2
|
Larras F, Billoir E, Scholz S, Tarkka M, Wubet T, Delignette-Muller ML, Schmitt-Jansen M. A multi-omics concentration-response framework uncovers novel understanding of triclosan effects in the chlorophyte Scenedesmus vacuolatus. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122727. [PMID: 32361673 DOI: 10.1016/j.jhazmat.2020.122727] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 05/27/2023]
Abstract
In aquatic ecosystems, the biocide triclosan represents a hazard for the non-target microalgae. So far, algal responses were mainly investigated at apical levels hampering the acquisition of a holistic view on primary, adaptive, and compensatory stress responses. We assessed responses of the chlorophyte Scenedesmus vacuolatus to triclosan at apical (growth, photosynthesis) and molecular (transcriptome, metabolome) levels for comparative pathway sensitivity analysis. For each responsive signal (contigs, metabolites), a concentration-response curve was modeled and effect concentrations were calculated leading to the setting of cumulative sensitivity distributions. Molecular responses showed higher sensitivity than apical observations. The functional annotation of contigs and metabolites revealed 118 metabolic pathways putatively impaired by triclosan, highlighting a wide repercussion on the algal metabolism. Metabolites involved in the lipid metabolism showed decreasing trends along the concentration gradient and a globally highest sensitivity, pointing to the primary target of triclosan. The pathways involved in xenobiotic degradation and membrane transporters were mainly regulated in the transcriptome with increasing response trends comprising compensatory responses. The suggested novel approach, combining apical and multi-omics analyses in a concentration-response framework improves mechanistic understanding and mode of action analysis on non-targeted organisms and is suggested to better implement high-throughput multi-omics data in environmental risk assessment.
Collapse
Affiliation(s)
- Floriane Larras
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Stefan Scholz
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, Helmholtz-Centre for Environmental Research - UFZ, Theodor-Lieser-Straße 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Marie-Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Mechthild Schmitt-Jansen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
3
|
Gao Y, Zhang Y, Feng J, Zhu L. Toxicokinetic-toxicodynamic modeling of cadmium and lead toxicity to larvae and adult zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:221-229. [PMID: 31082606 DOI: 10.1016/j.envpol.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Toxicity of hazard materials to organism is different between larvae and adult zebrafish. However, this different effect was seldom considered in toxicological modeling. Here, we measured Cd and Pb toxicity for larvae and adult zebrafish (Danio rerio) and assessed whether metal toxicity can be better simulated by the one-compartment or two-compartment toxicokinetic (TK) and toxicodynamic (TD) models with assumption of stochastic death (SD) and individual tolerance (IT), respectively. Results showed that, for larvae, the one-compartment model generally fitted the observed accumulation and survival better than two-compartment model. In contrast, for adult, the two-compartment model simulation satisfied the observed accumulation and survival better than one-compartment model. In addition, both the SD and the IT models generally described the Cd or Pb toxicity well, although the IT model predictions were slightly better than the SD model in adult fish, the opposite phenomenon was observed in larvae. Our results suggested that variations in both TK and TD parameters might be needed to quantify the toxicity sensitivity in larvae and adult zebrafish, and accounting these variations in mechanistic toxicological effect models (e.g. TK-TD) will allow more accurate predictions of hazard materials effects to organisms.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Tsai KP, Uzun H, Karanfil T, Chow AT. Dynamic Changes of Disinfection Byproduct Precursors following Exposures of Microcystis aeruginosa to Wildfire Ash Solutions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8272-8282. [PMID: 28666088 DOI: 10.1021/acs.est.7b01541] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wildfires can elevate dissolved organic matter (DOM) levels due to ash input and algal growth in source waters, and consequently impacting disinfection byproduct (DBP) formation in finished water; however, it remains unclear how quality and quantity of overall allochthonous and autochthonous DOM as well as associated DBP formation are changed during an entire algal life cycle. Microcystis aeruginosa was cultured in the medium containing low and high concentrations [10% and 65% (v/v)] of black and white ash water extracts (BE and WE) to study dynamic changes of carbonaceous, nitrogenous, and oxygenated DBP precursors during algal growth. DOM was characterized by absorption and fluorescence spectroscopy and chlorination/chloramination-based DBP formation experiments. Throughout the entire experiment, C-DBP precursors in the control ranged from 2.41 to 3.09 mmol/mol-C. In the treatment with 10% BE, the amount of C-DBP precursors decreased from 6.8 to 3.0 mmol/mol-C at initial-exponential phase then increased to 4.2 mmol/mol-C at death phase. The same trend was observed for O-DBP precursors. However, these dynamic changes of C- and O-DBP precursors exhibited opposite patterns in 65% extracts. Similar patterns were also observed in the WE treatments. On the other hand, N-DBP precursors continuously declined in all treatments. These results indicate that postfire ash loading and algal bloom stage may significantly affect DBP formation in source water.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Biogeochemistry & Environmental Quality Research Group, Clemson University , Georgetown, South Carolina 29440, United States
| | - Habibullah Uzun
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| | - Alex T Chow
- Biogeochemistry & Environmental Quality Research Group, Clemson University , Georgetown, South Carolina 29440, United States
- Department of Environmental Engineering and Earth Sciences, Clemson University , Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Escher BI, Hackermüller J, Polte T, Scholz S, Aigner A, Altenburger R, Böhme A, Bopp SK, Brack W, Busch W, Chadeau-Hyam M, Covaci A, Eisenträger A, Galligan JJ, Garcia-Reyero N, Hartung T, Hein M, Herberth G, Jahnke A, Kleinjans J, Klüver N, Krauss M, Lamoree M, Lehmann I, Luckenbach T, Miller GW, Müller A, Phillips DH, Reemtsma T, Rolle-Kampczyk U, Schüürmann G, Schwikowski B, Tan YM, Trump S, Walter-Rohde S, Wambaugh JF. From the exposome to mechanistic understanding of chemical-induced adverse effects. ENVIRONMENT INTERNATIONAL 2017; 99:97-106. [PMID: 27939949 PMCID: PMC6116522 DOI: 10.1016/j.envint.2016.11.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/27/2016] [Accepted: 11/29/2016] [Indexed: 05/17/2023]
Abstract
The exposome encompasses an individual's exposure to exogenous chemicals, as well as endogenous chemicals that are produced or altered in response to external stressors. While the exposome concept has been established for human health, its principles can be extended to include broader ecological issues. The assessment of exposure is tightly interlinked with hazard assessment. Here, we explore if mechanistic understanding of the causal links between exposure and adverse effects on human health and the environment can be improved by integrating the exposome approach with the adverse outcome pathway (AOP) concept that structures and organizes the sequence of biological events from an initial molecular interaction of a chemical with a biological target to an adverse outcome. Complementing exposome research with the AOP concept may facilitate a mechanistic understanding of stress-induced adverse effects, examine the relative contributions from various components of the exposome, determine the primary risk drivers in complex mixtures, and promote an integrative assessment of chemical risks for both human and environmental health.
Collapse
Affiliation(s)
- Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany.
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Polte
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Achim Aigner
- Leipzig University, Rudolf Boehm Institute for Pharmacology & Toxicology, Clinical Pharmacology, Haertelstr. 16-18, 04107 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stephanie K Bopp
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marc Chadeau-Hyam
- University London, Imperial College, Department Epidemiology & Biostatistics, School of Public Health, St Marys Campus, Norfolk Place, London W2 1PG, England, United Kingdom
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium
| | | | - James J Galligan
- Vanderbilt University, School of Medicine, A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Department Biochemistry, Nashville, TN 37232, USA
| | - Natalia Garcia-Reyero
- US Army Engineer Research & Development Center, Vicksburg, MS, USA; Mississippi State University, Starkville, MS, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA; University of Konstanz, Germany
| | - Michaela Hein
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gunda Herberth
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jos Kleinjans
- Maastricht University, Department Toxicogenomics, 6200 MD Maastricht, The Netherlands
| | - Nils Klüver
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marja Lamoree
- Vrije Universiteit, Faculty of Earth & Life Sciences, Institute for Environmental Studies, 1081 HV Amsterdam, The Netherlands
| | - Irina Lehmann
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Till Luckenbach
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gary W Miller
- Dept of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Andrea Müller
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - David H Phillips
- King's College London, MRC-PHE Centre for Environment & Health, Analytical & Environmental Sciences Division, London SE1 9NH, England, United Kingdom
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Technical University Bergakademie Freiberg, Institute for Organic Chemistry, 09596 Freiberg, Germany
| | | | - Yu-Mei Tan
- US EPA, National Exposure Research Laboratory, Research Triangle Park, NC 27711, USA
| | - Saskia Trump
- Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | - John F Wambaugh
- US EPA, National Center for Computational Toxicology, Research Triangle Park, NC 27711, USA
| |
Collapse
|