/s11356-024-32100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Lignocellulosic biomass is available in abundance as a renewable resource, but the major portion of it is often discarded as waste without utilizing its immense potential as an alternative renewable energy resource. To overcome recalcitrance of lignocellulosic biomass, various pretreatment methods are applied to it, so that the complex and rigid polymeric structure can be broken down into fractions susceptible for enzymatic hydrolysis. Effective and efficient biomass processing is the goal of pretreatment methods, but none of the explored pretreatment methods are versatile enough to fulfil the requirement of biomass processing with greater flexibility in terms of operational cost and desired output efficiency. Deployment of green solvents such as ionic liquids for the pretreatment of lignocellulosic biomass has been a topic of discussion amongst the scientific community in recent times. The presented work provides a detailed overview on the deployment of ionic liquid for the pretreatment of lignocellulosic biomass coupled with a brief discussion on other pretreatments methods. The recyclability and reusability along with other unique properties makes an ionic liquid pretreatment different from the other traditional pretreatment methods. Also, this study explores diverse critical parameters that governs the dissolution process of biomass. Hazardous properties of ionic liquids have also been explored. Future perspective and recommendations have been given for an efficient, effective, and eco-friendly deployment of ionic liquid in biomass pretreatment process.
Collapse
Affiliation(s)
- Siddharth Swami
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, 248001, Uttarakhand, India
| | - Rajesh Singh
- Division of Research & Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Amit Kumar Thakur
- Department of Mechanical Engineering, Lovely Professional University, Phagwara, 144001, India
| | - Lovi Raj Gupta
- Department of Mechanical Engineering, Lovely Professional University, Phagwara, 144001, India
| | - Vineet Singh Sikarwar
- Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Prague 8, Czech Republic.
- Department of Power Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Xiao X, Guo R, Qi Y, Wei J, Wu N, Zhang S, Qu R. Photocatalytic degradation of alkyl imidazole ionic liquids by TiO 2 nanospheres under simulated solar irradiation: Transformation behavior, DFT calculations and promoting effects of alkali and alkaline earth metal ions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132616. [PMID: 37757564 DOI: 10.1016/j.jhazmat.2023.132616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
In this study, TiO2 nanospheres prepared by the sol-gel method were found to efficiently catalyze the photodegradation of 1-butyl-2,3-dimethylimidazolium bromide salt ([BMMIm]Br) under simulated solar irradiation through the main attack of hydroxyl radicals (•OH). The promoting effect of alkali metal (Li+→Cs+) and alkaline earth metal ions (Mg2+→Ba2+) was particularly emphasized. In-situ EPR tests showed that the introduction of alkali and alkaline earth metal ions could enhance the formation of •OH thus leading to a 7%-30.3% increase in the degradation efficiency of. [BMMIm]+. Moreover, the removal efficiency of [BMMIm]+ still reached > 96.19% in four real waters. A total of 23 products of [BMMIm]Br were detected, and hydroxyl substitution, bond breaking, direct oxidation and ring opening were considered as the main reactions during the photocatalytic degradation process. The results of toxicity evaluation showed that hydroxylation was a reaction process of increasing toxicity, while the bond breaking reaction had great detoxification capacity for [BMMIm]+. These findings may enhance our understanding on the effects of alkali or alkaline earth metal ions on the photocatalytic activity of TiO2, which could also provide reference for the efficient and green removal of alkylimidazolium ionic liquids in waters.
Collapse
Affiliation(s)
- Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Junyan Wei
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
8
|
Norfarhana AS, Ilyas RA, Ngadi N, Othman MHD, Misenan MSM, Norrrahim MNF. Revolutionizing lignocellulosic biomass: A review of harnessing the power of ionic liquids for sustainable utilization and extraction. Int J Biol Macromol 2024; 256:128256. [PMID: 38000585 DOI: 10.1016/j.ijbiomac.2023.128256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
The potential for the transformation of lignocellulosic biomass into valuable commodities is rapidly growing through an environmentally sustainable approach to harness its abundance, cost-effectiveness, biodegradability, and environmentally friendly nature. Ionic liquids (ILs) have received considerable and widespread attention as a promising solution for efficiently dissolving lignocellulosic biomass. The fact that ILs can act as solvents and reagents contributes to their widespread recognition. In particular, ILs are desirable because they are inert, non-toxic, non-flammable, miscible in water, recyclable, thermally and chemically stable, and have low melting points and outstanding ionic conductivity. With these characteristics, ILs can serve as a reliable replacement for traditional biomass conversion methods in various applications. Thus, this comprehensive analysis explores the conversion of lignocellulosic biomass using ILs, focusing on main components such as cellulose, hemicellulose, and lignin. In addition, the effect of multiple parameters on the separation of lignocellulosic biomass using ILs is discussed to emphasize their potential to produce high-value products from this abundant and renewable resource. This work contributes to the advancement of green technologies, offering a promising avenue for the future of biomass conversion and sustainable resource management.
Collapse
Affiliation(s)
- A S Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Petrochemical Engineering, Politeknik Tun Syed Nasir Syed Ismail, Pagoh Education Hub, 84600 Pagoh Muar Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia; Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Norzita Ngadi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus, 34220 Esenler, Istanbul, Turkey
| | - Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Zhang W, Boateng ID, Xu J. How does ultrasound-assisted ionic liquid treatment affect protein? A comprehensive review of their potential mechanisms, safety evaluation, and physicochemical and functional properties. Compr Rev Food Sci Food Saf 2024; 23:e13261. [PMID: 38284575 DOI: 10.1111/1541-4337.13261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 01/30/2024]
Abstract
Proteins are essential to human health with enormous food applications. Despite their advantages, plant and animal proteins often exhibit limited molecular flexibility and poor solubility due to hydrogen bonds, hydrophobic interactions, and ionic interactions within their molecular structures. Thus, there is an urgent need to modify the rigid structure of proteins to enhance their stability and functional properties. Ultrasound-assisted ionic liquid (UA-IL) treatment for developing compound modification and producing proteins with excellent functional properties has received interest. However, no review specifically addresses the interactions between UA-ILs and proteins. Hence, this review focused on recent research advancements concerning the effects and potential reaction mechanisms of UA-ILs on the physicochemical properties (including particle size; primary, secondary, and tertiary structure; and surface morphology) as well as the functionality (such as solubility, emulsifying properties, and foaming ability) of proteins. Moreover, the safety evaluation of modified proteins was also discussed from various perspectives, such as acute and chronic toxicity, genotoxicity, cytotoxicity, and environmental and microbial toxicity. This review demonstrated that UA-IL treatment-induced protein structural changes significantly impact the functional characteristics of proteins. This treatment approach efficiently promotes protein structure stretching and spatial rearrangement through cavitation, thermal effects, and ionic interactions. As a result, the functional properties of modified proteins exhibited an obvious enhancement, thereby bringing more opportunities to utilize modified protein products in the food industry. Potential future directions for protein modification using UA-ILs were also proposed.
Collapse
Affiliation(s)
- Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Roy R, York E, Pacchini E, Rawling T. Effects of cationic head group structure on cytotoxicity and mitochondrial actions of amphiphilic ionic liquids. Food Chem Toxicol 2024; 183:114202. [PMID: 38007213 DOI: 10.1016/j.fct.2023.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Ionic liquids (ILs) are a class of low melting point salts with physicochemical properties that make them suitable for a range of industrial applications. Accumulating evidence suggests that certain ILs are cytotoxic and potential environmental pollutants, thus understanding the structural features that promote IL cytotoxicity is important. Amphiphilic ionic liquids (AmILs), a class of ILs with lipophilic N-alkyl chains, containing aromatic head groups are generally more cytotoxic than their aliphatic counterparts, however the impact of other head group properties are less clear. This study therefore sought to provide new structure activity relationship (SAR) insights regarding the role of the cationic head group on AmIL cytotoxicity. A series of AmILs bearing a range of structurally diverse aromatic cations varying in size, charge, and lipophilicity was synthesised and screened against human MDA-MB-231 breast cancer cells. It was found that larger and more lipophilic head groups increased cytotoxicity, although the magnitude of the changes were modest. The mitochondrial effects of representative ILs were assessed. The AmILs induced mitochondrial dysfunction in MDA-MB-231 cells at cytotoxic concentrations, suggesting that they target mitochondria. The new SAR information from this study may assist in the design of AmILs with controlled cytotoxicity.
Collapse
Affiliation(s)
- Ritik Roy
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edward York
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ethan Pacchini
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
11
|
Singh G, Dasanayake GS, Chism CM, Vashisth P, Kaur A, Misra SK, Sharp JS, Tanner EEL. Good's Buffer Based Highly Biocompatible Ionic Liquid Modified PLGA Nanoparticles for the Selective Uptake in Cancer Cells. MATERIALS CHEMISTRY FRONTIERS 2023; 7:6213-6228. [PMID: 38204762 PMCID: PMC10776129 DOI: 10.1039/d3qm00787a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Achieving safe and efficacious drug delivery is still an outstanding challenge. Herein we have synthesized 20 biocompatible Good's buffer-based ionic liquids (GBILs) with a range of attractive properties for drug delivery applications. The synthesized GBILs were used to coat the surface of poly(lactic-co-glycolic acid) (PLGA) by nanoprecipitation-sonication and characterized by dynamic light scattering (DLS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. The GBIL-modified PLGA NPs were then tested for their interaction with bio-interfaces such as serum proteins (using SDS-PAGE and LCMS) and red blood cells (RBCs) isolated from human and BALB/c mouse blood. In this report, we show that surface modification of PLGA with certain GBILs led to modulation of preferential cellular uptake towards human triple-negative breast cancer cells (MDA-MB-231) compared to human normal healthy breast cells (MCF-10A). For example, cholinium N,N-bis(2-hydroxyethyl)-2-aminoethane sulfonate (CBES) coated PLGA NPs were found to be selective for MDA-MB-231 cells (60.7 ± 0.7 %) as compared to MCF-10A cells (27.3 ± 0.7 %). In this way, GBIL-coatings have increased PLGA NP uptake in the cancer cells by 2-fold while decreasing the uptake towards normal healthy breast cells. Therefore, GBIL-modified nanoparticles could be a versatile platform for targeted drug delivery and gene therapy applications, as their surface properties can be tailored to interact with specific cell receptors and enhance cellular uptake. This formulation technique has shown promising results for targeting specific cells, which could be explored further for other cell types to achieve site-specific and efficient delivery of therapeutic agents.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Gaya S. Dasanayake
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Claylee M. Chism
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Priyavrat Vashisth
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Amandeep Kaur
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| | - Sandeep Kumar Misra
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, University, MS 38677
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677
| |
Collapse
|
12
|
Nagar A, Sengupta A, Sk MA, Mohapatra PK. Ionic Liquid Assisted Exothermic Complexation of Trivalent Lanthanides with Fluorinated β Diketone: Multitechnique Approach with Theoretical Insight. Inorg Chem 2023; 62:19631-19647. [PMID: 37970800 DOI: 10.1021/acs.inorgchem.3c03029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The complexation of the betadiketone,1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione (HFOD) was studied with trivalent lanthanide ions, viz. Nd3+, La3+, and Eu3+ in several methylimidazolium-based ionic liquids (Cnmim•NTf2, where, n = 4,6,8). In C6mim•NTf2, predominant formation of ML2+ and ML4- species was evidenced from the UV-vis absorption (Nd3+) as well as luminescence (Eu3+) spectral studies with log β2 ≈ 5.88 ± 0.04, log β4 ≈ 10.95 ± 0.06. The formation constants followed the trend C4mim•NTf2 > C6mim•NTf2 > C8mim•NTf2. The asymmetry factors for the ML2+ and ML4- species were found to be 1.2 and 1.59, respectively. The ML4- complex was found to have one primary coordination sphere water molecule with enhanced covalency between Eu3+ and O from HFOD (Judd Offelt constants Ω2 and Ω4 ≈ 17.2 and 2.35) compared to Eu3+aq, yet comparable to other β diketones. Complexation-induced temperature increase was confirmed by calorimetric measurements, indicating the exothermic complexation reaction (ΔHcomplexation ≈ -13.7 kJ mol-1), which is also spontaneous in nature (ΔG ≈ -68.1 kJ mol-1), with an enhancement in the entropy values. Due to complexation, the shifts in the peak positions (1686.66 cm-1, 1633.53 cm-1) associated with β diketone/ketone functional groups were evidenced. Density functional theory (DFT) calculation was performed to optimize the structural parameters including bond distance, bond angles, and energetics associated with the complexation.
Collapse
Affiliation(s)
- Adityamani Nagar
- UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Musharaf Ali Sk
- Homi Bhabha National Institute, Mumbai 400094, India
- Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
13
|
Wang L, Du YQ, Deng XQ, Cai JY, Liang WW, Hu XL. Intergenerational toxic effects of 1-methyl-3-octylimidazolium chloride and 1-dodecylpyridinium chloride on the water flea, Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121501-121512. [PMID: 37953428 DOI: 10.1007/s11356-023-30928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
Ionic liquids (ILs) are generally considered eco-friendly alternatives to conventional industrial solvents, but they are hard to degrade and easily accumulate in the environment. Therefore, their long-term toxicities are especially vital to estimate their potential risk. However, the chronic toxicities of ILs over generations lacked intensive investigation. In the present work, acute toxicity and chronic toxicity of 1-methyl-3-octylimidazolium chloride ([Omim]Cl) and 1-dodecylpyridinium chloride ([DPy]Cl) were studied on Moina macrocopa with the first exposed generation (F0) and two successive recovery generation (F1 to F2). The acute results showed that both [Omim]Cl and [DPy]Cl exhibited high toxicity to M. macrocopa. The chronic results indicated that the exposure of [Omim]Cl and [DPy]Cl could inhibit the survivorship, body length, and reproduction of M. macrocopa and exhibited a significant dose-related decrease. Furthermore, these two types of ILs presented intergenerational toxicity in the water flea. And the toxic effects of [Omim]Cl disappeared in the recovery tests of F2 generation, while the [DPy]Cl toxic effects continued. Our research suggested a potential risk for the aquatic ecosystem induced by ILs. And the damage done by these chemicals to the aquatic environment is worthy of attention.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
14
|
Hossain MI, Shams AB, Das Gupta S, Blanchard GJ, Mobasheri A, Hoque Apu E. The Potential Role of Ionic Liquid as a Multifunctional Dental Biomaterial. Biomedicines 2023; 11:3093. [PMID: 38002093 PMCID: PMC10669305 DOI: 10.3390/biomedicines11113093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
In craniofacial research and routine dental clinical procedures, multifunctional materials with antimicrobial properties are in constant demand. Ionic liquids (ILs) are one such multifunctional intelligent material. Over the last three decades, ILs have been explored for different biomedical applications due to their unique physical and chemical properties, high task specificity, and sustainability. Their stable physical and chemical characteristics and extremely low vapor pressure make them suitable for various applications. Their unique properties, such as density, viscosity, and hydrophilicity/hydrophobicity, may provide higher performance as a potential dental material. ILs have functionalities for optimizing dental implants, infiltrate materials, oral hygiene maintenance products, and restorative materials. They also serve as sensors for dental chairside usage to detect oral cancer, periodontal lesions, breath-based sobriety, and dental hard tissue defects. With further optimization, ILs might also make vital contributions to craniofacial regeneration, oral hygiene maintenance, oral disease prevention, and antimicrobial materials. This review explores the different advantages and properties of ILs as possible dental material.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Abdullah Bin Shams
- The Edward S. Rogers Sr. Department of Electrical Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada;
| | - Shuvashis Das Gupta
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
| | - Gary J. Blanchard
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA; (M.I.H.); (G.J.B.)
| | - Ali Mobasheri
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Division of Public Health, Epidemiology and Health Economics, WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing, University of Liège, 4000 Liège, Belgium
- State Research Institute Centre for Innovative Medicine, 08410 Vilnius, Lithuania
- Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ehsanul Hoque Apu
- Research Unit of Health Science and Technology, Faculty of Medicine, University of Oulu, 90220 Oulu, Finland; (S.D.G.); (A.M.)
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
- Institute for Quantitative Health Science and Engineering, Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
- Division of Hematology and Oncology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Centre for International Public Health and Environmental Research, Bangladesh (CIPHER,B), Dhaka 1207, Bangladesh
| |
Collapse
|
15
|
Vieira Sanches M, Oliva M, Mezzetta A, Guazzelli L, De Marchi L, Freitas R, Pretti C. In vitro screening of imidazolium and pyrrolidinium based ionic liquids toxicity on subcellular fractions of the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104305. [PMID: 37898323 DOI: 10.1016/j.etap.2023.104305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Ionic liquids (ILs) have been considered eco-friendly alternatives to conventional organic solvents. However, several studies have reported that ILs exert toxicity towards aquatic invertebrates. Applying in vitro methodology, the aim of the present study was to evaluate the potential effect of three ILs on the biochemical performance of exposed Mytilus galloprovincialis digestive gland and gills cellular fractions. Carboxylesterase might be involved in the derived toxicity mechanism of ILs as activity levels increased significantly in digestive gland exposed fractions. This group of ILs did not seem to induce genotoxicity, except in gills cellular fractions exposed to 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. In the literature, in vitro methodology has been suggested as an important complement to animal testing and in silico studies. The present research underlines its efficacy as a quick pre-screening before in vivo testing, particularly with heterogenic groups of substances with high variability in composition, such as ILs and deep eutectic solvents.
Collapse
Affiliation(s)
- Matilde Vieira Sanches
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy.
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| |
Collapse
|
16
|
Forte A, Gago S, Alves C, Silva J, Alves J, Pedrosa R, Laia CAT, Marrucho IM, Branco LC. Lanthanide-Based Organic Salts: Synthesis, Characterization, and Cytotoxicity Studies. Molecules 2023; 28:7152. [PMID: 37894633 PMCID: PMC10608950 DOI: 10.3390/molecules28207152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
The formulation of magnetic ionic liquids (MILs) or organic salts based on lanthanides as anions has been explored. In this work, a set of choline-family-based salts, and two other, different cation families, were combined with Gadolinium(III) and Terbium(III) anions. Synthetic methodologies were previously optimized, and all organic salts were obtained as solids with melting temperatures higher than 100 °C. The magnetic moments obtained for the Gd(III) salts were, as expected, smaller than those obtained for the Tb(III)-based compounds. The values for Gd(III) and Tb(III) magnetic salts are in the range of 6.55-7.30 MB and 8.22-9.34 MB, respectively. It is important to note a correlation between the magnetic moments obtained for lanthanides, and the structural features of the cation. The cytotoxicity of lanthanide-based salts was also evaluated using 3T3, 293T, Caco2, and HepG2 cells, and it was revealed that most of the prepared compounds are not toxic.
Collapse
Affiliation(s)
- Andreia Forte
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (A.F.); (S.G.); (C.A.T.L.)
- ITQB NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
| | - Sandra Gago
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (A.F.); (S.G.); (C.A.T.L.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre/ARNET, ESTM, Politécnico de Leiria, Rua do Conhecimento, No. 4, 2520-614 Peniche, Portugal; (C.A.); (J.S.); (J.A.); (R.P.)
| | - Joana Silva
- MARE—Marine and Environmental Sciences Centre/ARNET, ESTM, Politécnico de Leiria, Rua do Conhecimento, No. 4, 2520-614 Peniche, Portugal; (C.A.); (J.S.); (J.A.); (R.P.)
| | - Joana Alves
- MARE—Marine and Environmental Sciences Centre/ARNET, ESTM, Politécnico de Leiria, Rua do Conhecimento, No. 4, 2520-614 Peniche, Portugal; (C.A.); (J.S.); (J.A.); (R.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre/ARNET, ESTM, Politécnico de Leiria, Rua do Conhecimento, No. 4, 2520-614 Peniche, Portugal; (C.A.); (J.S.); (J.A.); (R.P.)
| | - César A. T. Laia
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (A.F.); (S.G.); (C.A.T.L.)
| | - Isabel M. Marrucho
- ITQB NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal;
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luis C. Branco
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (A.F.); (S.G.); (C.A.T.L.)
| |
Collapse
|
17
|
Huang R, Liu H, Wei Z, Jiang Y, Pan K, Wang X, Kong J. Insights into the quantitative structure-activity relationship for ionic liquids: a bibliometric mapping analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95054-95076. [PMID: 37581727 DOI: 10.1007/s11356-023-29285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Environmental protection and sustainability is the development goal that countries all over the world are pursuing. Ionic liquids (ILs), as a new type of green material, have a great application prospect. And the quantitative structure-activity relationship (QSAR) is significant for the research of ILs. To better understand the role played by QSAR in the research of ILs, 4139 literatures published in the WOS database from 2002 to 2022 were used for bibliometric analysis, and different types of knowledge maps were mapped to obtain the current status and trends of IL research applied QSAR. The distribution pattern of the literature output chronology, country, institution, author cooperation, and major source journals can be obtained through the research of the distribution of literature. Through core literature, dual-map overlays, and evolutionary path analysis, the research knowledge base was obtained mainly including ionic liquid toxicological properties research, environmental protection and sustainability, ionic liquid design, and mild steel corrosion inhibition; through the co-occurrence and evolution of keywords, the current research hotspots are basic properties of ILs, corrosion inhibition of mild steel, the effect of toxicity on the environment, QSAR modeling methods, solvent application of ILs, and drug design.
Collapse
Affiliation(s)
- Rui Huang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hui Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China.
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Ze Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Yi Jiang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Kai Pan
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Xin Wang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Jie Kong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
18
|
Chen J, Xu B, Lu L, Zhang Q, Lu T, Farooq U, Chen W, Zhou Q, Qi Z. Insight into the inhibitory roles of ionic liquids in the adsorption of levofloxacin onto clay minerals. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Gangaraju D, Shanmugharaj AM, Sridhar V. Graphene Oxide Facilitates Transformation of Waste PET into MOF Nanorods in Ionic Liquids. Polymers (Basel) 2023; 15:polym15112479. [PMID: 37299279 DOI: 10.3390/polym15112479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Although though ionic liquids (IL) are rapidly emerging as highly efficient reagents for the depolymerization of waste plastics, their high cost and adverse impact on the environment make the overall process not only expensive but also environmentally harmful. In this manuscript, we report that graphene oxide (GO) facilitates the transformation of waste polyethylene terephthalate (PET) to Ni-MOF (metal organic framework) nanorods anchored on reduced graphene oxide (Ni-MOF@rGO) through NMP (N-Methyl-2-pyrrolidone)-based coordination in ionic liquids. Morphological studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed mesoporous three-dimensional structures of micrometer-long Ni-MOF nanorods anchored on reduced graphene substrates (Ni-MOF@rGO ), whereas structural studies using XRD and Raman spectra demonstrated the crystallinity of Ni-MOF nanorods. Chemical analysis of Ni-MOF@rGO carried out using X-ray photoelectron spectroscopy demonstrated that nickel moieties exist in an electroactive OH-Ni-OH state, which was further confirmed by nanoscale elemental maps recorded using energy-dispersive X-ray spectroscopy (EDS). The applicability of Ni-MOF@rGO as an electro-catalyst in a urea-enhanced water oxidation reaction (UOR) is reported. Furthermore, the ability of our newly developed NMP-based IL to grow MOF nanocubes on carbon nanotubes and MOF nano-islands on carbon fibers is also reported.
Collapse
Affiliation(s)
- Deepa Gangaraju
- Centre for Energy and Alternative Fuels, Department of Chemistry, VELS Institute of Science, Technology & Advanced Studies (VISTAS), Chennai 600117, Tamilnadu, India
| | - Andikkadu Masilamani Shanmugharaj
- Centre for Energy and Alternative Fuels, Department of Chemistry, VELS Institute of Science, Technology & Advanced Studies (VISTAS), Chennai 600117, Tamilnadu, India
| | - Vadahanambi Sridhar
- Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
20
|
Satheesh A, Navaneeth P, Suneesh PV, C S, Kandasamy E. Synthesis, characterization and study of electrochemical applicability of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts for supercapacitor fabrication. RSC Adv 2023; 13:14737-14746. [PMID: 37197187 PMCID: PMC10184001 DOI: 10.1039/d3ra01958f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
Here we report the successful synthesis, fabrication, and testing of novel asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium-based ionic liquids. Their applicability in energy storage is tested as gel polymer electrolytes (ILGPE) immobilized in poly(vinylidene fluoride-co-hexa-fluoropropylene) (PVDF-HFP) copolymer as a solid-state electrolyte in electric double layer capacitors (EDLC). Asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of tetrafluoroborates (BF4-) and hexafluorophosphates (PF6-) are synthesized by anion exchange metathesis reaction using 1,3-dialkyl-1,2,3-benzotriazolium bromide salts. N-Alkylation followed by quaternization reaction results in dialkyl substitution on 1,2,3-benzotriazole. The synthesized ionic liquids were characterized with 1H-NMR, 13C-NMR, and FTIR spectroscopy. Their electrochemical and thermal properties were studied using cyclic voltammetry, impedance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The 4.0 V potential windows obtained for asymmetrically substituted 1,3-dialkyl-1,2,3-benzotriazolium salts of BF4- and PF6- are promising electrolytes for energy storage. ILGPE tested with symmetrical EDLC with a wide operating window from 0-6.0 V gave an effective specific capacitance of 8.85 F g-1 at a lower scan rate of 2 mV s-1, the energy density of 2.9 μW h and 11.2 mW g-1 power density. The fabricated supercapacitor was employed for lighting red LED (2 V, 20 mA).
Collapse
Affiliation(s)
- Anjitha Satheesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punnakkal Navaneeth
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Punathil Vasu Suneesh
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
- Amrita Biosensor Research Lab, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| | - Sarathchandran C
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham Chennai India
| | - Elango Kandasamy
- Department of Sciences, Amrita School of Physical Sciences Coimbatore, Amrita Vishwa Vidyapeetham 641112 India
| |
Collapse
|
21
|
Lu Q, He D, Liu X, Du M, Xu Q, Wang D. 1-Butyl-3-methylimidazolium Chloride Affects Anaerobic Digestion through Altering Organics Transformation, Cell Viability, and Microbial Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3145-3155. [PMID: 36795785 DOI: 10.1021/acs.est.2c08004] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
1-Butyl-3-methylimidazolium chloride (BmimCl), an imidazolium-based ionic liquid, is considered the representative emerging persistent aquatic pollutant, and its environmental toxicity has attracted a growing concern. However, most of the investigations focused on monocultures or a single organism, with little information available on the complex syntrophic consortium that dominates the complex and successional biochemical processes, such as anaerobic digestion. In this study, the effect of BmimCl at environmentally relevant levels on glucose anaerobic digestion was therefore investigated in several laboratory-scale mesophilic anaerobic digesters to provide such support. Experimental results showed that BmimCl at 1-20 mg/L inhibited the methane production rate by 3.50-31.03%, and 20 mg/L BmimCl inhibited butyrate, hydrogen, and acetate biotransformation by 14.29%, 36.36%, and 11.57%, respectively. Toxicological mechanism studies revealed that extracellular polymeric substances (EPSs) adsorbed and accumulated BmimCl through carboxyl, amino, and hydroxyl groups, which destroyed the EPSs' conformational structure, thereby leading to the inactivation of microbial cells. MiSeq sequencing data indicated that the abundance of Clostridium_sensu_stricto_1, Bacteroides, and Methanothrix decreased by 6.01%, 7.02%, and 18.45%, respectively, in response to 20 mg/L BmimCl. Molecular ecological network analysis showed that compared with the control, the lower network complexity, fewer keystone taxa, and fewer associations among microbial taxa were found in the BmimCl-present digester, indicating the reduced stability of the microbial community.
Collapse
Affiliation(s)
- Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dandan He
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR 999077, PR China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
22
|
Advances of Imidazolium Ionic Liquids for the Extraction of Phytochemicals from Plants. SEPARATIONS 2023. [DOI: 10.3390/separations10030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
In this review, we present the research from 2013 to 2022 about the character of ionic liquids, the categories of phytochemicals, and the reasons for selecting imidazolium ionic liquids for phytochemical extraction. Then we introduce the structural formulae of the imidazolium ionic liquids commonly used in the extraction of phytochemicals, the methods used to prepare imidazolium ionic liquids, and a comprehensive introduction of how imidazolium ionic liquids are applied to extract phytochemicals from plants. Importantly, we discuss the strategies for studying the extraction mechanisms of imidazolium ionic liquids to extract phytochemicals, and the recovery methods regarding imidazolium ionic liquids and their recyclability are analyzed. Then the toxicity in imidazolium ionic liquids is pointed out. Finally, the challenges and prospects of extracting phytochemicals by imidazolium ionic liquids are summarized, and they are expected to provide some references for researchers.
Collapse
|
23
|
Toxicity of ionic liquids in marine and freshwater microorganisms and invertebrates: state of the art. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39288-39318. [PMID: 36745344 DOI: 10.1007/s11356-023-25562-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The variety of applications and expected growth in ionic liquid production are raising concerns about the release of these compounds into aquatic systems. Up to date, 103 studies have provided ecotoxicological data regarding the exposure effects of Ionic Liquids towards aquatic microorganisms and invertebrate species: 61 were devoted to freshwater species (n = 28), while marine species (n = 12) were mentioned in 42. The aim of this review, by gathering published studies on ionic liquids and model aquatic organisms, was to present the toxic effects described in distinct species and to understand which are the main factors influencing the toxicity of some ionic liquids. In accordance with the most recognized pattern, freshwater species were featured in a higher number of publications than marine ones. After literature analysis, algal species were the most represented organisms in aquatic toxicity assessments. Among tested compounds, the imidazolium cations in combination with long alkyl-chain anions, showed to be the most toxic one. In analytical terms, it is not straightforward to find the undissociated compound in a natural compartment, as ionic liquids are composed of ionic components, easily subjected to dissociation. Given the aforementioned, the present review paper points out the need of increasing the number of organisms being assessed in ionic liquids toxicity assays, in order to start defining monitoring procedures. Moreover, such would allow a better understanding of ionic liquids contamination status and, also, the opportunity to remark the effectiveness of new in silico methods for the ecotoxicity assessment of this kind of substances.
Collapse
|
24
|
Maculewicz J, Dołżonek J, Sharma L, Białk-Bielińska A, Stepnowski P, Pazdro K. Bioconcentration of imidazolium ionic liquids: In vivo evaluation in marine mussels Mytilus trossulus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159388. [PMID: 36240918 DOI: 10.1016/j.scitotenv.2022.159388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Although imidazolium ionic liquids (ILs) are beginning to be used more widely in many industrial fields e.g., as reaction media, electrolytes, stationary phases in gas chromatography), there is still little information about their potential environmental fate. Among the uncertainties regarding the risks associated with these compounds, bioconcentration is one of the key issues, about which many doubts have been raised in recent years. While in vitro data suggest that permanently charged compounds can also bioconcentrate, conclusive evidence in the form of studies on organisms, at least for selected compounds, is needed. Therefore, the main objective of this work was to determine whether imidazolium cations of ILs, namely 1-methyl-3-octylimidazolium ([IM18]+) and 1-methyl-3-dodecylimidazolium ([IM1-12]+), can bioconcentrate in marine invertebrates tissues. During 21-day experiments, Mytilus trossulus mussels were exposed to these cations individually, at a concentration of 10 μg/L. In our study, it has been demonstrated for the first time during in vivo study, that long-chain imidazolium ionic liquids can bioconcentrate. The determined BCF value for [IM1-12]+ of 21,901 ± 3400 L/kg makes this compound to be considered highly bioaccumulative according to commonly accepted criteria. However, the obtained BCF for [IM18]+ (with the value below 100) suggests that this cation has little potential for bioconcentration. On the other hand, no salinity or anion influence on the bioconcentration of the tested cations was observed. Our tests also confirm that imidazolium ILs exhibit acute toxicity only at relatively high concentration levels, as LC50 reached 0.68 mg/L for [IM1-12][Br], and 11.66 mg/L for [IM18][C(CN)3]. This further confirms that the risks associated with the potential presence of these compounds in the environment should be attributed to their high persistence and potential bioconcentration, rather than acute toxicity.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lilianna Sharma
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Ksenia Pazdro
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| |
Collapse
|
25
|
Yuan H, Xu F, Tian X, Wei H, Zhang R, Ge Y, Xu H. Oxidative stress and inflammation caused by 1-tetradecyl-3-methylimidazolium tetrafluoroborate in rat livers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86680-86691. [PMID: 35799001 DOI: 10.1007/s11356-022-21495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this study was to elucidate the mechanism underlying toxicity in the livers of male and female rats after treatment with 1-tetradecyl-3-methylimidazolium tetrafluoroborate ([C14mim]BF4, 0 [control], 12.5, 25, or 50 mg/kg) for 90 days. The results showed that [C14mim]BF4 exposure led to a high level of ROS and MDA in rat livers and the lower expression of Nrf2 and its downstream related antioxidant proteins. In addition, the expression of NF-κB p65 and the levels of inflammatory cytokines were upregulated in exposure groups rats' liver. After 30 days of cessation of exposure, the liver injury of rats in the 50 mg/kg exposure group was alleviated, and the above indicators were improved to varying degrees. The paper shows that [C14mim]BF4 could damage rat liver through oxidative stress and inflammatory pathway.
Collapse
Affiliation(s)
- Huafei Yuan
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Feng Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xingxing Tian
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Haiyan Wei
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Rui Zhang
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yueyue Ge
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
26
|
Taßler S, Bonatout N, Eusébio TM, Valente RM, Rego T, Ibrahim H, Morgado P, J. M. Filipe E, Goldmann M, Fontaine P. Surface behaviour of 1-alkyl-3-methylimidazolium ionic liquids at the air-water-interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Liquid-liquid extraction of phenolic compounds from aqueous solution using hydrophobic deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Liu X, Zhai Y, Xu Z, Zhu Y, Zhou Y, Wang Z, Liu L, Ren W, Xie Y, Li C, Xu M. The novel application of type II deep eutectic solvents (DES) for sludge dewatering. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Rojas LMG, Huerta-Aguilar CA, Orta-Ledesma MT, Sosa-Echeverria R, Thangarasu P. Zinc oxide nanoparticles coated with benzimidazole based ionic liquid performing as an efficient CO2 capture: Experimental and Theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Zaharia MM, Bucatariu F, Vasiliu AL, Mihai M. Stable and reusable acrylic ion-exchangers. From HMIs highly polluted tailing pond to safe and clean water. CHEMOSPHERE 2022; 304:135383. [PMID: 35718040 DOI: 10.1016/j.chemosphere.2022.135383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The application of several ion-exchange resins (IExR) with amino and amphoteric functionalities in batch retention of heavy metal ions (HMIs) (Cu(II), Fe(II), Mn(II), Zn(II)) from mono- and multicomponent simulated waters and from real polluted water collected from tailings pond of Tarnita (Suceava, Romania) sterile dump is deeply herein explored. The tested resins exhibited high sorption capacities, as evaluated by atomic absorption spectrometry, results supported by infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The effect of pH on the IExR sorption capacity in competitive condition evidenced the optimum pH where IExR sorption efficiency is maximum. Reutilization of IExR in six consecutive sorption/desorption/regeneration cycles showed their renewable sorption properties. Wheat germination tests demonstrated that the Tarnita collected water had a high toxic effect whereas the resulted supernatant after batch sorption was nontoxic. The study shows that HMIs content after IExR sorption is under the admitted maximum level for surface water, and represents an important step on the efforts to solve the environmental problem in Tarnita area, by removing the main contaminants found in the local river water.
Collapse
Affiliation(s)
- Marius-Mihai Zaharia
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Florin Bucatariu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Ana-Lavinia Vasiliu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Marcela Mihai
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
31
|
Zhao J, Gao H. Synthesis and fungicidal activity of imidazole dicyanamide ionic liquids. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Maculewicz J, Świacka K, Stepnowski P, Dołżonek J, Białk-Bielińska A. Ionic liquids as potentially hazardous pollutants: Evidences of their presence in the environment and recent analytical developments. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129353. [PMID: 35738170 DOI: 10.1016/j.jhazmat.2022.129353] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are considered to be very promising group of chemicals and the number of their potential applications is growing rapidly. However, while these compounds were originally proposed as a green alternative to classical solvents, there are certain doubts as to whether this classification is correct. Although in recent years there have been first reports published proving the presence of some ILs in the environment and even in human blood, at this point the scale of this possible problem is not yet fully understood. However, there is no doubt that as the number of ILs applications increases, analytical capabilities for rapid detection of possible environmental contamination should be also considered. Therefore, in this review paper, recent evidences for the ILs environmental contamination as well as analytical achievements related to the extraction of ILs from various environmental matrices have been summarized and important gaps and future perspectives have been pointed out. Based on the presented data it might be concluded that there is the urgent need for further development towards risk assessment of these potential environmental contaminants.
Collapse
Affiliation(s)
- Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Joanna Dołżonek
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
33
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
34
|
Livi S, Baudoux J, Gérard JF, Duchet-Rumeau J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
The mechanisms involved into the inhibitory effects of ionic liquids chemistry on adsorption performance of ciprofloxacin onto inorganic minerals. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Xu C, Cheng Z. Dicationic Imizadolium‐Based Tetrafluoroborate Ionic Liquids: Synthesis and Hydrothermal Stability Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202201799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenqian Xu
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 PR China
| | - Zhenmin Cheng
- State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 PR China
| |
Collapse
|
37
|
Kaur R, Kumar H, Kumar B, Singla M, Kumar V, Ghfar AA, Pandey S. Effect of amino acid on the surface adsorption and micellar properties of surface active ILs varying in cationic head groups. Heliyon 2022; 8:e10363. [PMID: 36082336 PMCID: PMC9445298 DOI: 10.1016/j.heliyon.2022.e10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The interfacial along with bulk characteristics of the aqueous solutions of ILs with dissimilar cationic head group viz. 1-dodecyl-3-methylimidazolium bromide ([C12mim][Br]), and N-dodecyl-N-methylmorpholinium bromide ([Mor1,12][Br]) in the absence and the presence of an amino acid L-Methionine as an external additive have been examined by electrical conductivity, UV-Visible, surface tension, and DLS measurements. The CMC values, and the lowest maximum surface excess concentration (Гmax) achieved from all three techniques, and surface tension measurements respectively displayed more surface activity of the [C12mim][Br] than the [Mor1,12][Br]. Also, the morpholinium head group is less hazardous than imidazolium, it can be utilised to design ILs that are greener, mainly in combination with polar, small, and non-toxic side chains and anions.
Collapse
|
38
|
Liu Y, Zhang Y, Sultan Y, Xiao P, Yang L, Lu H, Zhang B. Inhibition Effect of Ionic Liquid [Hmim]Cl on Microcystis Growth and Toxin Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148719. [PMID: 35886570 PMCID: PMC9325230 DOI: 10.3390/ijerph19148719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Ionic liquids (ILs) are known as “green solvents” and widely used in industrial applications. However, little research has been conducted on cyanobacteria. This study was conducted to investigate the toxicity of ionic liquids ([Hmim]Cl) on Microcystis aeruginosa PCC7806. The EC50 (72 h) of [Hmim]Cl on the growth of Microcystis aeruginosa PCC 7806 was 10.624 ± 0.221 mg L−1. The possible mechanism of toxicity of [Hmim]Cl against M. aeruginosa PCC 7806 was evaluated by measuring cell growth, photosynthetic pigment contents, chlorophyll fluorescence transients, cell ultrastructure, and transcription of the microcystin-producing gene (mcyB). The concentrations of chlorophyll a and carotenoids were significantly reduced in treated M. aeruginosa cultures. The results of chlorophyll fluorescence transients showed that [Hmim]Cl could destruct the electron-accepting side of the photosystem II of M. aeruginosa PCC 7806. Transmission electron microscopy demonstrated cell damage including changes in the structure of the cell wall and cell membrane, thylakoid destruction, and nucleoid disassembly. The transcription of the mcyB gene was also inhibited under [Hmim]Cl stress. In summary, this study provides new insights into the toxicity of [Hmim]Cl on cyanobactreia.
Collapse
Affiliation(s)
- Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (Y.Z.); (Y.S.); (H.L.)
- Correspondence: (Y.L.); (B.Z.); Tel.: +86-0373-3326-282 (Y.L.)
| | - Yijie Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (Y.Z.); (Y.S.); (H.L.)
| | - Yousef Sultan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (Y.Z.); (Y.S.); (H.L.)
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Peng Xiao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China;
| | - Li Yang
- Wuhan Imagination Science and Technology Development Co., Ltd., Wuhan 443000, China;
| | - Hanyang Lu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (Y.Z.); (Y.S.); (H.L.)
| | - Bangjun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (Y.Z.); (Y.S.); (H.L.)
- Correspondence: (Y.L.); (B.Z.); Tel.: +86-0373-3326-282 (Y.L.)
| |
Collapse
|
39
|
Tecuapa-Flores D, Guadalupe Hernández J, Alejandro Reyes Domínguez I, Turcio-Ortega D, Cruz-Borbolla J, Thangarasu P. Understanding of benzimidazole based ionic liquid as an efficient corrosion inhibitor for carbon steel: Experimental and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Amsel AK, Olsson O, Kümmerer K. Inventory of biodegradation data of ionic liquids. CHEMOSPHERE 2022; 299:134385. [PMID: 35337825 DOI: 10.1016/j.chemosphere.2022.134385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are increasingly of interest for environmentally open applications. Therefore, completely mineralising ILs are highly desirable. We reviewed the current state of knowledge on ILs' environmental biodegradability and identified research needs. Literature data were evaluated as for applied standard methods (e.g. OECD, ISO, APHA) for biodegradation of ILs in order to get an overview on the validity of the test results received and ILs' biodegradability. 109 studies were evaluated. The ILs were categorised based on the cation's core structure. The biodegradation data was classified according to a traffic light system (red: 0-19% degradation, amber: 20-59% degradation, green: ≥ 60% degradation). Not all studies could be assessed for compliance with the test guidelines due to missing test parameters. Moreover, no study discussed all validation criteria as defined by the test guidelines. Consequently, the reliability and quality of the existing biodegradation data is restrained. With regard to the different cations classified for ≥ 60% biodegradability, phosphonium ILs are the least biodegradable, followed by imidazolium ones. The most ILs that were biodegradable are cholinium ILs. The results indicate the need for more and qualitatively better testing according to standard methods including application and reporting of all validation criteria in order to get reliable data that enables the comparison of the test data and a comprehensive understanding of ILs' biodegradability. Moreover, reliable data allows the selection of sufficiently environmentally biodegradable ILs if an introduction into the environment during use cannot be excluded.
Collapse
Affiliation(s)
- Ann-Kathrin Amsel
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Oliver Olsson
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany; Research and Education Hub, International Sustainable Chemistry Collaborative Centre (ISC(3)), Leuphana University of Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| |
Collapse
|
41
|
Zhou H, Bai S, Zhang Y, Xu D, Wang M. Recent Advances in Ionic Liquids and Ionic Liquid-Functionalized Graphene: Catalytic Application and Environmental Remediation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137584. [PMID: 35805238 PMCID: PMC9325325 DOI: 10.3390/ijerph19137584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 12/07/2022]
Abstract
Applications of ionic liquids (ILs) for the modification physicochemical properties of porous materials have been extensively studied with respect to various applications based on the understanding and development of properties of ILs. In this review, IL–graphene composites are discussed and provided a perspective of composites of IL. IL has been used as a medium to improve the dispersibility of graphene, and the resulting composite material shows excellent performance in gas separation and catalysis during environmental treatment. The applications of ILs and IL–functionalized graphene are discussed in detail with the actual environmental issues, and the main challenges and opportunities for possible future applications are summarized.
Collapse
Affiliation(s)
- Han Zhou
- College of Environmental Science and Engineering and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; (H.Z.); (S.B.); (Y.Z.)
| | - Shaoyuan Bai
- College of Environmental Science and Engineering and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; (H.Z.); (S.B.); (Y.Z.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yanan Zhang
- College of Environmental Science and Engineering and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; (H.Z.); (S.B.); (Y.Z.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Dandan Xu
- College of Environmental Science and Engineering and Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; (H.Z.); (S.B.); (Y.Z.)
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- Correspondence:
| | - Mei Wang
- Heng Sheng Water Environment Treatment Co., Ltd., Guilin 541100, China;
| |
Collapse
|
42
|
Sakfali J, Ben Chaabene S, Akkari R, Zina MS. One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362208023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Zunita M, Hastuti R, Alamsyah A, Kadja GT, Khoiruddin K, Kurnia KA, Yuliarto B, Wenten I. Polyionic liquid membrane: Recent development and perspective. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
44
|
Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Supporting the Relevance of Chemistry Education through Sustainable Ionic Liquids Context: A Research-Based Design Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14106220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By introducing the sustainable nature of chemistry to students—makers of the future—teachers, and teacher students we can promote their scientific literacy and increase understanding of the relevance of chemistry research and studies in sustainability. Ionic liquids are a topical example of innovation of green chemistry research offering many possibilities for sustainable chemistry education. This article describes how to develop research-based learning materials on ionic liquids using educational design research as a design strategy. The design process included two cycles and the initial design solution was iterated via a qualitative case study conducted with future chemistry teachers. The main result of this research is the designed context-based activity that engages learners with individual, vocational, and societal levels of relevance. In addition, the study produced new insights into future chemistry teachers’ perceptions of ionic liquids’ possibilities in a chemistry learning context. According to future chemistry teachers, ionic liquids are an interesting new context for laboratory learning and can increase interest in chemistry studies.
Collapse
|
46
|
Grabda M, Zawadzki M, Oleszek S, Matsumoto M, Królikowski M, Tahara Y. Removal of Perfluorooctanoic Acid from Water Using a Hydrophobic Ionic Liquid Selected Using the Conductor-like Screening Model for Realistic Solvents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6445-6454. [PMID: 35486530 DOI: 10.1021/acs.est.1c08537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The conductor-like screening model for realistic solvents was used to identify ionic liquids (ILs) to efficiently extract perfluorooctanoic acid (PFOA). The infinite dilution chemical potentials of PFOA in 14 000 ILs were calculated and used as descriptors of the chemical affinities between the ILs and PFOA. Trihexyltetradecylphosphonium pivalate ([P6,6,6,14][Piv]) was found to be a good IL for extracting PFOA because it gave a well-balanced combination of a strong chemical attraction for PFOA and useful physicochemical properties. The results of experiments indicated that [P6,6,6,14][Piv] could remove >99.9% of the PFOA in an aqueous solution. However, problematic emulsification of IL in the aqueous phase occurred at PFOA/IL molar ratios <1.9-2.1, and this limited the PFOA removal rate to 80-91%. The ability of the used IL to extract PFOA was found to be partially regenerated by washing the IL with 1% NaOH, and the IL could be reused to extract PFOA with a removal rate decreased by ∼10% in each cycle.
Collapse
Affiliation(s)
- Mariusz Grabda
- Faculty of Security Studies, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109, 51-147 Wroclaw, Poland
| | - Maciej Zawadzki
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sylwia Oleszek
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Katsura C-1-3, 615-8540 Kyoto, Japan
| | - Michiaki Matsumoto
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe 610-0321, Kyoto, Japan
| | - Marek Królikowski
- Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe 610-0321, Kyoto, Japan
| |
Collapse
|
47
|
Jürjo S, Oll O, Paiste P, Külaviir M, Zhao J, Lust E. Electrochemical co-reduction of praseodymium and bismuth from 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquid. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
48
|
|
49
|
New EK, Tnah SK, Voon KS, Yong KJ, Procentese A, Yee Shak KP, Subramonian W, Cheng CK, Wu TY. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114385. [PMID: 35104699 DOI: 10.1016/j.jenvman.2021.114385] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The high dependence on crude oil for energy utilization leads to a necessity of finding alternative sustainable resources. Solvents are often employed in valorizing the biomass into bioproducts and other value-added chemicals during treatment stages. Unfortunately, despite the effectiveness of conventional solvents, hindrances such as expensive solvents, unfavourable environmental ramifications, and complicated downstream separation systems often occur. Therefore, the scientific community has been actively investigating more cost-effective, environmentally friendly alternatives and possess the excellent dissolving capability for biomass processing. Generally, 'green' solvents are attractive due to their low toxicity, economic value, and biodegradability. Nonetheless, green solvents are not without disadvantages due to their complicated product recovery, recyclability, and high operational cost. This review summarizes and evaluates the recent contributions, including potential advantages, challenges, and drawbacks of green solvents, namely ionic liquids, deep eutectic solvents, water, biomass-derived solvents and carbon dioxide in transforming the lignocellulosic biomass into high-value products. Moreover, research opportunities for future developments and potential upscale implementation of green solvents are also critically discussed.
Collapse
Affiliation(s)
- Eng Kein New
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Shen Khang Tnah
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Shing Voon
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Undergraduate Research Opportunities Program (UROP), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Khai Jie Yong
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Alessandra Procentese
- DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark
| | - Katrina Pui Yee Shak
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor Darul Ehsan, Malaysia; Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000, Kajang, Selangor, Malaysia
| | - Wennie Subramonian
- School of Computing, Engineering & Design Technologies, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, United Kingdom
| | - Chin Kui Cheng
- Center for Catalysis and Separation (CeCaS), Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Palm Oil Education and Research Platform (MIPO), School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
50
|
|