1
|
Adams WJ, Garman ER. Recommended updates to the USEPA Framework for Metals Risk Assessment: Aquatic ecosystems. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:924-951. [PMID: 37578034 DOI: 10.1002/ieam.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
In 2007, the USEPA issued its "Framework for Metals Risk Assessment." The framework provides technical guidance to risk assessors and regulators when performing human health and environmental risk assessments of metals. This article focuses on advances in the science including assessing bioavailability in aquatic ecosystems, short- and long-term fate of metals in aquatic ecosystems, and advances in risk assessment of metals in sediments. Notable advances have occurred in the development of bioavailability models for assessing toxicity as a function of water chemistry in freshwater ecosystems. The biotic ligand model (BLM), the multiple linear regression model, and multimetal BLM now exist for most of the common mono- and divalent metals. Species sensitivity distributions for many metals exist, making it possible for many jurisdictions to develop or update their water quality criteria or guidelines. The understanding of the fate of metals in the environment has undergone significant scrutiny over the past 20 years. Transport and toxicity models have evolved including the Unit World Model allowing for estimation of concentrations of metals in various compartments as a function of loading and time. There has been significant focus on the transformation of metals in sediments into forms that are less bioavailable and on understanding conditions that result in resolubilization or redistribution of metals in and from sediments. Methods for spiking sediments have advanced such that the resulting chemistry in the laboratory mimics that in natural systems. Sediment bioavailability models are emerging including models that allow for prediction of toxicity in sediments for copper and nickel. Biodynamic models have been developed for several organisms and many metals. The models allow for estimates of transport of metals from sediments to organisms via their diet as well as their water exposure. All these advances expand the tool set available to risk assessors. Integr Environ Assess Manag 2024;20:924-951. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
|
2
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
3
|
Mebane CA, Chowdhury MJ, De Schamphelaere KAC, Lofts S, Paquin PR, Santore RC, Wood CM. Metal Bioavailability Models: Current Status, Lessons Learned, Considerations for Regulatory Use, and the Path Forward. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:60-84. [PMID: 31880840 DOI: 10.1002/etc.4560] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/13/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Since the early 2000s, biotic ligand models and related constructs have been a dominant paradigm for risk assessment of aqueous metals in the environment. We critically review 1) the evidence for the mechanistic approach underlying metal bioavailability models; 2) considerations for the use and refinement of bioavailability-based toxicity models; 3) considerations for the incorporation of metal bioavailability models into environmental quality standards; and 4) some consensus recommendations for developing or applying metal bioavailability models. We note that models developed to date have been particularly challenged to accurately incorporate pH effects because they are unique with multiple possible mechanisms. As such, we doubt it is ever appropriate to lump algae/plant and animal bioavailability models; however, it is often reasonable to lump bioavailability models for animals, although aquatic insects may be an exception. Other recommendations include that data generated for model development should consider equilibrium conditions in exposure designs, including food items in combined waterborne-dietary matched chronic exposures. Some potentially important toxicity-modifying factors are currently not represented in bioavailability models and have received insufficient attention in toxicity testing. Temperature is probably of foremost importance; phosphate is likely important in plant and algae models. Acclimation may result in predictions that err on the side of protection. Striking a balance between comprehensive, mechanistically sound models and simplified approaches is a challenge. If empirical bioavailability tools such as multiple-linear regression models and look-up tables are employed in criteria, they should always be informed qualitatively and quantitatively by mechanistic models. If bioavailability models are to be used in environmental regulation, ongoing support and availability for use of the models in the public domain are essential. Environ Toxicol Chem 2019;39:60-84. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | | | - Stephen Lofts
- UK Centre for Ecology and Hydrology, Bailrigg, Lancaster, UK
| | | | | | - Chris M Wood
- University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Kotalik CJ, Cadmus P, Clements WH. Indirect Effects of Iron Oxide on Stream Benthic Communities: Capturing Ecological Complexity with Controlled Mesocosm Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11532-11540. [PMID: 31483623 DOI: 10.1021/acs.est.9b04236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ferric iron (Fe(III)) oxyhydroxides commonly precipitate at neutral pH and in highly oxygenated conditions in waterways receiving acid mine drainage, degrading stream benthic communities by smothering of habitat, primary producers, and aquatic invertebrates. Stream mesocosms were used to expose naturally colonized benthic communities to a gradient of ferric Fe (0-15 mg/L) for 14 days to estimate the effects of Fe precipitates on primary production, larval and emerging adult aquatic insects, and the macroinvertebrate community structure. Community composition was significantly altered at concentrations near or below the US Environmental Protection Agency chronic Fe criterion (1.0 mg/L). Iron exposure significantly decreased larval and emerging adult abundances of Baetidae (mayfly) and Chironomidae (Diptera); however, while Simuliidae (Diptera) larvae were not reduced by the Fe treatments, abundance of emerged adults significantly decreased. Iron substantially decreased the colonization biomass of green algae and diatoms, with estimated EC20 values well below the Fe criterion. In contrast, cyanobacteria were stimulated with increasing Fe concentration. By integrating environmentally realistic exposure conditions to native benthic communities that have complex structural and functional responses, the ability to predict the effects of Fe in the field is improved. Traditional toxicity testing methodologies were not developed to evaluate indirect effects of contaminants, and modernized approaches such as community mesocosm experiments better characterize and predict responses in aquatic ecosystems outside the laboratory. Therefore, the development of water quality standards would benefit by including mesocosm testing results.
Collapse
Affiliation(s)
- Christopher J Kotalik
- Department of Fish, Wildlife and Conservation Biology , Colorado State University , Fort Collins , Colorado 80521 , United States
| | - Pete Cadmus
- Department of Fish, Wildlife and Conservation Biology , Colorado State University , Fort Collins , Colorado 80521 , United States
- Aquatic Research, Colorado Parks and Wildlife , Fort Collins , Colorado 80526 , United States
| | - William H Clements
- Department of Fish, Wildlife and Conservation Biology , Colorado State University , Fort Collins , Colorado 80521 , United States
| |
Collapse
|
5
|
Croteau MN, Cain DJ, Fuller CC. Assessing the Dietary Bioavailability of Metals Associated with Natural Particles: Extending the Use of the Reverse Labeling Approach to Zinc. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2803-2810. [PMID: 28187251 DOI: 10.1021/acs.est.6b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
Collapse
Affiliation(s)
- Marie-Noële Croteau
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| | - Daniel J Cain
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| | - Christopher C Fuller
- U.S. Geological Survey, MS 496, 345 Middlefield Road Menlo Park, California 94025, United States
| |
Collapse
|
6
|
Turpin-Nagel K, Vadas TM. Controls on metal exposure to aquatic organisms in urban streams. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:956-967. [PMID: 27170052 DOI: 10.1039/c6em00151c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Streams in urban ecosystems receive metal inputs primarily from stormwater runoff and wastewater effluent. The relative contribution of these metal sources to stream impairment is difficult to discern based on simple water characteristics and biological surveys. Stream impairment in these systems is often indicated by reduced abundance and diversity of aquatic insects, which tend to be more sensitive to chronic metal exposures. Metal species and controls on metal species in both the waterborne and dietborne exposure pathways to aquatic organisms are reviewed here. In addition, ecological changes that can control dietborne species are discussed. A main focus is on how organic matter from different anthropogenic sources may control both aqueous metal speciation as well as interaction with various inorganic or microbiological surfaces in streams. Most of the reviewed research focuses on Cu, Zn or Pb as those are the primary metals of concern in developed systems and Cu and Pb have unique and strong interactions with organic matter. Recommendations for further research are described in the context of exposure species, dynamics of exposure, stoichiometry, or advanced analytical tools, and regulatory implications are discussed.
Collapse
Affiliation(s)
- Katelyn Turpin-Nagel
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd. Unit 3037, Storrs, CT 06269, USA.
| | - Timothy M Vadas
- Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Rd. Unit 3037, Storrs, CT 06269, USA. and Center for Environmental Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Croteau MN, Fuller CC, Cain DJ, Campbell KM, Aiken G. Biogeochemical Controls of Uranium Bioavailability from the Dissolved Phase in Natural Freshwaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8120-8127. [PMID: 27385165 DOI: 10.1021/acs.est.6b02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To gain insights into the risks associated with uranium (U) mining and processing, we investigated the biogeochemical controls of U bioavailability in the model freshwater species Lymnaea stagnalis (Gastropoda). Bioavailability of dissolved U(VI) was characterized in controlled laboratory experiments over a range of water hardness, pH, and in the presence of complexing ligands in the form of dissolved natural organic matter (DOM). Results show that dissolved U is bioavailable under all the geochemical conditions tested. Uranium uptake rates follow first order kinetics over a range encompassing most environmental concentrations. Uranium uptake rates in L. stagnalis ultimately demonstrate saturation uptake kinetics when exposure concentrations exceed 100 nM, suggesting uptake via a finite number of carriers or ion channels. The lack of a relationship between U uptake rate constants and Ca uptake rates suggest that U does not exclusively use Ca membrane transporters. In general, U bioavailability decreases with increasing pH, increasing Ca and Mg concentrations, and when DOM is present. Competing ions did not affect U uptake rates. Speciation modeling that includes formation constants for U ternary complexes reveals that the aqueous concentration of dicarbonato U species (UO2(CO3)2(-2)) best predicts U bioavailability to L. stagnalis, challenging the free-ion activity model postulate.
Collapse
Affiliation(s)
- Marie-Noële Croteau
- U.S. Geological Survey , 345 Middlefield Rd, Menlo Park, CA94025, United States
| | | | - Daniel J Cain
- U.S. Geological Survey , 345 Middlefield Rd, Menlo Park, CA94025, United States
| | - Kate M Campbell
- U.S. Geological Survey , 3215 Marine St Suite E-127, Boulder, CO80303, United States
| | - George Aiken
- U.S. Geological Survey , 3215 Marine St Suite E-127, Boulder, CO80303, United States
| |
Collapse
|