1
|
Michael JP, Putt AD, Yang Y, Adams BG, McBride KR, Fan Y, Lowe KA, Ning D, Jagadamma S, Moon JW, Klingeman DM, Zhang P, Fu Y, Hazen TC, Zhou J. Reproducible responses of geochemical and microbial successional patterns in the subsurface to carbon source amendment. WATER RESEARCH 2024; 255:121460. [PMID: 38552495 DOI: 10.1016/j.watres.2024.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/24/2024]
Abstract
Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.
Collapse
Affiliation(s)
- Jonathan P Michael
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Andrew D Putt
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Benjamin G Adams
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Kathryn R McBride
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Kenneth A Lowe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Sindhu Jagadamma
- Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| | - Ji Won Moon
- National Minerals Information Center, United States Geological Survey, Reston, VA, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ping Zhang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ying Fu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Terry C Hazen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA; Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, USA; Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Paradis CJ, Miller JI, Moon J, Spencer SJ, Lui LM, Van Nostrand JD, Ning D, Steen AD, McKay LD, Arkin AP, Zhou J, Alm EJ, Hazen TC. Sustained Ability of a Natural Microbial Community to Remove Nitrate from Groundwater. GROUND WATER 2022; 60:99-111. [PMID: 34490626 PMCID: PMC9290691 DOI: 10.1111/gwat.13132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 05/23/2023]
Abstract
Microbial-mediated nitrate removal from groundwater is widely recognized as the predominant mechanism for nitrate attenuation in contaminated aquifers and is largely dependent on the presence of a carbon-bearing electron donor. The repeated exposure of a natural microbial community to an electron donor can result in the sustained ability of the community to remove nitrate; this phenomenon has been clearly demonstrated at the laboratory scale. However, in situ demonstrations of this ability are lacking. For this study, ethanol (electron donor) was repeatedly injected into a groundwater well (treatment) for six consecutive weeks to establish the sustained ability of a microbial community to remove nitrate. A second well (control) located upgradient was not injected with ethanol during this time. The treatment well demonstrated strong evidence of sustained ability as evident by ethanol, nitrate, and subsequent sulfate removal up to 21, 64, and 68%, respectively, as compared to the conservative tracer (bromide) upon consecutive exposures. Both wells were then monitored for six additional weeks under natural (no injection) conditions. During the final week, ethanol was injected into both treatment and control wells. The treatment well demonstrated sustained ability as evident by ethanol and nitrate removal up to 20 and 21%, respectively, as compared to bromide, whereas the control did not show strong evidence of nitrate removal (5% removal). Surprisingly, the treatment well did not indicate a sustained and selective enrichment of a microbial community. These results suggested that the predominant mechanism(s) of sustained ability likely exist at the enzymatic- and/or genetic-levels. The results of this study demonstrated the in situ ability of a microbial community to remove nitrate can be sustained in the prolonged absence of an electron donor.
Collapse
Affiliation(s)
- Charles J. Paradis
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
| | - John I. Miller
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
- Bredesen CenterUniversity of TennesseeKnoxvilleTN
| | - Ji‐Won Moon
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
| | - Sarah J. Spencer
- Biological Engineering DepartmentMassachusetts Institute of TechnologyCambridgeMA
| | - Lauren M. Lui
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Daliang Ning
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Andrew D. Steen
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTN
| | - Larry D. McKay
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyCA
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biologyand School of Civil Engineering and Environmental Sciences, University of OklahomaNormanOK
| | - Eric J. Alm
- Biological Engineering DepartmentMassachusetts Institute of TechnologyCambridgeMA
| | - Terry C. Hazen
- Department of Earth and Planetary SciencesUniversity of TennesseeKnoxvilleTN
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN
- Bredesen CenterUniversity of TennesseeKnoxvilleTN
- Department of BioengineeringUniversity of CaliforniaBerkeleyCA
- Department of Civil and Environmental SciencesUniversity of TennesseeKnoxvilleTN
- Center for Environmental BiotechnologyUniversity of TennesseeKnoxvilleTN
- Institute for a Secure and Sustainable EnvironmentUniversity of TennesseeKnoxvilleTN
| |
Collapse
|
3
|
Dong Y, Sanford RA, Connor L, Chee-Sanford J, Wimmer BT, Iranmanesh A, Shi L, Krapac IG, Locke RA, Shao H. Differential structure and functional gene response to geochemistry associated with the suspended and attached shallow aquifer microbiomes from the Illinois Basin, IL. WATER RESEARCH 2021; 202:117431. [PMID: 34320445 DOI: 10.1016/j.watres.2021.117431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Despite the clear ecological significance of the microbiomes inhabiting groundwater and connected ecosystems, our current understanding of their habitats, functionality, and the ecological processes controlling their assembly have been limited. In this study, an efficient pipeline combining geochemistry, high-throughput FluidigmTM functional gene amplification and sequencing was developed to analyze the suspended and attached microbial communities inhabiting five groundwater monitoring wells in the Illinois Basin, USA. The dominant taxa in the suspended and the attached microbial communities exhibited significantly different spatial and temporal changes in both alpha- and beta-diversity. Further analyses of representative functional genes affiliated with N2 fixation (nifH), methane oxidation (pmoA), and sulfate reduction (dsrB, and aprA), suggested functional redundancy within the shallow aquifer microbiomes. While more diversified functional gene taxa were observed for the suspended microbial communities than the attached ones except for pmoA, different levels of changes over time and space were observed between these functional genes. Notably, deterministic and stochastic ecological processes shaped the assembly of microbial communities and functional gene reservoirs differently. While homogenous selection was the prevailing process controlling assembly of microbial communities, the neutral processes (e.g., dispersal limitation, drift and others) were more important for the functional genes. The results suggest complex and changing shallow aquifer microbiomes, whose functionality and assembly vary even between the spatially proximate habitats and fractions. This research underscored the importance to include all the interface components for a more holistic understanding of the biogeochemical processes in aquifer ecosystems, which is also instructive for practical applications.
Collapse
Affiliation(s)
- Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Robert A Sanford
- Department of Geology, University of Illinois Urbana-Champaign, USA
| | | | | | | | | | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | | | | | | |
Collapse
|
4
|
Lui LM, Majumder ELW, Smith HJ, Carlson HK, von Netzer F, Fields MW, Stahl DA, Zhou J, Hazen TC, Baliga NS, Adams PD, Arkin AP. Mechanism Across Scales: A Holistic Modeling Framework Integrating Laboratory and Field Studies for Microbial Ecology. Front Microbiol 2021; 12:642422. [PMID: 33841364 PMCID: PMC8024649 DOI: 10.3389/fmicb.2021.642422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.
Collapse
Affiliation(s)
- Lauren M. Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Erica L.-W. Majumder
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Heidi J. Smith
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Hans K. Carlson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frederick von Netzer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Matthew W. Fields
- Center for Biofilm Engineering, Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology & Plant Biology, School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Paul D. Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P. Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
5
|
In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS One 2020; 15:e0232437. [PMID: 32986713 PMCID: PMC7521895 DOI: 10.1371/journal.pone.0232437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.
Collapse
|
6
|
Zelaya AJ, Parker AE, Bailey KL, Zhang P, Van Nostrand J, Ning D, Elias DA, Zhou J, Hazen TC, Arkin AP, Fields MW. High spatiotemporal variability of bacterial diversity over short time scales with unique hydrochemical associations within a shallow aquifer. WATER RESEARCH 2019; 164:114917. [PMID: 31387058 DOI: 10.1016/j.watres.2019.114917] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Understanding microbial community structure and function within the subsurface is critical to assessing overall quality and maintenance of groundwater; however, the factors that determine microbial community assembly, structure, and function in groundwater systems and their impact on water quality remains poorly understood. In this study, three shallow wells (FW301, FW303, FW305) in a non-contaminated shallow aquifer in the ENIGMA-Oak Ridge Field Research Center (Oak Ridge, TN) were sampled approximately 3 times a week over a period of three months to measure changes in groundwater geochemistry and microbial diversity. It was expected that the sampled microbial diversity from two historic field wells (FW301, FW303) would be relatively stable, while diversity from a newer well (FW305) would be less stable over time. The wells displayed some degree of hydrochemical variability over time unique to each well, with FW303 being overall the most stable well and FW301 being the most dynamic based upon dissolved oxygen, conductivity, and nitrate. Community analysis via ss-rRNA paired-end sequencing and distribution-based clustering revealed higher OTU richness, diversity, and variability in groundwater communities of FW301 than the other two wells for diversity binned over all time points. Microbial community composition of a given well was on average > 50% dissimilar to any other well at a given time (days), yet, functional gene diversity as measured with GeoChip remained relatively constant. Similarities in community structure across wells were observed with respect to the presence of 20 shared bacterial groups in all samples in all wells, although at varying levels over the tested time period. Similarity percentage (SIMPER) analysis revealed that variability in FW301 was largely attributed to low abundance, highly-transient populations, while variability in the most hydrochemically stable well (FW303) was due to fluctuations in more highly abundant and frequently present taxa. Additionally, the youngest well FW305 showed a dramatic shift in community composition towards the end of the sampling period that was not observed in the other wells, suggesting possible succession events over time. Time-series analysis using vector auto-regressive models and Granger causality showed unique relationships between richness and geochemistry over time in each well. These results indicate temporally dynamic microbial communities over short time scales, with day-to-day population shifts in local community structure influenced by available source community diversity and local groundwater hydrochemistry.
Collapse
Affiliation(s)
- Anna J Zelaya
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA
| | - Albert E Parker
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Kathryn L Bailey
- Division of Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ping Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Joy Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Dwayne A Elias
- Division of Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennesee, Knoxville, TN, USA
| | - Adam P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
7
|
Synthesis of zinc-gallate phosphors by biomineralization and their emission properties. Acta Biomater 2019; 97:557-564. [PMID: 31374337 DOI: 10.1016/j.actbio.2019.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/20/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
Abstract
Reduction of target species by microorganisms and their subsequent precipitation into sparingly soluble mineral phase nanoparticles have been referred to as microbially mediated nanomaterial synthesis. Here, we describe the microbially mediated production of nano-dimensioned spinel structured zinc-gallate (ZnGa2O4) phosphors exhibiting different emission performance with varying substituted elements. Interestingly, in the microbially mediated phosphor production described herein, there were no reducible metal- and non-metal species composing the target minerals. By varying substituted elements, zinc-gallate phosphors present typical red, green, and blue (RGB) emission. An apparent whitish emission was accomplished by blending phosphors. A promising potential for white light produced by biosynthesized mixtures of Cr-, Mn-, and Co- substituted zinc-gallates representing RGB emissions was evidenced. Microbial activity supplied a reducing driving force and provided appropriate near neutral pH and reduced Eh conditions to thermodynamically precipitate spinel structured nanomaterials from supersaturated divalent and trivalent cations. This result complemented conventional biomineralization concepts and expanded the realm of biomanufacturing nanomaterials for further applications. STATEMENT OF SIGNIFICANCE: This study substantiated that circumstances of a suitable pH/Eh derived from bacterial activity, divalent/trivalent ion supply, buffering capacity, and supersaturation could precipitate spinel structure nanoparticles. Even though live or dead cells with membrane could enhance the nuclei generation, the spinel structured phases were produced regardless of existence of live or dead cells and reducible metal or non-metal species incorporating into the produced solid phases. This finding led to production of a series of metal-substituted zinc-gallates with specific RGB emission that can result in whitish light using simple blending. We believe our findings could expand the realm of nanomaterial synthesis using low cost, highly scalable bio-nanotechnology.
Collapse
|
8
|
Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. mBio 2019; 10:mBio.02899-18. [PMID: 30808697 PMCID: PMC6391923 DOI: 10.1128/mbio.02899-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Naturally occurring plasmids constitute a major category of mobile genetic elements responsible for harboring and transferring genes important in survival and fitness. A targeted evaluation of plasmidomes can reveal unique adaptations required by microbial communities. We developed a model system to optimize plasmid DNA isolation procedures targeted to groundwater samples which are typically characterized by low cell density (and likely variations in the plasmid size and copy numbers). The optimized method resulted in successful identification of several hundred circular plasmids, including some large plasmids (11 plasmids more than 50 kb in size, with the largest being 1.7 Mb in size). Several interesting observations were made from the analysis of plasmid DNA isolated in this study. The plasmid pool (plasmidome) was more conserved than the corresponding microbiome distribution (16S rRNA based). The circular plasmids were diverse as represented by the presence of seven plasmid incompatibility groups. The genes carried on these groundwater plasmids were highly enriched in metal resistance. Results from this study confirmed that traits such as metal, antibiotic, and phage resistance along with toxin-antitoxin systems are encoded on abundant circular plasmids, all of which could confer novel and advantageous traits to their hosts. This study confirms the ecological role of the plasmidome in maintaining the latent capacity of a microbiome, enabling rapid adaptation to environmental stresses.IMPORTANCE Plasmidomes have been typically studied in environments abundant in bacteria, and this is the first study to explore plasmids from an environment characterized by low cell density. We specifically target groundwater, a significant source of water for human/agriculture use. We used samples from a well-studied site and identified hundreds of circular plasmids, including one of the largest sizes reported in plasmidome studies. The striking similarity of the plasmid-borne ORFs in terms of taxonomical and functional classifications across several samples suggests a conserved plasmid pool, in contrast to the observed variability in the 16S rRNA-based microbiome distribution. Additionally, the stress response to environmental factors has stronger conservation via plasmid-borne genes as marked by abundance of metal resistance genes. Last, identification of novel and diverse plasmids enriches the existing plasmid database(s) and serves as a paradigm to increase the repertoire of biological parts that are available for modifying novel environmental strains.
Collapse
|
9
|
Smith HJ, Zelaya AJ, De León KB, Chakraborty R, Elias DA, Hazen TC, Arkin AP, Cunningham AB, Fields MW. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol Ecol 2018; 94:5107865. [PMID: 30265315 PMCID: PMC6192502 DOI: 10.1093/femsec/fiy191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.
Collapse
Affiliation(s)
- H J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A J Zelaya
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - K B De León
- Department of Biochemistry, University of Missouri, Columbia, MO
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - R Chakraborty
- Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - D A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - T C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Civil Engineering, Montana State University, Montana State University, Bozeman, MT
| | - M W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| |
Collapse
|
10
|
Vishnivetskaya TA, Hu H, Van Nostrand JD, Wymore AM, Xu X, Qiu G, Feng X, Zhou J, Brown SD, Brandt CC, Podar M, Gu B, Elias DA. Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:673-685. [PMID: 29504614 DOI: 10.1039/c7em00558j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Paddy soils from mercury (Hg)-contaminated rice fields in Guizhou, China were studied with respect to total mercury (THg) and methylmercury (MeHg) concentrations as well as Bacterial and Archaeal community composition. Total Hg (0.25-990 μg g-1) and MeHg (1.3-30.5 ng g-1) varied between samples. Pyrosequencing (454 FLX) of the hypervariable v1-v3 regions of the 16S rRNA genes showed that Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Euryarchaeota, and Crenarchaeota were dominant in all samples. The Bacterial α-diversity was higher in samples with relatively Low THg and MeHg and decreased with increasing THg and MeHg concentrations. In contrast, Archaeal α-diversity increased with increasing of MeHg concentrations but did not correlate with changes in THg concentrations. Overall, the methylation gene hgcAB copy number increased with both increasing THg and MeHg concentrations. The microbial communities at High THg and High MeHg appear to be adapted by species that are both Hg resistant and carry hgcAB genes for MeHg production. The relatively high abundance of both sulfate-reducing δ-Proteobacteria and methanogenic Archaea, as well as their positive correlations with increasing THg and MeHg concentrations, suggests that these microorganisms are the primary Hg-methylators in the rice paddy soils in Guizhou, China.
Collapse
|
11
|
Christensen GA, Moon J, Veach AM, Mosher JJ, Wymore AM, van Nostrand JD, Zhou J, Hazen TC, Arkin AP, Elias DA. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition. PLoS One 2018; 13:e0194663. [PMID: 29558522 PMCID: PMC5860781 DOI: 10.1371/journal.pone.0194663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/07/2018] [Indexed: 02/01/2023] Open
Abstract
Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.
Collapse
Affiliation(s)
- Geoff A. Christensen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - JiWon Moon
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Allison M. Veach
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Jennifer J. Mosher
- Marshall University, Biological Sciences, Huntington, West Virginia, United States of America
| | - Ann M. Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | | | - Jizhong Zhou
- University of Oklahoma, Norman, Oklahoma, United States of America
| | - Terry C. Hazen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- University of Tennessee, Knoxville, Tennessee, United States of America
| | - Adam P. Arkin
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- University of California at Berkeley, Berkeley, California, United States of America
| | - Dwayne A. Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
King AJ, Preheim SP, Bailey KL, Robeson MS, Roy Chowdhury T, Crable BR, Hurt RA, Mehlhorn T, Lowe KA, Phelps TJ, Palumbo AV, Brandt CC, Brown SD, Podar M, Zhang P, Lancaster WA, Poole F, Watson DB, W Fields M, Chandonia JM, Alm EJ, Zhou J, Adams MWW, Hazen TC, Arkin AP, Elias DA. Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2879-2889. [PMID: 28112946 DOI: 10.1021/acs.est.6b04751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.
Collapse
Affiliation(s)
- Andrew J King
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Sarah P Preheim
- Department of Environmental Health and Enginering, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Kathryn L Bailey
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Michael S Robeson
- Fish, Wildlife and Conservation Biology, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Taniya Roy Chowdhury
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Bryan R Crable
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Richard A Hurt
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Tonia Mehlhorn
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Kenneth A Lowe
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Tommy J Phelps
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Anthony V Palumbo
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Craig C Brandt
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Ping Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, Georgia 30602, United States
| | - Farris Poole
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, Georgia 30602, United States
| | - David B Watson
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
| | - Matthew W Fields
- Department of Microbiology & Immunology, Montana State University , Bozeman, Montana 59717, United States
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkley National Laboratory , Berkley, California 94720, United States
| | - Eric J Alm
- Civil and Environmental Engineering and Biological Engineering, Massachusets Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, Georgia 30602, United States
| | - Terry C Hazen
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkley National Laboratory , Berkley, California 94720, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory , P.O. Box 2008, MS-6036, Oak Ridge, Tennessee 37831-6036, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|