1
|
Li M, Li L, Liu S, Zhang Q, Wang W, Wang Q. Insights into the catalytic effect of atmospheric organic trace species on the hydration of Criegee intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174877. [PMID: 39047816 DOI: 10.1016/j.scitotenv.2024.174877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The bimolecular reactions between Criegee intermediates (CIs) and atmospheric trace species have been extensively investigated, with a particular focus on the reaction with water, while the catalytic role of atmospheric organic compounds in hydration reactions was often neglected. In this study, we employed quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the catalytic effects of atmospheric organic amines, organic acids, and alcohols on the hydration reactions of CIs in the gas phase and at the gas-liquid interface. The catalytic reactions were found to follow a cyclic catalytic structure and a stepwise reaction mechanism. Gas-phase studies revealed that organic acids exhibited stronger catalytic effects compared to amines and alcohols, and the catalytic efficiency of amines and alcohols was similar to those of single water molecule. In addition, the catalytic reaction barriers of organic acids and alcohols were positively correlated with their gas-phase acidity (R2 = 0.94 to 0.97). A negative correlation was observed between the catalytic reaction barrier of amines and their gas-phase basicity (R2 = 0.84 to 0.90) and proton affinity (R2 = 0.84 to 0.92). At the gas-liquid interface, organic acids promoted the formation of hydroxyethyl hydroperoxide (HEHP, CH3CH(OH)(OOH)), organic acid ions, and H3O+, whereas the catalytic hydration of CIs by organic amines resulted in the formation of CH3CH(OH)OO and amine ions. Both HEHP and CH3CH(OH)OO can be further decomposed to form OH and HO2, or participate in new particles formation as precursors. This study complements the research gap on the reaction of CIs with water, providing valuable insights into the atmospheric sources of HEHP and HOx as well as the formation of secondary organic aerosols (SOAs).
Collapse
Affiliation(s)
- Mengyao Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Lei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250100, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Wengxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Qiao Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Zhang G, Liu M, Han Y, Wang Z, Liu W, Zhang Y, Xu J. The role of aldehydes on sulfur based-new particle formation: a theoretical study. RSC Adv 2024; 14:13321-13335. [PMID: 38694968 PMCID: PMC11061877 DOI: 10.1039/d4ra00952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
Aldehydes play a crucial role in the formation of atmospheric particles, attracting significant attention due to their environmental impact. However, the microscopic mechanisms underlying the formation of aldehyde-involved particles remain uncertain. In this study, through quantum chemical calculations and molecular dynamics (MD) simulations, we investigate the microscopic formation mechanisms of binary and ternary systems composed of three representative aldehydes, two sulfur-based acids, water, and two bases. Our research findings reveal that the most stable structures of acid-aldehyde clusters involve the connection of acids and aldehyde compounds through hydrogen bonds without involving proton transfer reactions, indicating relatively poor cluster stability. However, with the introduction of a third component, the stability of 18 clusters significantly increase. Among these, in ten systems, acids act as catalysts, facilitating reactions between aldehyde compounds and water or alkaline substances to generate glycols and amino alcohols. However, according to MD simulations conducted at 300 K, these acids readily dissociate from the resulting products. In the remaining eight systems, the most stable structural feature involves ion pairs formed by proton transfer reactions between acids and aldehyde compounds. These clusters exhibit remarkable thermodynamic stability. Furthermore, the acidity of the acid, the nature of nucleophilic agents, and the type of aldehyde all play significant roles in cluster stability and reactivity, and they have synergistic effects on the nucleation process. This study offers microscopic insights into the processes of new particle formation involving aldehydes, contributing to a deeper understanding of atmospheric chemistry at the molecular level.
Collapse
Affiliation(s)
- Guohua Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Min Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Yaning Han
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Zhongteng Wang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| | - Ying Zhang
- Jinhua Advanced Research Institute Jinhua Zhejiang 321013 P. R. China
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University Hangzhou Zhejiang 311300 P. R. China
| |
Collapse
|
3
|
Perraud V, Roundtree K, Morris PM, Smith JN, Finlayson-Pitts BJ. Implications for new particle formation in air of the use of monoethanolamine in carbon capture and storage. Phys Chem Chem Phys 2024; 26:9005-9020. [PMID: 38440810 DOI: 10.1039/d4cp00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Alkanolamines are currently being deployed in carbon capture and storage (CCS) technology worldwide, and atmospheric emissions have been found to coincide with locations exhibiting elevated concentrations of methanesulfonic acid (MSA). It is thus critical to understand the fate and potential atmospheric reactions of these chemicals. This study reports the characterization of sub-10 nm nanoparticles produced through the acid-base reaction between gas phase monoethanolamine (MEA) and MSA, a product of organosulfur compound oxidation in air, using a flow reactor under dry and humid (up to ∼60% RH) conditions. Number size distribution measurements show that MEA is even more efficient than methylamine in forming nanoparticles on reaction with MSA. This is attributed to the fact that the MEA structure contains both an -NH2 and an -OH group that facilitate hydrogen bonding within the clusters, in addition to the electrostatic interactions. Due to this already strong H-bond network, water has a relatively small influence on new particle formation (NPF) and growth in this system, in contrast to MSA reactions with alkylamines. Acid/base molar ratios of unity for 4-12 nm particles were measured using thermal desorption chemical ionization mass spectrometry. The data indicate that reaction of MEA with MSA may dominate NPF under some atmospheric conditions. Thus, the unique characteristics of alkanolamines in NPF must be taken into account for accurate predictions of impacts of CCS on visibility, health and climate.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Kanuri Roundtree
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - Patricia M Morris
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | - James N Smith
- Department of Chemistry, University of California Irvine, Irvine, CA 92697, USA.
| | | |
Collapse
|
4
|
Cheng Y, Ding C, Wang H, Zhang T, Wang R, Muthiah B, Xu H, Zhang Q, Jiang M. Significant influence of water molecules on the SO 3 + HCl reaction in the gas phase and at the air-water interface. Phys Chem Chem Phys 2023; 25:28885-28894. [PMID: 37853821 DOI: 10.1039/d3cp03172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The products resulting from the reactions between atmospheric acids and SO3 have a catalytic effect on the formation of new particles in aerosols. However, the SO3 + HCl reaction in the gas-phase and at the air-water interface has not been considered. Herein, this reaction was explored exhaustively by using high-level quantum chemical calculations and Born Oppenheimer molecular dynamics (BOMD) simulations. The quantum calculations show that the gas-phase reaction of SO3 + HCl is highly unlikely to occur under atmospheric conditions with a high energy barrier of 22.6 kcal mol-1. H2O and (H2O)2 play obvious catalytic roles in reducing the energy barrier of the SO3 + HCl reaction by over 18.2 kcal mol-1. The atmospheric lifetimes of SO3 show that the (H2O)2-assisted reaction dominates over the H2O-assisted reaction within the altitude range of 0-5 km, whereas the H2O-assisted reaction is more favorable within an altitude range of 10-50 km. BOMD simulations show that H2O-induced formation of the ClSO3-⋯H3O+ ion pair and HCl-assisted formation of the HSO4-⋯H3O+ ion pair were identified at the air-water interface. These routes followed a stepwise reaction mechanism and proceeded at a picosecond time scale. Interestingly, the formed ClSO3H in the gas phase has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters within 40 ns simulation time, while the interfacial ClSO3- and H3O+ can attract H2SO4, NH3, and HNO3 for particle formation from the gas phase to the water surface. Thus, this work will not only help in understanding the SO3 + HCl reaction driven by water molecules in the gas-phase and at the air-water interface, but it will also provide some potential routes of aerosol formation from the reaction between SO3 and inorganic acids.
Collapse
Affiliation(s)
- Yang Cheng
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Chao Ding
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Hui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Tianlei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | | | - Haitong Xu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Qiang Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | - Min Jiang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| |
Collapse
|
5
|
Fomete S, Kubečka J, Elm J, Jen CN. Limited Role of Malonic Acid in Sulfuric Acid-Dimethylamine New Particle Formation. ACS OMEGA 2023; 8:19807-19815. [PMID: 37305259 PMCID: PMC10249388 DOI: 10.1021/acsomega.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Aerosols play an important role in climate and air quality; however, the mechanisms behind aerosol particle formation in the atmosphere are poorly understood. Studies have identified sulfuric acid, water, oxidized organics, and ammonia/amines as key precursors for forming aerosol particles in the atmosphere. Theoretical and experimental investigations have indicated that other species, such as organic acids, may be involved in atmospheric nucleation and growth of freshly formed aerosol particles. Organic acids, such as dicarboxylic acids, which are abundant in the atmosphere, have been measured in ultrafine aerosol particles. These observations suggest that organic acids may contribute to new particle formation in the atmosphere but their role remains ambiguous. This study examines how malonic acid interacts with sulfuric acid and dimethylamine to form new particles at warm boundary layer conditions using experimental observations from a laminar flow reactor and quantum chemical calculations coupled with cluster dynamics simulations. Observations reveal that malonic acid does not contribute to the initial steps (formation of <1 nm diameter particle) of nucleation with sulfuric acid-dimethylamine. In addition, malonic acid was found to not participate in the subsequent growth of the freshly nucleated 1 nm particles from sulfuric acid-dimethylamine reactions to diameters of 2 nm.
Collapse
Affiliation(s)
- Sandra
K.W. Fomete
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub Kubečka
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Coty N. Jen
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Ma F, Xie HB, Zhang R, Su L, Jiang Q, Tang W, Chen J, Engsvang M, Elm J, He XC. Enhancement of Atmospheric Nucleation Precursors on Iodic Acid-Induced Nucleation: Predictive Model and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6944-6954. [PMID: 37083433 PMCID: PMC10157892 DOI: 10.1021/acs.est.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Iodic acid (IA) has recently been recognized as a key driver for new particle formation (NPF) in marine atmospheres. However, the knowledge of which atmospheric vapors can enhance IA-induced NPF remains limited. The unique halogen bond (XB)-forming capacity of IA makes it difficult to evaluate the enhancing potential (EP) of target compounds on IA-induced NPF based on widely studied sulfuric acid systems. Herein, we employed a three-step procedure to evaluate the EP of potential atmospheric nucleation precursors on IA-induced NPF. First, we evaluated the EP of 63 precursors by simulating the formation free energies (ΔG) of the IA-containing dimer clusters. Among all dimer clusters, 44 contained XBs, demonstrating that XBs are frequently formed. Based on the calculated ΔG values, a quantitative structure-activity relationship model was developed for evaluating the EP of other precursors. Second, amines and O/S-atom-containing acids were found to have high EP, with diethylamine (DEA) yielding the highest potential to enhance IA-induced nucleation by combining both the calculated ΔG and atmospheric concentration of considered 63 precursors. Finally, by studying larger (IA)1-3(DEA)1-3 clusters, we found that the IA-DEA system with merely 0.1 ppt (2.5×106 cm-3) DEA yields comparable nucleation rates to that of the IA-iodous acid system.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rongjie Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Weihao Tang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Morten Engsvang
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, Helsinki 00014, Finland
- Finnish Meteorological Institute, Helsinki 00560, Finland
| |
Collapse
|
7
|
Ayoubi D, Knattrup Y, Elm J. Clusteromics V: Organic Enhanced Atmospheric Cluster Formation. ACS OMEGA 2023; 8:9621-9629. [PMID: 36936339 PMCID: PMC10018713 DOI: 10.1021/acsomega.3c00251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Formic acid (FA) is a prominent candidate for organic enhanced nucleation due to its high abundance and stabilizing effect on smaller clusters. Its role in new particle formation is studied through the use of state-of-the-art quantum chemical methods on the cluster systems (acid)1-2(FA)1(base)1-2 with the acids being sulfuric acid (SA)/methanesulfonic acid (MSA) and the bases consisting of ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). A funneling approach is used to determine the cluster structures with initial configurations generated through the ABCluster program, followed by semiempirical PM7 and ωB97X-D/6-31++G(d,p) calculations. The final binding free energy is calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory using the quasi-harmonic approximation. Cluster dynamics simulations show that FA has a minuscule or negligible effect on the MSA-FA-base systems as well as most of the SA-FA-base systems. The SA-FA-DMA cluster system shows the highest influence from FA with an enhancement of 21%, compared to its non-FA counterpart.
Collapse
Affiliation(s)
- Daniel Ayoubi
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Yosef Knattrup
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Rasmussen FR, Kubečka J, Elm J. Contribution of Methanesulfonic Acid to the Formation of Molecular Clusters in the Marine Atmosphere. J Phys Chem A 2022; 126:7127-7136. [PMID: 36191242 DOI: 10.1021/acs.jpca.2c04468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the lack of long-term measurements, new particle formation (NPF) in the marine atmosphere remains puzzling. Using quantum chemical methods, this study elucidates the cluster formation and further growth of sulfuric acid-methanesulfonic acid-dimethylamine (SA-MSA-DMA) clusters, relevant to NPF in the marine atmosphere. The cluster structures and thermochemical parameters of (SA)n(MSA)m(DMA)l (n + m ≤ 4 and l ≤ 4) systems are calculated using density functional theory at the ωB97X-D/6-31++G(d,p) level of theory, and the single-point energies are calculated using high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculations. The calculated thermochemistry is used as input to the Atmospheric Cluster Dynamics Code (ACDC) to gain insight into the cluster dynamics. At ambient conditions (298.15 K, 1 atm), we find that the distribution of outgrowing clusters primarily consists of SA and DMA, with a minor contribution from the mixed SA-MSA-DMA clusters. At lower temperature (278.15 K, 1 atm) the distribution broadens, and clusters containing one or more MSA molecules emerge. These findings show that in the cold marine atmosphere MSA likely participates in atmospheric NPF.
Collapse
Affiliation(s)
| | - Jakub Kubečka
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department of Chemistry, iClimate, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Knattrup Y, Elm J. Clusteromics IV: The Role of Nitric Acid in Atmospheric Cluster Formation. ACS OMEGA 2022; 7:31551-31560. [PMID: 36092558 PMCID: PMC9453938 DOI: 10.1021/acsomega.2c04278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Nitric acid (NA) has previously been shown to affect atmospheric new particle formation; however, its role still remains highly uncertain. Through the employment of state-of-the-art quantum chemical methods, we study the (acid)1-2(base)1-2 and (acid)3(base)2 clusters containing at least one nitric acid (NA) and sulfuric acid (SA) or methanesulfonic acid (MSA) with bases ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). The initial cluster configurations are generated using the ABCluster program. PM7 and ωB97X-D/6-31++G(d,p) calculations are used to reduce the number of relevant configurations. The thermochemical parameters are calculated at the ωB97X-D/6-31++G(d,p) level of theory with the quasi-harmonic approximation, and the final single-point energies are calculated with high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculations. The enhancing effect from the presence of nitric acid on cluster formation is studied using the calculated thermochemical data and cluster dynamics simulations. We find that when NA is in excess compared with the other acids, it has a substantial enhancing effect on the cluster formation potential.
Collapse
Affiliation(s)
- Yosef Knattrup
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, iClimate, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Liu Y, Xie HB, Ma F, Chen J, Elm J. Amine-Enhanced Methanesulfonic Acid-Driven Nucleation: Predictive Model and Cluster Formation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7751-7760. [PMID: 35593326 DOI: 10.1021/acs.est.2c01639] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atmospheric amines are considered to be an effective enhancer for methanesulfonic acid (MSA)-driven nucleation. However, out of the 195 detected atmospheric amines, the enhancing potential (EP) has so far only been studied for five amines. This severely hinders the understanding of the contribution of amines to MSA-driven nucleation. Herein, a two-step procedure was employed to probe the EP of various amines on MSA-driven nucleation. Initially, the formation free energies (ΔG) of 50 MSA-amine dimer clusters were calculated. Based on the calculated ΔG values, a robust quantitative structure-activity relationship (QSAR) model was built and utilized to predict the ΔG values of the remaining 145 amines. The QSAR model identified two guanidino-containing compounds as the potentially strongest enhancer for MSA-driven nucleation. Second, the EP of guanidino-containing compounds was studied by employing larger clusters and selecting guanidine (Gud) as a representative. The results indicate that Gud indeed has the strongest EP. The Gud-MSA system presents a unique clustering mechanism, proceeding via the initial formation of the (Gud)1(MSA)1 cluster, and subsequently by cluster collisions with either a (Gud)1(MSA)1 or (Gud)2(MSA)2 cluster. The developed QSAR model and the identification of amines with the strongest EP provide a foundation for comprehensively evaluating the contribution of atmospheric amines to MSA-driven nucleation.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
11
|
Elm J. Clusteromics III: Acid Synergy in Sulfuric Acid-Methanesulfonic Acid-Base Cluster Formation. ACS OMEGA 2022; 7:15206-15214. [PMID: 35572753 PMCID: PMC9089749 DOI: 10.1021/acsomega.2c01396] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 05/24/2023]
Abstract
Acid-base molecular clusters are an important stage in atmospheric new particle formation. While such clusters are most likely multicomponent in nature, there are very few reports on clusters consisting of multiple acid molecules and multiple base molecules. By applying state-of-the-art quantum chemical methods, we herein study electrically neutral (SA)1(MSA)1(base)0-2 clusters with base = ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA) and ethylenediamine (EDA). The cluster structures are obtained using a funneling approach employing the ABCluster program, semiempirical PM7 calculations and ωB97X-D/6-31++G(d,p) calculations. The final binding free energies are calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory using the quasi-harmonic approximation. Based on the calculated cluster geometries and thermochemistry (at 298.15 K and 1 atm), we find that the mixed (SA)1(MSA)1(base)1-2 clusters more resemble the (SA)2(base)1-2 clusters compared to the (MSA)2(base)1-2 clusters. Hence, some of the steric hindrance and lack of hydrogen bond capacity previously observed in the (MSA)2(base)1-2 clusters is diminished in the corresponding (SA)1(MSA)1(base)1-2 clusters. Cluster kinetics simulations reveal that the presence of an MSA molecule in the clusters enhances the cluster formation potential by up to a factor of 20. We find that the SA-MSA-DMA clusters have the highest cluster formation potential, and thus, this system should be further extended to larger sizes in future studies.
Collapse
|
12
|
Chen J. Theoretical analysis of sulfuric acid–dimethylamine–oxalic acid–water clusters and implications for atmospheric cluster formation. RSC Adv 2022; 12:22425-22434. [PMID: 36106005 PMCID: PMC9364903 DOI: 10.1039/d2ra03492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, organic compounds potentially involved in atmospheric particle formation have received increased attention. However, the contributions of organic acids as precursors in nucleation remain ambiguous. In this study, the low-lying structures and thermodynamics of the sulfuric acid–dimethylamine–oxalic acid–water system are obtained at the M06-2X/6-311+G(2d,p) level, and the single point energy of the clusters has been calculated at the DF-LMP2-F12/VDZ-F12 level. The formations of the multicomponent clusters are predicted based on thermodynamics, involving proton transfer and hydrogen bonding interactions. Oxalic acid can synergistically promote the formation of the sulfuric acid–dimethylamine–oxalic acid–water system while inhibiting this with the addition of more sulfuric acid molecules. The results of hydrate distribution show that un-hydrate clusters play a dominant role during formation. Moreover, dimethylamine and oxalic acid have similar effects on Rayleigh scattering properties, and the clusters involving complex mixtures of compounds can have high optical activities. The structure of SA2.DMA.OA.W4 cluster.![]()
Collapse
Affiliation(s)
- Jiao Chen
- Anhui Meteorological Observatory, Hefei, Anhui 230031, China
| |
Collapse
|
13
|
Elm J. Clusteromics II: Methanesulfonic Acid-Base Cluster Formation. ACS OMEGA 2021; 6:17035-17044. [PMID: 34250361 PMCID: PMC8264942 DOI: 10.1021/acsomega.1c02115] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/11/2021] [Indexed: 05/21/2023]
Abstract
The role of methanesulfonic acid (MSA) in atmospheric new particle formation remains highly uncertain. Using state-of-the-art computational methods, we study the electrically neutral (MSA)0-2(base)0-2 clusters, with base = ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA). The cluster configurations are obtained using the ABCluster program and the number of initial cluster configurations is reduced based on PM7 calculations. Thermochemical parameters are calculated using the quasi-harmonic approximation based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies. The single point energies are calculated at the DLPNO-CCSD(T0)/aug-cc-pVTZ level of theory. We find that MSA shows a different interaction pattern with the bases compared to sulfuric acid and does not simply follow the basicity of the bases for these small clusters. In all cases, we find that the MSA-base clusters show very low cluster formation potential, indicating that electrically neutral clusters consisting solely of MSA as the clustering acid are most likely not capable of forming and growing under realistic atmospheric conditions.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
14
|
Rosati B, Christiansen S, Wollesen de Jonge R, Roldin P, Jensen MM, Wang K, Moosakutty SP, Thomsen D, Salomonsen C, Hyttinen N, Elm J, Feilberg A, Glasius M, Bilde M. New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS EARTH & SPACE CHEMISTRY 2021; 5:801-811. [PMID: 33889792 PMCID: PMC8054244 DOI: 10.1021/acsearthspacechem.0c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
Dimethyl sulfide (DMS) is produced by plankton in oceans and constitutes the largest natural emission of sulfur to the atmosphere. In this work, we examine new particle formation from the primary pathway of oxidation of gas-phase DMS by OH radicals. We particularly focus on particle growth and mass yield as studied experimentally under dry conditions using the atmospheric simulation chamber AURA. Experimentally, we show that aerosol mass yields from oxidation of 50-200 ppb of DMS are low (2-7%) and that particle growth rates (8.2-24.4 nm/h) are comparable with ambient observations. An HR-ToF-AMS was calibrated using methanesulfonic acid (MSA) to account for fragments distributed across both the organic and sulfate fragmentation table. AMS-derived chemical compositions revealed that MSA was always more dominant than sulfate in the secondary aerosols formed. Modeling using the Aerosol Dynamics, gas- and particle-phase chemistry kinetic multilayer model for laboratory CHAMber studies (ADCHAM) indicates that the Master Chemical Mechanism gas-phase chemistry alone underestimates experimentally observed particle formation and that DMS multiphase and autoxidation chemistry is needed to explain observations. Based on quantum chemical calculations, we conclude that particle formation from DMS oxidation in the ambient atmosphere will most likely be driven by mixed sulfuric acid/MSA clusters clustering with both amines and ammonia.
Collapse
Affiliation(s)
- Bernadette Rosati
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, Vienna AT-1090, Austria
| | - Sigurd Christiansen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | | | - Pontus Roldin
- Division
of Nuclear Physics, Lund University, P.O. Box 118, Lund SE-221
00, Sweden
| | - Mads Mørk Jensen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Kai Wang
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Shamjad P. Moosakutty
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
- Clean Combustion
Research Center, King Abdullah University
of Science and Technology, Thuwal KSA-23955, Saudi Arabia
| | - Ditte Thomsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Camilla Salomonsen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Noora Hyttinen
- Nano
and Molecular Systems Research Unit, University
of Oulu, P.O. Box 3000, Oulu FI-90014, Finland
- Department
of Applied Physics, University of Eastern
Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Anders Feilberg
- Department
of Biological and Chemical Engineering, Aarhus University, Finlandsgade
12, Aarhus N DK-8200, Denmark
| | - Marianne Glasius
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Merete Bilde
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
15
|
Elm J. Clusteromics I: Principles, Protocols, and Applications to Sulfuric Acid-Base Cluster Formation. ACS OMEGA 2021; 6:7804-7814. [PMID: 33778292 PMCID: PMC7992168 DOI: 10.1021/acsomega.1c00306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/13/2023]
Abstract
We recently coined the term clusteromics as a holistic approach for obtaining insight into the chemical complexity of atmospheric molecular cluster formation and at the same time providing the foundation for thermochemical databases that can be utilized for developing machine learning models. Here, we present the first paper in the series that applies state-of-the-art computational methods to study multicomponent (SA)0-2(base)0-2 clusters, with SA = sulfuric acid and base = [ammonia (A), methylamine (MA), dimethylamine (DMA), trimethylamine (TMA), and ethylenediamine (EDA)] with all combinations of the five bases. The initial cluster configurations are obtained using the ABCluster program and the number of relevant configurations are reduced based on PM7 and ωB97X-D/6-31++G(d,p) calculations. Thermochemical parameters are calculated based on the ωB97X-D/6-31++G(d,p) cluster structures and vibrational frequencies using the quasi-harmonic approximation. The single-point energies are refined with a high-level DLPNO-CCSD(T0)/aug-cc-pVTZ calculation. Using the calculated thermochemical data, we perform kinetics simulations to evaluate the potential of these small (SA)0-2(base)0-2 clusters to grow into larger cluster sizes. In all cases we find that having more than one type of base molecule present in the cluster will increase the potential for forming larger clusters primarily due to the increased available vapor concentration.
Collapse
Affiliation(s)
- Jonas Elm
- Department of Chemistry and
iClimate, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Shen J, Elm J, Xie HB, Chen J, Niu J, Vehkamäki H. Structural Effects of Amines in Enhancing Methanesulfonic Acid-Driven New Particle Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13498-13508. [PMID: 33091300 DOI: 10.1021/acs.est.0c05358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atmospheric amines can enhance methanesulfonic acid (MSA)-driven new particle formation (NPF), but the mechanism is fundamentally different compared to that of the extensively studied sulfuric acid (SA)-driven process. Generally, the enhancing potentials of amines in SA-driven NPF follow the basicity, while this is not the case for MSA-driven NPF, where structural effects dominate, making MSA-driven NPF more prominent for methylamine (MA) compared to dimethylamine (DMA). Therefore, probing structural factors determining the enhancing potentials of amines on MSA-driven NPF is key to fully understanding the contribution of MSA to NPF. Here, we performed a comparative study on DMA and MA enhancing MSA-driven NPF by examining cluster formation using computational methods. The results indicate that DMA-MSA clusters are more stable than the corresponding MA-MSA clusters for cluster sizes up to (DMA)2(MSA)2, indicating that the basicity of amines dominates the initial cluster formation. The methyl groups of DMA were found to present significant steric hindrance beyond the (DMA)2(MSA)2 cluster and this adds to the lower hydrogen bonding capacity of DMA, making the cluster growth less favorable compared to MA. This study implies that several amines could synergistically enhance MSA-driven NPF by maximizing the advantage of different amines in different amine-MSA cluster growth stages.
Collapse
Affiliation(s)
- Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, University of Helsinki, P.O. Box 64 Gustaf Hällströmin katu 2a, Helsinki FI-00014, Finland
| |
Collapse
|
17
|
Li H, Ning A, Zhong J, Zhang H, Liu L, Zhang Y, Zhang X, Zeng XC, He H. Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. CHEMOSPHERE 2020; 245:125554. [PMID: 31874321 DOI: 10.1016/j.chemosphere.2019.125554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 05/21/2023]
Abstract
A recent quantitative measurement of rates of new particle formation (NPF) in urban Shanghai showed that the high rates of NPF can be largely attributed to the sulfuric acid (SA)-dimethylamine (DMA) nucleation due to relatively high DMA concentration in urban atmosphere (Yao et al., Science. 2018, 361, 278). In certain atmospheric conditions, the release of DMA is accompanied with the emission of high concentration of ammonia. As a result, the ammonia (A) may participate in SA-DMA-based NPF. However, the main sources of DMA and A can be different, thereby leading to different mechanism for the SA-DMA-A-based nucleation under different atmospheric conditions. Near industrial sources with relatively high DMA concentration of 108 molecules cm-3, the contribution of binary SA-DMA nucleation to cluster formation is 61% at 278 K, representing a dominant pathway for NPF. However, in the region not too close to major source of DMA emission, e.g., near agriculture farmland, the routes involving ternary SA-DMA-A nucleation make a 64% contribution at 278 K with DMA concentration of 107 molecules cm-3, showing that A has marked impact on the cluster formation. Under such a condition, we predict that coexisting DMA and A could be detected in the process of NPF. Moreover, at winter temperatures or at higher altitudes, our calculations suggest that the clustering of initial clusters likely involve ternary SA-DMA-A clusters rather than binary SA-DMA clusters. These new insights may be helpful to analyze and predict atmospheric-condition-dependent NFP in either urban or rural regions and/or in different season of the year.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - An Ning
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jie Zhong
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania Philadelphia, PA, 19104-6316, USA
| | - Haijie Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Ling Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yunling Zhang
- Beiyuan Campus, Beijing Vocational College of Agriculture, Beijing, 100012, PR China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
18
|
Perraud V, Xu J, Gerber RB, Finlayson-Pitts BJ. Integrated experimental and theoretical approach to probe the synergistic effect of ammonia in methanesulfonic acid reactions with small alkylamines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:305-328. [PMID: 31904037 DOI: 10.1039/c9em00431a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
While new particle formation events have been observed worldwide, our fundamental understanding of the precursors remains uncertain. It has been previously shown that small alkylamines and ammonia (NH3) are key actors in sub-3 nm particle formation through reactions with acids such as sulfuric acid (H2SO4) and methanesulfonic acid (CH3S(O)(O)OH, MSA), and that water also plays a role. Because NH3 and amines co-exist in air, we carried out combined experimental and theoretical studies examining the influence of the addition of NH3 on particle formation from the reactions of MSA with methylamine (MA) and trimethylamine (TMA). Experiments were performed in a 1 m flow reactor at 1 atm and 296 K. Measurements using an ultrafine condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) show that new particle formation was systematically enhanced upon simultaneous addition of NH3 to the MSA + amine binary system, with the magnitude depending on the amine investigated. For the MSA + TMA reaction system, the addition of NH3 at ppb concentrations produced a much greater effect (i.e. order of magnitude more particles) than the addition of ∼12 000 ppm water (corresponding to ∼45-50% relative humidity). The effect of NH3 on the MSA + MA system, which is already very efficient in forming particles on its own, was present but modest. Calculations of energies, partial charges and structures of small cluster models of the multi-component particles likewise suggest synergistic effects due to NH3 in the presence of MSA and amine. The local minimum structures and the interactions involved suggest mechanisms for this effect.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Jing Xu
- Department of Optical Engineering, Zhejiang A&F University, Lin'an 311300, Zhejiang, China
| | - R Benny Gerber
- Department of Chemistry, University of California, Irvine, CA 92697, USA. and Institute of Chemistry, The Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
19
|
Ma F, Xie HB, Elm J, Shen J, Chen J, Vehkamäki H. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8785-8795. [PMID: 31287292 DOI: 10.1021/acs.est.9b02117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5-0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK- 8000 Aarhus C , Denmark
| | - Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
20
|
|
21
|
Finlayson‐Pitts BJ. Multiphase chemistry in the troposphere: It all starts … and ends … with gases. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Zhong J, Li H, Kumar M, Liu J, Liu L, Zhang X, Zeng XC, Francisco JS. Mechanistic Insight into the Reaction of Organic Acids with SO
3
at the Air–Water Interface. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Zhong
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Hao Li
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Manoj Kumar
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Jiarong Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Ling Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Joseph S. Francisco
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| |
Collapse
|
23
|
Zhong J, Li H, Kumar M, Liu J, Liu L, Zhang X, Zeng XC, Francisco JS. Mechanistic Insight into the Reaction of Organic Acids with SO
3
at the Air–Water Interface. Angew Chem Int Ed Engl 2019; 58:8351-8355. [DOI: 10.1002/anie.201900534] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jie Zhong
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Hao Li
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Manoj Kumar
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
| | - Jiarong Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Ling Liu
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiuhui Zhang
- Key Laboratory of Cluster Science Ministy of Education of China School of Chemistry Beijing Inistitute of Technology Beijing 100081 China
| | - Xiao Cheng Zeng
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Joseph S. Francisco
- Department of Chemistry University of Nebraska-Lincoln Lincoln NE 68588 USA
- Department of Earth and Environmental Science and Department of Chemistry University of Pennsylvania Philadelphia PA 19104-6316 USA
| |
Collapse
|
24
|
Kumar M, Francisco JS. Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase and aqueous surface environments. Chem Sci 2019. [DOI: 10.1039/c8sc03514h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational results suggest that the reactions ofantisubstituted Criegee intermediates with amine could lead to oligomers, which may play an important role in new particle formation and hydroxyl radical generation in the troposphere.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
- Department of Earth and Environmental Sciences
| | - Joseph S. Francisco
- Department of Chemistry
- University of Nebraska-Lincoln
- Lincoln
- USA
- Department of Earth and Environmental Sciences
| |
Collapse
|
25
|
Kumar M, Saiz-Lopez A, Francisco JS. Single-Molecule Catalysis Revealed: Elucidating the Mechanistic Framework for the Formation and Growth of Atmospheric Iodine Oxide Aerosols in Gas-Phase and Aqueous Surface Environments. J Am Chem Soc 2018; 140:14704-14716. [PMID: 30338993 DOI: 10.1021/jacs.8b07441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iodine oxide aerosols are ubiquitous in many coastal atmospheric environments. However, the exact mechanism responsible for their homogeneous nucleation and subsequent cluster growth remains to be fully established. Using quantum chemical calculations, we propose a new mechanistic framework for the formation and subsequent growth of iodine oxide aerosols, which takes advantage of noncovalent interactions between iodine oxides (I2O5 and I2O4) and iodine acids (HIO3 and HIO2). Larger iodine oxide clusters are suggested to be formed in a facile manner and with enhanced exothermicity. The newly proposed mechanisms follow both concerted and stepwise pathways. In all these new chemistries, an O:I ratio of 2-2.5 is predicted, which satisfies an experimentally derived criterion recently proposed for identifying iodine oxides involved in atmospheric aerosol formation. Born-Oppenheimer molecular dynamics simulations at the air-water interface suggest that I2O5 and I4O10, which are two of the most common nucleating iodine oxides, react with interfacial water on the picosecond time scale and result in novel nucleating species such as H2I2O6 and HI4O11- or I3O8. An important implication of these simulation results is that aqueous surfaces, which are ubiquitous in the atmosphere, may activate iodine oxides to result in a new class of nucleating compounds, which can form mixed aerosol particles with potent precursors, such as HIO3 or H2SO4, in marine air masses via typical acid-based interactions. Overall, these results give a better understanding of iodine-rich aerosols in diverse environments.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Department of Earth and Environmental Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate , Institute of Physical Chemistry Rocasolano , CSIC, Madrid , Spain , 28006
| | - Joseph S Francisco
- Department of Chemistry , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States.,Department of Earth and Environmental Sciences , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
26
|
Ge P, Luo G, Luo Y, Huang W, Xie H, Chen J, Qu J. Molecular understanding of the interaction of amino acids with sulfuric acid in the presence of water and the atmospheric implication. CHEMOSPHERE 2018; 210:215-223. [PMID: 30005342 DOI: 10.1016/j.chemosphere.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Amino acids are important components of atmospheric aerosols. Despite the diversity of amino acids structures, however, the role of amino acids with additional non-characteristic functional groups in new particle formation (NPF) has almost remained unexplored. Herein, the interaction of serine (Ser) and threonine (Thr), which feature a hydroxyl group and differ by a methyl-substitution, with sulfuric acid (SA) and up to three water (W) molecules has been investigated at the M06-2X/6-311++G (3df, 3pd) level of theory. The effects of structural differences of amino acids on the structure and properties of clusters were also pointed out. Results show that serine may play more important role in stabilizing sulfuric acid to promote NPF in initial steps compared with threonine, glycine and alanine. Meanwhile, threonine may participate in ion-induced nucleation due to the high dipole moment of (Thr) (SA) isomers. Moreover, the effects of structure differences of amino acids can be seen in several aspects. Firstly, methyl substitution and hydroxyl group of amino acids have great influence on the structure of clusters. Secondly, hydrated (Ser) (SA) and (Tur) (SA) clusters could retain water even at low relative humidity, which may due to the hydroxyl group in serine and threonine. In addition, the Rayleigh light scattering intensities of amino acid-containing clusters are higher than trimethylamine, monoethanolamine and oxalic acid-involved counterparts. The effect of carboxyl group and methyl substitution on optical properties of clusters is also discussed. This study may bring new insight into the role of amino acids with additional non-characteristic functional groups in initial steps of NPF.
Collapse
Affiliation(s)
- Pu Ge
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Gen Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Wei Huang
- School of Environmental Science & Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongbin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
27
|
Wang CY, Jiang S, Liu YR, Wen H, Wang ZQ, Han YJ, Huang T, Huang W. Synergistic Effect of Ammonia and Methylamine on Nucleation in the Earth’s Atmosphere. A Theoretical Study. J Phys Chem A 2018; 122:3470-3479. [DOI: 10.1021/acs.jpca.8b00681] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chun-Yu Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuai Jiang
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Rong Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Wen
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhong-Quan Wang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ya-Juan Han
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Teng Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wei Huang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Regional Atmospheric Environment, Xiamen, Fujian 361021, China
| |
Collapse
|
28
|
Xu J, Perraud V, Finlayson-Pitts BJ, Gerber RB. Uptake of water by an acid–base nanoparticle: theoretical and experimental studies of the methanesulfonic acid–methylamine system. Phys Chem Chem Phys 2018; 20:22249-22259. [DOI: 10.1039/c8cp03634a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uptake of water by nanoparticles composed by methanesulfonic acid and methylamine using a combination of theoretical calculations and laboratory experiments.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry
- University of California
- Irvine
- USA
| | | | | | - R. Benny Gerber
- Department of Chemistry
- University of California
- Irvine
- USA
- Institute of Chemistry
| |
Collapse
|
29
|
Xu J, Finlayson-Pitts BJ, Gerber RB. Nanoparticles grown from methanesulfonic acid and methylamine: microscopic structures and formation mechanism. Phys Chem Chem Phys 2017; 19:31949-31957. [PMID: 29177355 DOI: 10.1039/c7cp06489f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanisms of particle formation and growth in the atmosphere are of great interest due to their impacts on climate, health and visibility. However, the microscopic structures and related properties of the smallest nanoparticles are not known. In this paper we pursue computationally a microscopic description for the formation and growth of methanesulfonic acid (MSA) and methylamine (MA) particles under dry conditions. Energetic and dynamics simulations were used to assess the stabilities of proposed model structures for these particles. Density functional theory (DFT) and semi-empirical (PM3) calculations suggest that (MSA-MA)4 is a major intermediate in the growth process, with the dissociation energies, enthalpies and free energies indicating considerable stability for this cluster. Dynamics simulations show that this species is stable for at least 100 ps at temperatures up to 500 K, well above atmospheric temperatures. In order to reach experimentally detectable sizes (>1.4 nm), continuing growth is suggested to occur via clustering of (MSA-MA)4. The dimer (MSA-MA)4(MSA-MA)4 may be one of the smaller experimentally measured particles. Step by step addition of MSA to (MSA-MA)4, is also a likely potential growth mechanism when MSA is excess. In addition, an MSA-MA crystal is predicted to exist. These studies demonstrate that computations of particle structure and dynamics in the nano-size range can be useful for molecular level understanding of processes that grow clusters into detectable particles.
Collapse
Affiliation(s)
- Jing Xu
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
30
|
Hu YC, Zhang XH, Li QS, Zhang YH, Li ZS. Effect of Water on the Structure and Stability of Hydrogen-Bonded Oxalic Acid Dimer. Chemphyschem 2017; 18:3375-3383. [DOI: 10.1002/cphc.201700950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/06/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Yuan-Chun Hu
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Xiu-Hui Zhang
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Quan-Song Li
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Ze-Sheng Li
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| |
Collapse
|
31
|
Xu J, Finlayson-Pitts BJ, Gerber RB. Proton Transfer in Mixed Clusters of Methanesulfonic Acid, Methylamine, and Oxalic Acid: Implications for Atmospheric Particle Formation. J Phys Chem A 2017; 121:2377-2385. [DOI: 10.1021/acs.jpca.7b01223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Xu
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | | | - R. Benny Gerber
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
- Institute
of Chemistry, Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Fairhurst MC, Ezell MJ, Finlayson-Pitts BJ. Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3–C7 solid dicarboxylic acids. Phys Chem Chem Phys 2017; 19:26296-26309. [DOI: 10.1039/c7cp05252a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level.
Collapse
|
33
|
Arquero KD, Xu J, Gerber RB, Finlayson-Pitts BJ. Particle formation and growth from oxalic acid, methanesulfonic acid, trimethylamine and water: a combined experimental and theoretical study. Phys Chem Chem Phys 2017; 19:28286-28301. [PMID: 29028063 DOI: 10.1039/c7cp04468b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental-theoretical study on the effect of oxalic acid on particle formation and growth from the reaction of MSA with trimethylamine in the absence and presence of water.
Collapse
Affiliation(s)
| | - Jing Xu
- Department of Chemistry
- University of California
- Irvine
- USA
| | - R. Benny Gerber
- Department of Chemistry
- University of California
- Irvine
- USA
- Institute of Chemistry
| | | |
Collapse
|