1
|
Liu H, Jiang L, Huang S, Niu J, Zhang Y, Liao J, Dong G, Song D, Zhou Q. Metal-organic framework functionalized magnetic Nb 2CT X for high enrichment of polychlorinated biphenyls in water prior to gas chromatography tandem mass spectrometry. J Chromatogr A 2025; 1740:465560. [PMID: 39647376 DOI: 10.1016/j.chroma.2024.465560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024]
Abstract
As a typical kind of persistent organic pollutants, polychlorinated biphenyls (PCBs) may cause great harm to human health. Recently, MXene has gained considerable attention due to its specific properties for the removal of pollutants by various principles. Present work reported a new functionalized MXene material, NH2-MIL-88 modified magnetic Nb2CTX, for developing a facile and efficient magnetic solid phase extraction method for enrichment and sensitive detection of PCBs in environmental water samples. The adsorption mechanism and parameters that may impact the extraction efficiencies of PCBs were explored. Gas chromatography-tandem mass spectrometry was utilized to detect the enriched PCBs. The results demonstrated that nine PCBs possessed good linearities in the range of 0.005 ∼ 50 μg L-1 and 0.005∼ 40 μg L-1, respectively. The detection limits of PCBs were over range of 0.06 - 0.28 ng L-1. The adsorption of PCBs on NH2-MIL-88 modified magnetic Nb2CTX followed quasi-second-order kinetic and Langmuir adsorption isotherm models. The fortified recoveries in real water samples ranged from 87.6 % to103.4 % (n = 3), which confirmed that the established method owned merits such as simplicity, rapidness, robustness, and high extraction efficiencies, and might be utilized for the detection of trace PCBs in environmental water samples.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Shiyu Huang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jingwen Niu
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Yue Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, PR China.
| |
Collapse
|
2
|
Han X, Xu L, Deng A, Xing P, Xu Y. Centurial deposition records of polychlorinated biphenyls and organochlorine pesticides in sediment cores from a plateau deep-water lake of China: Significance of anthropogenic impacts, transformation signals and ecological risks revealed by full congener analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171800. [PMID: 38508255 DOI: 10.1016/j.scitotenv.2024.171800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Lake Fuxian, the largest deep freshwater lake in China, has been suffering from increasing ecological and environmental issues along with the rapid urbanization and industrialization in the past 40 years. To better understand the historical pollution of persistent organic pollutants (POPs) in Lake Fuxian, comprehensive analyses of 209 polychlorinated biphenyl (PCB) congeners and 20 organochlorine pesticides (OCPs) were conducted in two intact sediment cores (Core V1 and Core V2). The total mass concentrations of PCBs ranged from 7.60 to 31.47 ng/g (dry weight basis) and 5.55 to 28.90 ng/g during the period of 1908-2019 in Core V1 and 1924-2019 in Core V2, respectively. PCBs exhibited a consecutive increasing trend from 1940s to 2019 in Core V1. The temporal trend of PCBs in Core V2 basically matched to the history of PCB usage and prohibition in China (increasing from 1940s to mid-1960s, a remarkable drop in mid-1970s, and then increasing until 2019). Moreover, low-chlorinated PCBs were dominant among PCB homologues. Mono-CBs, di-CBs, tri-CBs and tetra-CBs accounted for 86.71 %-98.57 % in sediment segments. The PCB sources included unintentional emission and atmospheric deposition, as well as biological transformation. The total mass concentrations of OCPs ranged from 0.74 to 3.82 ng/g in Core V1 and 0.35 to 2.23 ng/g in Core V2, respectively. Similar trend was observed in the two sediment cores with peaks in the early 1990s. The predominant OCPs were γ-hexachlorohexane (γ-HCHs), dieldrin and p,p'-DDD. The ecological risks posed by PCBs and p-p'-DDD in Lake Fuxian were relatively low. In contrast, dieldrin might pose a potential threat to exposed organisms and apparently adverse ecological effects were caused by γ-HCH. This study will provide important baseline information on historical POPs contamination of Lake Fuxian.
Collapse
Affiliation(s)
- Xuexin Han
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Aixin Deng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Peng Xing
- State Key Laboratory of Lake Science & Environments, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Hannah TJ, Megson D, Sandau CD. A review of the mechanisms of by-product PCB formation in pigments, dyes and paints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158529. [PMID: 36063921 DOI: 10.1016/j.scitotenv.2022.158529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
There has been an increased awareness of paints and pigments as a source of by-product PCBs in the environment. The majority of existing work has focused only on reporting the presence of the main PCBs in different products with a specific focus on the most PCB congeners, PCB11 and PCB209. This gives the impression that only a handful of PCBs are found in paints. However, this is not the case. PCB profiles in paints and pigments can be just as complex as commercial technical mixtures. This review identified the presence of 149 different PCBs in paint samples. For reference, only 141 different PCBs have been reported in all of the 5 main commercial Aroclor formulations (A1016, A1242, A1248, A1254 (early & late) and A1260). The total PCB concentrations in some paint samples can be substantial, with concentrations as high as 919 mg kg-1 reported in azo pigments. When trying to identify sources of PCBs in the environment, pigments, dyes and paints are often overlooked. In this manuscript, we have compiled congener profiles from 140 different samples from the available scientific literature and presented this in the supplementary information as valuable resource for others to use in source identification applications. We have also proposed detailed mechanisms for the formation of PCBs in pigments, dyes and paints. In many cases, the PCB congeners predicted by these mechanisms provide an excellent match for what has been observed in the scientific literature. We have also identified several additional classes of pigments that are expected to contain PCBs but have yet to be verified by experimental data.
Collapse
Affiliation(s)
| | - David Megson
- Chemistry Matters, Calgary, AB, Canada; Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK.
| | | |
Collapse
|
4
|
Li S, Qi J, Zhou B, Guo J, Tong Y, Zhou Q, Jiang L, Yang R, Chen C, Zhang Y, Liu H, Niu J, Huang S, Yuan S. Sensitive determination of polychlorinated biphenyls from beverages based on switchable solvent microextraction: A robust methodology. CHEMOSPHERE 2022; 297:134185. [PMID: 35257709 DOI: 10.1016/j.chemosphere.2022.134185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a kind of hazardous persistent organic contaminants and widely present in nature due to large consumption in the past. Although PCBs have been banned in many countries of the world, they are still present at trace level in food and water samples. It is of significant value to establish reliable enrichment and detection method. Based on the conversion of the hydrophilicity and hydrophobicity from heptanoic acid under alkali and acid, increasing the contact area between heptanoic acid and PCBs, a new switchable solvent micro-extraction method for PCBs from beverages was developed with good extraction efficiency using heptanoic acid as the extractant prior to gas chromatography-tandem mass spectrometry (GC-MS/MS). The key parameters that had impact on enrichment of PCBs were investigated in detail. Under the optimal conditions, a good linearity can be achieved in a concentration range of 0.01-20 μg L-1 with the correlation coefficients of 0.9978-0.9994. Limits of detection for PCB28, PCB53, PCB206 were 3 ng L-1 and PCB118 was 5 ng L-1 while other target PCBs were 2 ng L-1. Intra-day and inter-day precisions were in the range of 1.9-4.2% and 2.1-4.2%(relative standard deviation, RSD, n = 6), respectively. The real sample spiked recoveries of the targets were in the range of 93.2-114.3% (n = 3). The enrichment factors were in the range of 16.2-17.9. The results proved that this method was reliable for monitoring trace PCBs in beverage samples and will help for future assessments of impacts on human and animal health.
Collapse
Affiliation(s)
- Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingxiao Qi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yayan Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Liusan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Ruochen Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yue Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Huanhuan Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jingwen Niu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shiyu Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shuai Yuan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
5
|
Zhao W, Cai M, Adelman D, Khairy M, Lin Y, Li Z, Liu H, Lohmann R. Legacy halogenated organic contaminants in urban-influenced waters using passive polyethylene samplers: Emerging evidence of anthropogenic land-use-based sources and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118854. [PMID: 35033618 DOI: 10.1016/j.envpol.2022.118854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Legacy halogenated organic pollutants, including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in the environment and continue to pose potential (eco-)toxicological threats because of their ongoing releases from land-based sources. This study investigated the spatial trends of freely dissolved PCBs and OCPs by polyethylene passive samplers, and provided evidence of their land-use-based sources and ecological risk in an urbanized estuary area of Narragansett Bay. Dissolved Σ29PCB concentrations ranged from 0.01 to 1.37 ng L-1, and exhibited higher concentrations in the upper, more urban/built-up watershed, and in north coastal areas. Major inputs of PCBs were urban stormwater or treated wastewater that might carry past releases of Aroclors, pigment manufacturing byproducts, and volatilization-associated PCBs from ageing buildings from the Narragansett watershed to the bay. The dioxin toxicity equivalent values of Σ5PCBs were 8.6E-03 pg L-1 in water. Dissolved OCP concentrations had similar spatial trends to PCBs and were dominated by DDTs (average 230 pg L-1), followed by chlordanes (average 230 pg L-1), and HCB (average 22 pg L-1). Secondary sources of past usage and historic contamination were expected to re-enter the surface water via atmospheric transport and deposition. The risk quotients of DDE, DDD, DDT and α-Endosulfane showed medium to high ecological risks in the northern area, while chlordane, HCB, oxychlordane, and heptachlor epoxide showed low to negligible risks in all zones. This study presented new insights into the presence, sources and transport of legacy halogenated organic contaminants in an urban estuary's watershed by combining passive samplers and geographic information system (GIS) technology. The approach is promising and could be extended to get better understand of terrestrial pollutant mobilization into estuaries affected by anthropogenic activities.
Collapse
Affiliation(s)
- Wenlu Zhao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882-1197, USA; College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China
| | - Minggang Cai
- College of Ocean and Earth Science, Xiamen University, Xiamen, 361005, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| | - David Adelman
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882-1197, USA
| | - Mohammed Khairy
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882-1197, USA; Department of Environmental Sciences, Faculty of Science, Alexandria University, 21511, Moharam Bek, Alexandria, Egypt
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361000, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882-1197, USA.
| |
Collapse
|
6
|
Hoang AQ, Aono D, Watanabe I, Tsugeki NK, Kuwae M, Takahashi S. Historical record of polychlorinated biphenyls in a sediment core from Lake Biwa, Japan: Significance of unintentional emission and weathering signals revealed by full congener-specific analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147913. [PMID: 34134391 DOI: 10.1016/j.scitotenv.2021.147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of 209 PCB congeners was determined in a sediment core dated between 1930 and 2019 from Lake Biwa, a typical temperate monomictic lake in Japan. Concentrations of total PCBs ranged from 5.3 to 48 ng/g dry weight (dw), showing a highest peak at the 1960s to 1970s. The temporal trend of total PCBs in this sediment core generally matched with Japanese PCB production and emission pattern (i.e., increasing from the 1950s, peaking at 1970, and gradually decreasing since 1972). The vertical PCB profiles in our core were affected by physical mixing and bioturbation. By using a detailed and comprehensive analytical method, we have found elevated concentrations and special historical profiles of several congeners such as CB-7, -11, -47/48/75, -51, -68, and -209, which are still rarely included in routine PCB analysis. Some tetra-CB congeners like CB-47/48/75, -51, and -68 showed their concentration peaks at the early 2010s, which may be unintentionally produced during polymer manufacturing processes. PCB homolog- and congener-specific profiles in our sediment core samples have experienced weathering with higher proportions of penta- and hexa-CBs as compared to the Kanechlor usage pattern (i.e., dominated by tri- and tetra-CBs). Both intentional (i.e., technical mixtures) and unintentional (e.g., PCB-containing polymers and pigments) sources of PCBs were suggested from congener-specific analysis.
Collapse
Affiliation(s)
- Anh Quoc Hoang
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Daichi Aono
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Narumi K Tsugeki
- Faculty of Law, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
7
|
Anezaki K, Kashiwagi N. Daily variations and factors of atmospheric PCDD/Fs in post-harvest paddy fields: PCDD/F source estimation using a Bayesian semi-factor model. CHEMOSPHERE 2021; 268:129292. [PMID: 33360941 DOI: 10.1016/j.chemosphere.2020.129292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
We investigated the daily variations in the concentration of atmospheric dioxins (PCDD/Fs and DL-PCBs) in paddy fields after the autumn harvest. The geometric mean of the concentrations of dioxins during the research period was 0.042 pg-TEQ/m3, and the concentrations ranged from 0.0058 to 0.53 pg-TEQ/m3. When the weather was calm with no rain or snow and the atmosphere was stable, relatively high concentrations of dioxins were observed. The characteristics of congeners and homologues produced through the combustion of PCDD/Fs were classified into four groups using principal component analysis and cluster analysis. In addition, agricultural chemicals (pentachlorophenol, PCP and chlornitrofen, CNP) were identified as the source of PCDD/Fs using a Bayesian semifactor model. When the dioxin concentrations were high, the combustion of TeCDFs and PeCDFs produced large emissions, representing the impact of open burning of rice straw. When the dioxin concentrations were low, the contribution of CNP was strong, indicating the effects of the release of previously used agricultural chemicals from the soil.
Collapse
Affiliation(s)
- Katsunori Anezaki
- Hokkaido Research Organization, Industrial Technology and Environment Research Department, Research Institute of Energy, Environment and Geology, N19W12, Kita-ku, Sapporo, Hokkaido, 060-0819, Japan.
| | - Nobuhisa Kashiwagi
- The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562, Japan; SOKENDAI, Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
8
|
Mao S, Liu S, Zhou Y, An Q, Zhou X, Mao Z, Wu Y, Liu W. The occurrence and sources of polychlorinated biphenyls (PCBs) in agricultural soils across China with an emphasis on unintentionally produced PCBs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116171. [PMID: 33387783 DOI: 10.1016/j.envpol.2020.116171] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
In addition to being historically intentionally manufactured as commercial products, polychlorinated biphenyls (PCBs) can be unintentionally released as by-products from industrial processes. Recent studies have emphasized the importance of unintentionally produced PCBs (UP-PCBs) and have even identified them as major contributors to atmospheric PCBs. However, little is known about contributions of UP-PCBs in current soils. In this study, all 209 PCB congeners were analyzed in agricultural soils on a national scale to investigate the influence of unintentional sources on Chinese soil. The concentration of Σ209PCBs in soils across China was in the range of 64.3-4358 pg/g. Four non-Aroclor congeners, i.e., PCB11, PCB44 + 47+65, PCB68, and PCB209, were dominant among all PCBs, averagely accounting for 26.3%, 8.83%, 3.03%, and 2.80% of total PCBs, respectively. PCB11 and PCB209 were found to be higher in East China, while PCB44 + 47+65 and PCB68 were higher in South China. Their spatial distributions were largely dependent on local sources. The results of source apportionment indicated that the legacy of historically produced and used commercial PCB mixtures was the dominant contributor to seven indicator PCBs in Chinese agricultural soils, especially high-chlorinated congeners. However, unintentional sources (i.e., pigment/paint, combustion-related sources, and polymer sealant), which contributed 57.4% of the total PCBs, are controlling PCB burdens in agricultural soils across China.
Collapse
Affiliation(s)
- Shuduan Mao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuren Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi An
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuji Zhou
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhouying Mao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiting Wu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
10
|
Takahashi S, Anh HQ, Watanabe I, Aono D, Kuwae M, Kunisue T. Characterization of mono- to deca-chlorinated biphenyls in a well-preserved sediment core from Beppu Bay, Southwestern Japan: Historical profiles, emission sources, and inventory. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140767. [PMID: 32758843 DOI: 10.1016/j.scitotenv.2020.140767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Contamination levels and profiles of mono- to deca-chlorinated biphenyls (PCBs) were characterized in a sediment core dated in 1954-2011 from Beppu Bay, southwestern Japan, providing a comprehensive and detailed picture on the environmental occurrence, temporal trends, and emission sources of these pollutants in the study area. Concentrations of total PCBs in the core ranged from 3.5 to 150 (median 15) ng g-1 dry weight and exhibited depth profile matching with Japanese PCB production and emission patterns (i.e., drastically increasing from the early 1960s, peaking in 1970, and then rapidly decreasing). Origin of PCBs in the studied samples largely associated with Kanechlor mixtures (e.g., KC-300 and KC-400), especially for sediment layers dated between the mid-1960s and early 1970s (i.e., the intensive PCB production period in Japan). In addition, dechlorination and weathering signals and emerging inputs of PCBs were also observed in deeper and shallower sediment segments with notable proportions of some unique congeners such as CB-47/48/51 and CB-11, respectively. Historical fluxes of PCBs in our samples showed quite similar vertical shape as concentrations. In the context of national implementation for complete treatment of PCB-containing waste until 2024, further investigations on spatiotemporal trends and environmental loads of PCBs in Japan are necessary.
Collapse
Affiliation(s)
- Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Daichi Aono
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Michinobu Kuwae
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
11
|
Zhao S, Jones KC, Li J, Sweetman AJ, Liu X, Xu Y, Wang Y, Lin T, Mao S, Li K, Tang J, Zhang G. Evidence for Major Contributions of Unintentionally Produced PCBs in the Air of China: Implications for the National Source Inventory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2163-2171. [PMID: 31851493 DOI: 10.1021/acs.est.9b06051] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) were not widely manufactured or used in China before they became the subject of international bans on production. Recent work has shown that they have reached China associated with imported wastes and that there are considerable unintentional sources of PCBs that have only recently been identified. As such, it was hypothesized that the source inventory and profile of PCBs may be different or unique in China, compared to countries where they were widely used and which have been widely studied. For the first time in this study, we undertook a complete analysis of 209 PCB congeners and assessed the contribution of unintentionally produced PCBs (UP-PCBs) in the atmosphere of China, using polyurethane foam passive air samplers (PUF-PAS) deployed across a wide range of Chinese locations. ∑209 PCBs ranged from 9 to 6856 pg/m3 (median: 95 pg/m3) during three deployments in 2016-2017. PCB 11 was one of the most detected congeners, contributing 33 ± 19% to ∑209 PCBs. The main sources to airborne PCBs in China were estimated and ranked as pigment/painting (34%), metallurgical industry/combustion (31%), e-waste (23%), and petrochemical/plastic industry (6%). For typical Aroclor-PCBs, e-waste sources were dominated (>50%). Results from our study indicate that UP-PCBs have become the controlling source in the atmosphere of China, and an effective control strategy is urgently needed to mitigate emissions from multiple industrial sources.
Collapse
Affiliation(s)
- Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Kevin C Jones
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Andrew J Sweetman
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Xin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550002 , China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Lin
- College of Marine Ecology and Environment , Shanghai Ocean University , Shanghai 201306 , China
| | - Shuduan Mao
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Kechang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
12
|
Wu Q, Bouwman H, Uren RC, van der Lingen CD, Vetter W. Halogenated natural products and anthropogenic persistent organic pollutants in chokka squid (Loligo reynaudii) from three sites along the South Atlantic and Indian Ocean coasts of South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113282. [PMID: 31563788 DOI: 10.1016/j.envpol.2019.113282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 05/24/2023]
Abstract
Chokka squid (Loligo reynaudii) from three sites along the South African coast were analyzed for halogenated natural products (HNPs) and anthropogenic persistent organic pollutants (POPs). HNPs were generally more than one order of magnitude more abundant than POPs. The most prevalent pollutant, i.e. the HNP 2,3,3',4,4',5,5'-heptachloro-1'-methyl-1,2'-bipyrrole (Q1), was detected in all chokka squid samples with mean concentrations of 105, 98 and 45 ng/g lipid mass, respectively, at the Indian Ocean (site A), between both oceans (site B) and the South Atlantic Ocean (site C). In addition, bromine containing polyhalogenated 1'-methyl-1,2'-bipyrroles (PMBPs), 2,4,6-tribromophenol (2,4,6-TBP, up to 28 ng/g lipid mass), polybrominated methoxy diphenyl ethers, MHC-1, TBMP and other HNPs were also detected. Polychlorinated biphenyls (PCBs) were the predominant class of anthropogenic POPs. PCB 153 was the most abundant PCB congener in chokka squid from the Indian Ocean, and PCB 138 in samples from the South Atlantic Ocean and between both oceans.
Collapse
Affiliation(s)
- Qiong Wu
- University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany
| | - Hindrik Bouwman
- Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Ryan C Uren
- Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Carl D van der Lingen
- Fisheries Management, Department of Agriculture, Forestry and Fisheries, Cape Town, South Africa; Marine Research Institute and Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstraße 28, 70599 Stuttgart, Germany.
| |
Collapse
|
13
|
Megson D, Benoit NB, Sandau CD, Chaudhuri SR, Long T, Coulthard E, Johnson GW. Evaluation of the effectiveness of different indicator PCBs to estimating total PCB concentrations in environmental investigations. CHEMOSPHERE 2019; 237:124429. [PMID: 31352098 DOI: 10.1016/j.chemosphere.2019.124429] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the most widely studied group of persistent organic pollutants (POPs). There are 209 different PCBs, however not all 209 can currently be individually quantified in one analytical run. This means that a subset of PCBs congeners are often determined and reported. Some of the most commonly reported subsets are the 7 indicator PCBs (28, 52, 101, 118, 138, 153 and 180) and the WHO 12 PCBs (77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189). The WHO 12 congeners are co-planar 'dioxin like' PCBs that are effective for establishing health risks. The 7 indicator PCBs were selected as some of the most common PCBs across the compositional range of the most common technical mixtures (such as Aroclors), and are used to give an indication of the total PCB concentrations. These groups of indicator PCBs were established several decades ago. However, in the environment commercial mixtures are subject to weathering and fractionation processes, and additional sources of non-Aroclor PCBs are also becoming more important. In this manuscript we use existing large scale comprehensive congener specific datasets to evaluate the effectiveness of indicator PCBs to predict total concentrations and establish if they are still fit for purpose. The results indicate that while these traditional indicators are a useful tool to estimate total concentrations in humans with background exposure there are many instances where they are not fit for purpose and can lead to significant under predictions in total PCB concentrations in environmental matrices.
Collapse
Affiliation(s)
- David Megson
- Manchester Metropolitan University, Ecology and Environment Research Centre, Manchester, UK; Chemistry Matters Inc., Alberta, Canada.
| | - Nadine B Benoit
- Ontario Ministry of the Environment Conservation and Parks, Toronto, ON, Canada
| | - Courtney D Sandau
- Chemistry Matters Inc., Alberta, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Faculty of Science and Technology, 4825, Mount Royal Gate SW, Calgary, AB, Canada
| | - Sri R Chaudhuri
- Ontario Ministry of the Environment Conservation and Parks, Toronto, ON, Canada
| | - Tanya Long
- Ontario Ministry of the Environment Conservation and Parks, Toronto, ON, Canada
| | - Emma Coulthard
- Manchester Metropolitan University, Ecology and Environment Research Centre, Manchester, UK
| | | |
Collapse
|
14
|
Takeuchi S, Anezaki K, Kojima H. Effects of unintentional PCBs in pigments and chemical products on transcriptional activity via aryl hydrocarbon and nuclear hormone receptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:306-313. [PMID: 28501025 DOI: 10.1016/j.envpol.2017.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/22/2017] [Indexed: 05/25/2023]
Abstract
In recent years, some pigments and chemical products have been reported to contain polychlorinated biphenyl (PCB) congeners as unintentional byproducts, and these have also been detected in residential environments from indoor air and house dust. In this study, using in vitro reporter gene assays, we characterized the agonistic and antagonistic activities of a total of 25 PCB congeners contained in pigments (PCB-1 to -16, -20, -35, -40, -52, -56, -77, -101, -126, and -153) against five nuclear hormone receptors, (estrogen receptor (ER) α/β, glucocorticoid receptor (GR), androgen receptor (AR), thyroid hormone receptor (TR) α1) and aryl hydrocarbon receptor (AhR). In the ERα/β assays, 19 and 13 of the 25 PCBs tested showed ERα/β agonistic and/or antagonistic activities, respectively. Relatively potent agonistic activities against ERα/β were found in PCB congeners possessing chlorides at positions 2 and 3. In the GR and AR assays, five and all of the 25 PCB congeners showed antagonistic activity, respectively. Among the anti-androgenic PCB congeners, the activities were more potent in PCB congeners possessing more than three chlorides including consecutive ortho- and meta- or meta- and para-chlorides. In the AhR assay using a sensitive DR-EcoScreen cell line, five of the 25 PCB congeners showed agonistic activity. We newly found that PCB-1, -35 and -56 can act as AhR agonists. Despite these activities among the PCBs, the effects of PCB-11, mainly detected in pigments and chemical products, against these receptors were found to be weaker than those of other tested PCBs. These results suggest that unintentional PCBs in pigments and chemical products might act as agonists and/or antagonists against ERα/β, AR, GR, and AhR, and some of the PCBs might disrupt endocrine functions via multiple receptors and/or simultaneously induce dioxin-like activity via AhR.
Collapse
Affiliation(s)
- Shinji Takeuchi
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan.
| | - Katsunori Anezaki
- Hokkaido Research Organization, Environmental and Geological Research Department, Institute of Environmental Sciences, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Hiroyuki Kojima
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
15
|
Benali I, Boutiba Z, Grandjean D, de Alencastro LF, Rouane-Hacene O, Chèvre N. Spatial distribution and biological effects of trace metals (Cu, Zn, Pb, Cd) and organic micropollutants (PCBs, PAHs) in mussels Mytilus galloprovincialis along the Algerian west coast. MARINE POLLUTION BULLETIN 2017; 115:539-550. [PMID: 28012736 DOI: 10.1016/j.marpolbul.2016.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Native mussels Mytilus galloprovincialis are used as bioindicator organisms to assess the concentration levels and toxic effects of persistent chemicals, polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and heavy metals using biomarker responses, such as catalase (CAT), glutathione s-transferase (GST), and condition indices, for the Algerian coast. The results show that mussels of Oran Harbour are extremely polluted by PCBs and PAHs, i.e., 97.6 and 2892.1μg/kg d.w., respectively. Other sites present low levels of pollution. Furthermore, high concentrations of zinc, lead and cadmium are found in mussels from fishing, agricultural and estuarine sites, respectively, while low concentrations of copper are found in all of the sites studied. CAT activity is negatively correlated with Cd and Cu, and Zn is positively correlated with GST and CAT. Site classification tools reveal the potential toxicity of coastal areas exposed to anthropogenic pressure and a gradient of toxicity along the Algerian west coast.
Collapse
Affiliation(s)
- Imene Benali
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000 Oran, Algeria; Department of Applied Molecular Genetics, Faculty of Natural and Life Sciences, University of Science and Technology Mohamed Boudiaf USTO/MB, BP 1505 El Menaouar, 31036 Oran, Algeria.
| | - Zitouni Boutiba
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000 Oran, Algeria.
| | - Dominique Grandjean
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Luiz Felippe de Alencastro
- Central Environmental Laboratory (GR-CEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Omar Rouane-Hacene
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1 Ahmed Ben Bella, BP 1524 El M'naouer, 31000 Oran, Algeria.
| | - Nathalie Chèvre
- Faculty of Geosciences and Environment, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|