1
|
Wang G, Li X, Deng J, Cao J, Meng H, Dong J, Zhang H. Assessing soil cadmium quality standards for different land use types: A global synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136450. [PMID: 39541885 DOI: 10.1016/j.jhazmat.2024.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The contamination of cadmium (Cd) in soil has become an increasingly serious issue worldwide, presenting significant risks to human health, crop safety, and ecosystems. Despite its importance, there is a lack of standardized soil threshold values for use in regulating exposure to Cd-contaminated surface soil. By synthesizing soil environmental standards for Cd from 61 countries and 75 regions, this study analyzed and categorized these standards by land use types. The distribution of Cd quality standards among various countries was determined, based on available data primarily from the United States, Canada, Europe, Australia, and China. The established soil Cd quality standards were also determined for different land types, including lands for agricultural, residential, industrial, construction, commercial uses, and parks/green spaces. Using the ecological environment criteria - species sensitivity distribution (ECC-SSD) model, Cd levels were analyzed across different land use types, and it was determined that a log-logistic distribution was the best fitted model. Our findings indicated that soil Cd quality standards ranged from 0.11 to 5.20 mg/kg for agricultural land, 1.25 to 171.51 mg/kg for residential land, and 2.58 to 1845.26 mg/kg for industrial land, all within the 5-95 % percentile range. The 5 % hazard concentration (HC5) value was recommended as the latest national quality standards for each land type. This comprehensive assessment of global soil Cd quality standards provides valuable insight for decision-makers tasked with effectively managing and mitigating Cd pollution in soil.
Collapse
Affiliation(s)
- Guiyun Wang
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianglan Li
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jingfei Deng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jiameng Cao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao Meng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jingqi Dong
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Hongzhen Zhang
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China.
| |
Collapse
|
2
|
Luo Y, Jin X, Zhao J, Xie H, Guo X, Huang D, Giesy JP, Xu J. Ecological implications and drivers of emerging contaminants in Dongting Lake of Yangtze River Basin, China: A multi-substance risk analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134519. [PMID: 38733790 DOI: 10.1016/j.jhazmat.2024.134519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Emerging contaminants (ECs) are increasingly recognized as a global threat to biodiversity and ecosystem health. However, the cumulative risks posed by ECs to aquatic organisms and ecosystems, as well as the influence of anthropogenic activities and natural factors on these risks, remain poorly understood. This study assessed the mixed risks of ECs in Dongting Lake, a Ramsar Convention-classified Typically Changing Wetland, to elucidate the major EC classes, key risk drivers, and magnitude of anthropogenic and natural impacts. Results revealed that ECs pose non-negligible acute (30% probability) and chronic (70% probability) mixed risks to aquatic organisms in the freshwater lake ecosystem, with imidacloprid identified as the primary pollutant stressor. Redundancy analysis (RDA) and structural equation modeling (SEM) indicated that cropland and precipitation were major drivers of EC contamination levels and ecological risk. Cropland was positively associated with EC concentrations, while precipitation exhibited a dilution effect. These findings provide critical insights into the ecological risk status and key risk drivers in a typical freshwater lake ecosystem, offering data-driven support for the control and management of ECs in China.
Collapse
Affiliation(s)
- Ying Luo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China.
| | - Jianglu Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huiyu Xie
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinying Guo
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Daizhong Huang
- Dongting Lake Eco-Environment Monitoring Centre of Hunan Province, 414000 Yueyang, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Sciences, Baylor University, Waco, TX 76798-7266, USA
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Lv X, He M, Wei J, Li Q, Nie F, Shao Z, Wang Z, Tian L. Development of an effective QSAR-based hazard threshold prediction model for the ecological risk assessment of aromatic hydrocarbon compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47220-47236. [PMID: 38990260 DOI: 10.1007/s11356-024-34016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
The insufficient hazard thresholds of specific individual aromatic hydrocarbon compounds (AHCs) with diverse structures limit their ecological risk assessment. Thus, herein, quantitative structure-activity relationship (QSAR) models for estimating the hazard threshold of AHCs were developed based on the hazardous concentration for 5% of species (HC5) determined using the optimal species sensitivity distribution models and on the molecular descriptors calculated via the PADEL software and ORCA software. Results revealed that the optimal QSAR model, which involved eight descriptors, namely, Zagreb, GATS2m, VR3_Dzs, AATSC2s, GATS2c, ATSC2i, ω, and Vm, displayed excellent performance, as reflected by an optimal goodness of fit (R2adj = 0.918), robustness (Q2LOO = 0.869), and external prediction ability (Q2F1 = 0.760, Q2F2 = 0.782, and Q2F3 = 0.774). The hazard thresholds estimated using the optimal QSAR model were approximately close to the published water quality criteria developed by different countries and regions. The quantitative structure-toxicity relationship demonstrated that the molecular descriptors associated with electrophilicity and topological and electrotopological properties were important factors that affected the risks of AHCs. A new and reliable approach to estimate the hazard threshold of ecological risk assessment for various aromatic hydrocarbon pollutants was provided in this study, which can be widely popularised to similar contaminants with diverse structures.
Collapse
Affiliation(s)
- Xiudi Lv
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Jiajia Wei
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Qiang Li
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Fan Nie
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology Co., Ltd, Beijing, 102206, China
| | - Zhiguo Shao
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology Co., Ltd, Beijing, 102206, China
| | - Zhansheng Wang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology Co., Ltd, Beijing, 102206, China
| | - Lei Tian
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China.
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, China.
| |
Collapse
|
4
|
Mu D, Zheng S, Lin D, Xu Y, Dong R, Pei P, Sun Y. Derivation and validation of soil cadmium thresholds for the safe farmland production of vegetables in high geological background area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162171. [PMID: 36775143 DOI: 10.1016/j.scitotenv.2023.162171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Excessive dietary intake of cadmium (Cd) poses toxicity risks to human health, and it is therefore essential to establish accurate and regionally appropriate soil Cd thresholds that ensure the safety of agricultural products grown in different areas. This study investigated the differences in the Cd accumulation in 32 vegetable varieties and found that the Cd content ranged from 0.01 to 0.24 mg·kg-1, and decreased in the order of stem and bulb vegetables > leafy vegetables > solanaceous crops > bean cultivars. A correlation analysis and structural equation model showed that pH, soil organic matter, and the cation exchange capacity had significant effects on Cd accumulation in the vegetables and explained 72.1 % of the variance. In addition, species sensitivity distribution (SSD) curves showed that stem and bulb vegetables were more sensitive to Cd than other types of vegetables. Using the Burr Type III function for curve fitting, we derived Cd thresholds of 6.66, 4.15, and 1.57 mg·kg-1 for vegetable soils. These thresholds will ensure that 20 %, 50 %, and 95 % of these vegetable varieties were risk-free, respectively. The predicted threshold of soil Cd was more than twice that of China's current National Soil Quality Standard (GB 15618-2018) for Cd values. Therefore, soil scenarios and cultivars should be considered comprehensively when determining farmland soil thresholds. The present results provide a new model for setting soil Cd criteria in high geological background areas.
Collapse
Affiliation(s)
- Demiao Mu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing 100125, China
| | - Dasong Lin
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Ruyin Dong
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Penggang Pei
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, MARA, Tianjin 300191, China.
| |
Collapse
|
5
|
Yu X, Li H, Yang Q, Sun Z, Ma Y. Accumulation of Cr in different vegetables and derivation of soil Cr threshold using the species sensitivity distribution method. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114993. [PMID: 37172408 DOI: 10.1016/j.ecoenv.2023.114993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Due to its high mobility and bioavailability, hexavalent chromium [Cr(VI)] in agricultural soil can be taken up by crops and pose threat to human being. In this study, two soils (Jiangxi red soil and Shandong fluvo-aquic soil) spiked with Cr(VI) and 8 common vegetable varieties were used to conduct the pot experiment. The bioconcentration factor (BCF) values based on the tetraacetic acid extractable Cr (EDTA-Cr) in soils were used to construct the species sensitivity distribution (SSD) curve. Afterwards, the soil Cr threshold was derived based on the critical BCF value and the permissible limit of Cr for vegetables. The results showed that when spiked with 5.6 mg kg-1 of Cr(Ⅵ), the soil EDTA-Cr concentrations were significantly increased compared with the control except Jiangxi red soil planted with carrot and radish, while the Cr concentrations in the edible parts of vegetables in both soils were below the permissible limit (0.5 mg kg-1 FW). However, there are dramatic differences in the accumulation of Cr by different varieties of vegetables. Apparent discrepancy was observed between the two soils for the bioconcentration of Cr by carrot. Among the leafy vegetables, lettuce and oilseed rape are the most and the least sensitive to Cr pollution, respectively. The safety threshold values of EDTA-Cr were 0.70 mg kg-1 for Shandong fluvo-aquic soil and 0.85 mg kg-1 for Jiangxi red soil, respectively. This study provides information on the safety production of vegetable products in Cr(Ⅵ) polluted soils and is helpful to the revision of soil quality standards of Cr.
Collapse
Affiliation(s)
- Xuezhen Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Qian Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Zongquan Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yibing Ma
- Macao Environmental Research Institute, Macau University of Science and Technology, 999078, Macao.
| |
Collapse
|
6
|
Lu R, Zhang Y, Guo K, He Z, Yu W, Cao X, Zheng X, Mai B. Organophosphate flame retardants and plastics in soil from an abandoned e-waste recycling site: significant ecological risks derived from plastic debris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58933-58943. [PMID: 36997789 DOI: 10.1007/s11356-023-26625-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
The distribution of 9 organophosphate flame retardants (OPFRs) was determined in plastic debris and soil samples separated from twenty soil samples collected from an abandoned e-waste recycling area. Tris-(chloroisopropyl) phosphate (TCPP) and triphenyl phosphate (TPhP) were the main chemicals, with median concentrations of 124-1930 ng/g and 143-1170 ng/g in soil, and 712-803 ng/g and 600-953 ng/g in plastics, respectively. Plastics contributed less than 10% of the total OPFR mass in bulk soil samples. No apparent OPFR distribution trend was observed in different sizes of plastics and soil. The ecological risks of plastics and OPFRs were estimated by the species sensitivity distributions (SSDs) method, which resulted in lower predicted no-effect concentrations (PNECs) of TPhP and decabromodiphenyl ether 209 (BDE 209) than the standard values derived from limited toxicity tests. In addition, the PNEC of polyethene (PE) was lower than the plastic concentration in the soil of a previous study. TPhP and BDE 209 had high ecological risks with risk quotients (RQs) > 0.1, and RQ of TPhP was among the highest values in literature.
Collapse
Affiliation(s)
- Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Kaiying Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaowei He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wanmei Yu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
7
|
Gao J, Ye X, Wang X, Jiang Y, Li D, Ma Y, Sun B. Derivation and validation of thresholds of cadmium, chromium, lead, mercury and arsenic for safe rice production in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112404. [PMID: 34111660 DOI: 10.1016/j.ecoenv.2021.112404] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg) and arsenic (As) are potent toxicants to human health via dietary intake. It is imperative to establish accurate soil thresholds based on soil-plant transfer models and food safety standards for safe agricultural production. This study takes rice genotypes and soil properties into account to derive soil thresholds for five heavy metal(loid)s using the bioconcentration factors (BCF) and species sensitivity distribution (SSD) based on the food safety standard. The BCF generated from two paddy soils was calculated to investigate the sensitivity of heavy metal accumulation in nine rice cultivars in a greenhouse pot experiment. Then, empirical soil-plant transfer models were developed from a middle-sensitivity rice cultivar (Denong 2000, one selected from nine rice) grown in nineteen paddy soils with various soil properties under a proper exogenously metal(loid)s concentration gradient. After normalization, hazardous concentrations from the fifth percentile (HC5) were calculated from the SSD curves, and the derived soil thresholds were obtained from HC5 prediction models that based on the combination of pH and organic carbon (OC) or cation exchange capacity (CEC). The soil Cd threshold derived based on pH and organic carbon (pH < 7.5, OC ≥ 20 g kg-1) was 1.3-fold of those only considering pH, whereas the Pb threshold (pH > 6, CEC ≥ 20 cmolc kg-1) was 3.1 times lower than the current threshold. The derived thresholds for five elements were validated to be reliable through literature data and field experiments. The results suggested that deriving soil heavy metal(loid)s threshold using SSD method and local food safety standards is feasible and also applicable to other crops as well as other regions with potential health risks of toxic elements contamination in agricultural production.
Collapse
Affiliation(s)
- Jintao Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dechen Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yibing Ma
- Guangdong-Hongkong-Macao Joint Laboratory of Collaborative Innovation for Environmental Quality, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
8
|
Hoondert RPJ, Ragas AMJ, Hendriks AJ. Simulating changes in polar bear subpopulation growth rate due to legacy persistent organic pollutants - Temporal and spatial trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142380. [PMID: 33254886 DOI: 10.1016/j.scitotenv.2020.142380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Although atmospheric concentrations of many conventional persistent organic pollutants (POPs) have decreased in the Arctic over the past few decades, levels of most POPs and mercury remain high since the 1990s or start to increase again in Arctic areas, especially polar bears. So far, studies generally focused on individual effects of POPs, and do not directly link POP concentrations in prey species to population-specific parameters. In this study we therefore aimed to estimate the effect of legacy POPs and mercury on population growth rate of nineteen polar bear subpopulations. We modelled population development in three scenarios, based on species sensitivity distributions (SSDs) derived for POPs based on ecotoxicity data for endothermic species. In the first scenario, ecotoxicity data for polar bears were based on the HC50 (the concentration at which 50% of the species is affected). The other two scenarios were based on the HC5 and HC95. Considerable variation in effects of POPs could be observed among the scenarios. In our intermediate scenario, we predicted subpopulation decline for ten out of 15 polar bear subpopulations. The estimated population growth rate was least reduced in Gulf of Boothia and Foxe Basin. On average, PCB concentrations in prey (in μg/g toxic equivalency (TEQ)) posed the largest threat to polar bear subpopulations, with negative modelled population growth rates for the majority of subpopulations. We did not find a correlation between modelled population changes and monitored population trends for the majority of chemical-subpopulation combinations. Modelled population growth rates increased over time, implying a decreasing effect of PCBs, DDTs, and mercury. Polar bear subpopulations are reportedly still declining in four out of the seven subpopulations for which sufficient long-term monitoring data is available, as reported by the IUCN-PBSG. This implies that other emerging pollutants or other anthropogenic stressors may affect polar bear subpopulations.
Collapse
Affiliation(s)
- Renske P J Hoondert
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands.
| | - Ad M J Ragas
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands; Faculty of Management, Science and Technology, Open University, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
9
|
Li K, Cao C, Ma Y, Su D, Li J. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1022-1028. [PMID: 31539934 DOI: 10.1016/j.scitotenv.2019.07.091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Contamination of agricultural soil with cadmium (Cd) poses a severe threat to food safety and human health, especially for Cd in rice. It is very important to identify Cd bioaccumulation in rice in order to screen Cd-safe cultivars. In the present study, 183 pairs of rice and soil data collected from Cd-contaminated soil were used to investigate the differences of Cd bioaccumulation in grains among rice cultivars. The results showed that the adverse effect on grain Cd accumulation of japonica was less than that of indica under Cd exposure. The percentage of japonica with grain Cd concentration exceeding 0.2 mg/kg reduced 50.3% compared with indica. Partial correlation analyses suggested that lower pH contributed to Cd accumulation in grains, and a significant increase in grain Cd concentration was observed with increasing soil Cd concentration. The bioaccumulation factors (BCF) of Cd in rice grains could be divided into 5 grades by combining an empirical soil-plant transfer model with species sensitivity distribution (SSD). Grades with lower Cd bioaccumulation (grades 1 and 2) were dominated by japonica, and the intrinsic sensitivity index of Cd-enrichment (k value) and straw to grain transfer factors (TF) increased with ascending grades. Average k value and TF of cultivars in grade 5 were 1.4-7.9 and 1.5-5.7 times higher than those of cultivars in grades 1 to 4, which eventually caused the increase of Cd accumulation in grains. The lower level of Cd absorption and translocation contributed to reducing the bioaccumulation of Cd in rice grains had been proved by the classification of rice on Cd accumulation. Considering the influence of soil properties and intrinsic sensitivity of rice, cultivars with grain Cd bioaccumulation controlled at low levels to safe for human consumption could be identified on Cd-contaminated soils.
Collapse
Affiliation(s)
- Kun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Colleges of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Chenliang Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yibing Ma
- Macau Environmental Research Institute, Macau University of Science and Technology, Taipa, Macau; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Dechun Su
- Colleges of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jumei Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
10
|
Hernout BV, Gibson LJ, Walmsley AJ, Arnold KE. Interspecific variation in the spatially-explicit risks of trace metals to songbirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:679-689. [PMID: 29909336 DOI: 10.1016/j.scitotenv.2018.05.390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Many wild animals can be adversely affected by trace metals around point sources but little is known about the risks to birds across their ranges. Trace metals in the soil are ubiquitously, if heterogeneously distributed, across the world due to natural and anthropogenic sources. Here, we built, parameterized and applied a spatially explicit modelling framework to determine the risks of soil-associated metals to 30 invertebrate-consuming passerine species across their spatial distribution in England and Wales. The model uses a risk characterization approach to assess the risks of soil-associated metals. Various monitoring datasets were used as input parameters: soil metal concentrations in England and Wales, bird spatial distribution; bird diet, bioaccumulation and toxicity data were extracted from the literature. Our model highlights significant differences in toxicity risks from Cd, Cu, Pb and Zn across the UK distributions of different species; Pb and Zn posed risks to all species across most of species' distributions, with more localised risks to some species of conservation concern from Cd and Cu. No single taxa of invertebrate prey drove avian exposure to metal toxicity. Adults were found to be at higher risk from Pb and Zn toxicity across their distributions than nestlings. This risk was partially driven by diet, with age differences in diets identified. Our spatially explicit model allowed us to identify areas of each species' national distribution in which the population was at risk. Overall, we determined that for all species studied an average of 32.7 ± 0.2%, 8.0 ± 0.1%, 86.1 ± 0.1% and 93.2 ± 0.1% of the songbird spatial distributions in the UK were characterized at risk of Cd, Cu, Pb and Zn, respectively. Despite some limitations, our spatially explicit model helps in understanding the risks of metals to wildlife and provides an efficient method of prioritising areas, contaminants and species for environmental risk assessments. The model could be further evaluated using a targeted monitoring dataset of metal concentration in bird tissues. Our model can assess and communicate to stakeholders the potential risks of environmental contaminants to wildlife species at a national and potentially international scale.
Collapse
Affiliation(s)
| | - Louise J Gibson
- Environment Department, University of York, Heslington, York, UK
| | - Adam J Walmsley
- Environment Department, University of York, Heslington, York, UK
| | - Kathryn E Arnold
- Environment Department, University of York, Heslington, York, UK.
| |
Collapse
|
11
|
Ding C, Ma Y, Li X, Zhang T, Wang X. Determination and validation of soil thresholds for cadmium based on food quality standard and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:700-706. [PMID: 29156288 DOI: 10.1016/j.scitotenv.2017.11.137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/12/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is an environmental toxicant with high rates of soil-plant transfer. It is essential to establish an accurate soil threshold for the implementation of soil management practices. This study takes root vegetable as an example to derive soil thresholds for Cd based on the food quality standard as well as health risk assessment using species sensitivity distribution (SSD). A soil type-specific bioconcentration factor (BCF, ratio of Cd concentration in plant to that in soil) generated from soil with a proper Cd concentration gradient was calculated and applied in the derivation of soil thresholds instead of a generic BCF value to minimize the uncertainty. The sensitivity variations of twelve root vegetable cultivars for accumulating soil Cd and the empirical soil-plant transfer model were investigated and developed in greenhouse experiments. After normalization, the hazardous concentrations from the fifth percentile of the distribution based on added Cd (HC5add) were calculated from the SSD curves fitted by Burr Type III distribution. The derived soil thresholds were presented as continuous or scenario criteria depending on the combination of soil pH and organic carbon content. The soil thresholds based on food quality standard were on average 0.7-fold of those based on health risk assessment, and were further validated to be reliable using independent data from field survey and published articles. The results suggested that deriving soil thresholds for Cd using SSD method is robust and also applicable to other crops as well as other trace elements that have the potential to cause health risk issues.
Collapse
Affiliation(s)
- Changfeng Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaogang Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
12
|
Hoondert RPJ, Hilbers JP, Hendriks AJ, Huijbregts MAJ. Deriving Field-Based Ecological Risks for Bird Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3716-3726. [PMID: 29484892 PMCID: PMC5863098 DOI: 10.1021/acs.est.7b05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/12/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Ecological risks (ERs) of pollutants are typically assessed using species sensitivity distributions (SSDs), based on effect concentrations obtained from bioassays with unknown representativeness for field conditions. Alternatively, monitoring data relating breeding success in bird populations to egg concentrations may be used. In this study, we developed a procedure to derive SSDs for birds based on field data of egg concentrations and reproductive success. As an example, we derived field-based SSDs for p, p'-DDE and polychlorinated biphenyls (PCBs) exposure to birds. These SSDs were used to calculate ERs for these two chemicals in the American Great Lakes and the Arctic. First, we obtained field data of p, p'-DDE and PCBs egg concentrations and reproductive success from the literature. Second, these field data were used to fit exposure-response curves along the upper boundary (right margin) of the response's distribution (95th quantile), also called quantile regression analysis. The upper boundary is used to account for heterogeneity in reproductive success induced by other external factors. Third, the species-specific EC10/50s obtained from the field-based exposure-response curves were used to derive SSDs per chemical. Finally, the SSDs were combined with specific exposure data for both compounds in the two areas to calculate the ER. We found that the ERs of combined exposure to these two chemicals were a factor of 5-35 higher in the Great Lakes compared to Arctic regions. Uncertainty in the species-specific exposure-response curves and related SSDs was mainly caused by the limited number of field exposure-response data for bird species. With sufficient monitoring data, our method can be used to quantify field-based ecological risks for other chemicals, species groups, and regions of interest.
Collapse
Affiliation(s)
- Renske P. J. Hoondert
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jelle P. Hilbers
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A. Jan Hendriks
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mark A. J. Huijbregts
- Institute
for Water and Wetland Research, Department of Environmental Science, Radboud University, P.O. Box 9010, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Wang Y, Na G, Zong H, Ma X, Yang X, Mu J, Wang L, Lin Z, Zhang Z, Wang J, Zhao J. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:551-562. [PMID: 28984376 DOI: 10.1002/etc.3994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Adverse outcome pathways (AOPs) are a novel concept that effectively considers the toxic modes of action and guides the ecological risk assessment of chemicals. To better use toxicity data including biochemical or molecular responses and mechanistic data, we further developed a species sensitivity-weighted distribution (SSWD) method for bisphenol A and 4-nonylphenol. Their aquatic predicted-no-effect concentrations (PNECs) were derived using the log-normal statistical extrapolation method. We calculated aquatic PNECs of bisphenol A and 4-nonylphenol with values of 4.01 and 0.721 µg/L, respectively. The ecological risk of each chemical in different aquatic environments near Tianjin, China, a coastal municipality along the Bohai Sea, was characterized by hazard quotient and probabilistic risk quotient assessment techniques. Hazard quotients of 7.02 and 5.99 at 2 municipal sewage sites using all of the endpoints were observed for 4-nonylphenol, which indicated high ecological risks posed by 4-nonylphenol to aquatic organisms, especially endocrine-disrupting effects. Moreover, a high ecological risk of 4-nonylphenol was indicated based on the probabilistic risk quotient method. The present results show that combining the SSWD method and the AOP concept could better protect aquatic organisms from adverse effects such as endocrine disruption and could decrease uncertainty in ecological risk assessment. Environ Toxicol Chem 2018;37:551-562. © 2017 SETAC.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Guangshui Na
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Humin Zong
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Xindong Ma
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Xianhai Yang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing, Jiangsu, China
| | - Jingli Mu
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Lijun Wang
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Zhongsheng Lin
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Zhifeng Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Jinsong Zhao
- College of Resources and Environment, Huazhong Agricultural University, Hongshan District, Wuhan, Hubei, China
| |
Collapse
|