1
|
Wells MJM, Chen JY, Bodycomb J, Wolgemuth D, Stretz HA, Zacheis GA, Bautista M, Bell KY. Multi-laser nanoparticle tracking analysis (NTA): A unique method to visualize dynamic (shear) and dynamic (Brownian motion) light scattering and quantify nonliving natural organic matter (NNOM) in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174985. [PMID: 39047837 DOI: 10.1016/j.scitotenv.2024.174985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Application of simultaneous multi-laser nanoparticle tracking analysis (NTA) to environmental water samples to investigate nonliving natural organic matter (NNOM) is introduced as an innovative method for observing particles directly in their native media. Multi-laser NTA results of particle visualization, particle number concentration, and particle size distribution elucidated particle dynamics in low and high total dissolved solids (TDS) aqueous environmental samples. A pond water sample and concentrate from a reverse osmosis (RO) treatment process (Stage 1) had 1.3 × 108 and 5.62 × 1019 particles/mL, respectively, (at time = 0) after filtration at 0.45 μm. Beyond the traditional applications for this instrument, this research presents novel evidence-based investigations that probe the existence of supramolecular structures in environmental waters during turbulence or quiescence. The pond water sample exhibited time-dependent aggregation as the volume distribution shifted to greater diameter during quiescence, compared to turbulence. Disaggregation (increased numbers of particles over time) was noted in the >250 nm to <600 nm region, and aggregation of >450 nm particles was also noted in the quiescent RO concentrate sample, indicative of depletion of small particles to form larger ones. Multi-laser NTA and dynamic light scattering (DLS) capabilities were compared and contrasted. DLS and NTA are different (complementary) particle sizing techniques. DLS yielded more information about the physical hydrogel in the NNOM hierarchy whereas multi-laser NTA better characterized meta-chemical and chemical hydrogel characteristics. Operationalization of innovation-moving from fundamental investigations to application-is supported by implementing novel analytical instrumentation as we address issues involving climate change, drought, and the scarcity of potable water. Multi-laser NTA can be used as a tool to study and optimize complex water and wastewater treatment processes. Questions about water treatment efficiencies, membrane fouling, assistance of pollutant transport, and carbon capture cycles affected by NNOM will benefit from insights from multi-laser NTA.
Collapse
Affiliation(s)
| | | | - Jeff Bodycomb
- Horiba Instruments Incorporated, Piscataway, NJ, USA
| | | | | | | | - Mario Bautista
- Water Replenishment District of Southern California, Torrance, CA, USA
| | | |
Collapse
|
2
|
Sorasan C, Taladriz-Blanco P, Rodriguez-Lorenzo L, Espiña B, Rosal R. New versus naturally aged greenhouse cover films: Degradation and micro-nanoplastics characterization under sunlight exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170662. [PMID: 38316311 DOI: 10.1016/j.scitotenv.2024.170662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
The understanding of microplastic degradation and its effects remains limited due to the absence of accurate analytical techniques for detecting and quantifying micro- and nanoplastics. In this study, we investigated the release of nanoplastics and small microplastics in water from low-density polyethylene (LDPE) greenhouse cover films under simulated sunlight exposure for six months. Our analysis included both new and naturally aged (used) cover films, enabling us to evaluate the impact of natural aging. Additionally, photooxidation effects were assessed by comparing irradiated and non-irradiated conditions. Scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA) confirmed the presence of particles below 1 μm in both irradiated and non-irradiated cover films. NTA revealed a clear effect of natural aging, with used films releasing more particles than new films but no impact of photooxidation, as irradiated and non-irradiated cover films released similar amounts of particles at each time point. Raman spectroscopy demonstrated the lower crystallinity of the released PE nanoplastics compared to the new films. Flow cytometry and total organic carbon data provided evidence of the release of additional material besides PE, and a clear effect of both simulated and natural aging, with photodegradation effects observed only for the new cover films. Finally, our results underscore the importance of studying the aging processes in both new and used plastic products using complementary techniques to assess the environmental fate and safety risks posed by plastics used in agriculture.
Collapse
Affiliation(s)
- Carmen Sorasan
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Patricia Taladriz-Blanco
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, 1700 Fribourg, Switzerland.
| | - Laura Rodriguez-Lorenzo
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| |
Collapse
|
3
|
Bai YY, Yang YJ, Xu Y, Yang XY, Zhang ZL. Current Lifetime of Single-Nanoparticle Electrochemical Collision for In Situ Monitoring Nanoparticles Agglomeration and Aggregation. Anal Chem 2023; 95:4429-4434. [PMID: 36812093 DOI: 10.1021/acs.analchem.2c05016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In situ monitoring of the agglomeration/aggregation process of nanoparticles (NPs) is crucial because it seriously affects cell entry, biosafety, catalytic performance of NPs, and so on. Nevertheless, it remains hard to monitor the solution phase agglomeration/aggregation of NPs via conventional techniques such as electron microscopy, which requires sample pretreatment and cannot represent native state NPs in solution. Considering that single-nanoparticle electrochemical collision (SNEC) is powerful to detect NPs in solution at the single-particle level, and the current lifetime, which refers to the time that current intensity decays to 1/e of the original value, is skilled in distinguishing different sized NPs, herein, a current lifetime-based SNEC has been developed to distinguish a single Au NP (d = 18 nm) from its agglomeration/aggregation. Based on this, the agglomeration/aggregation process of small-sized NPs and the discrimination of agglomeration vs aggregation have been carefully investigated at the single-particle level. Results showed that the agglomeration/aggregation of Au NPs (d = 18 nm) in 0.8 mM HClO4 climbed from 19% to 69% over two hours, whereas there was no visible granular sediment, and Au NPs tended to agglomerate rather than aggregate irreversibly under normal conditions. Hence, the proposed current lifetime-based SNEC could serve as a complementary method to in situ monitor the agglomeration/aggregation of small-sized NPs in solution at the single-particle level and provide effective guidance for the practical application of NPs.
Collapse
Affiliation(s)
- Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.,Department of Chemistry, Yuncheng University, Yuncheng 044000, People's Republic of China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ying Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
4
|
Jiang C, Liu S, Zhang T, Liu Q, Alvarez PJJ, Chen W. Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7426-7447. [PMID: 35584364 DOI: 10.1021/acs.est.1c08011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Analysis and characterization of naturally occurring and engineered nanomaterials in the environment are critical for understanding their environmental behaviors and defining real exposure scenarios for environmental risk assessment. However, this is challenging primarily due to the low concentration, structural heterogeneity, and dynamic transformation of nanomaterials in complex environmental matrices. In this critical review, we first summarize sample pretreatment methods developed for separation and preconcentration of nanomaterials from environmental samples, including natural waters, wastewater, soils, sediments, and biological media. Then, we review the state-of-the-art microscopic, spectroscopic, mass spectrometric, electrochemical, and size-fractionation methods for determination of mass and number abundance, as well as the morphological, compositional, and structural properties of nanomaterials, with discussion on their advantages and limitations. Despite recent advances in detecting and characterizing nanomaterials in the environment, challenges remain to improve the analytical sensitivity and resolution and to expand the method applications. It is important to develop methods for simultaneous determination of multifaceted nanomaterial properties for in situ analysis and characterization of nanomaterials under dynamic environmental conditions and for detection of nanoscale contaminants of emerging concern (e.g., nanoplastics and biological nanoparticles), which will greatly facilitate the standardization of nanomaterial analysis and characterization methods for environmental samples.
Collapse
Affiliation(s)
- Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Songlin Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
5
|
Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation. MINERALS 2022. [DOI: 10.3390/min12040462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews recent developments in the fundamental understating of ultrafine (nano) bubbles (NBs) and presents technological advances and reagent types used for their generation in flotation. The generation of NBs using various approaches including ultrasonication, solvent exchange, temperature change, hydrodynamic cavitation, and electrolysis was assessed. Most importantly, restrictions and opportunities with respect to the detection of NBs were comprehensively reviewed, focusing on various characterization techniques such as the laser particle size analyzer (LPSA), nanoparticle tracking (NTA), dynamic light scattering (DLS), zeta-phase light scattering (ZPALS), and zeta sizer. As a key feature, types and possible mechanisms of surfactants applied to stabilize NBs were also explored. Furthermore, flotation-assisted nano-bubbles was reported as an efficient method for recovering minerals, with a special focus on flotation kinetics. It was found that most researchers reported the existence and formation of NBs by different techniques, but there is not enough information on an accurate measurement of their size distribution and their commonly used reagents. It was also recognized that a suitable method for generating NBs, at a high rate and with a low cost, remains a technical challenge in flotation. The application of hydrodynamic cavitation based on a venturi tube and using the LPSA and NTA in laboratory scales were identified as the most predominant approaches for the generation and detection of NBs, respectively. In this regard, neither pilot- nor industrial-scale case studies were found in the literature; they were only highlighted as future works. Although the NB-stabilizing effects of electrolytes have been well-explored, the mechanisms related to surfactants remain the issue of further investigation. The effectiveness of the NB-assisted flotation processes has been mostly addressed for single minerals, and only a few works have been reported for bulk materials. Finally, we believe that the current review paves the way for an appropriate selection of generating and detecting ultrafine bubbles and shines the light on a profound understanding of its effectiveness.
Collapse
|
6
|
Anas Tomeh M, Hawari Mansor M, Hadianamrei R, Sun W, Zhao X. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers. Int J Pharm 2022; 620:121762. [PMID: 35472511 DOI: 10.1016/j.ijpharm.2022.121762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/18/2022]
|
7
|
Monitoring anthropogenic particles in the environment: Recent developments and remaining challenges at the forefront of analytical methods. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
9
|
Fernández-Castané A, Li H, Joseph S, Ebeler M, Franzreb M, Bracewell DG, Overton TW, Thomas OR. Nanoparticle tracking analysis as a process analytical tool for characterising magnetosome preparations. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Antimicrobial, radical scavenging, and dye degradation potential of nontoxic biogenic silver nanoparticles using Cassia fistula pods. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Hedberg J, Eriksson M, Kesraoui A, Norén A, Odnevall Wallinder I. Transformation of silver nanoparticles released from skin cream and mouth spray in artificial sweat and saliva solutions: particle size, dissolution, and surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12968-12979. [PMID: 33097992 PMCID: PMC7921047 DOI: 10.1007/s11356-020-11241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/12/2020] [Indexed: 05/22/2023]
Abstract
The use of silver nanoparticles (Ag NPs) in consumer products can result in diffuse environmental dispersion of both NPs and ionic silver. This study investigated the transformation of Ag NPs present in two consumer products (skin cream, mouth spray) in terms of release of Ag NPs and ionic silver and changes in particle size in artificial sweat and saliva solutions. Large differences in silver release were observed with the smaller sized Ag NPs in mouth spray releasing more silver compared with the Ag NPs of the skin cream. Substantial particle agglomeration took place in both artificial sweat and saliva, forming large-sized agglomerates (> 100 nm). The amount of dissolved silver in solution after 24 h was less than 10% of the total amount of Ag NPs for both products. The results show that the Ag NPs of these consumer products will largely remain as NPs even after 24 h of skin or saliva contact. The use of normalization by geometric surface area of the particles was tested as a way to compare dissolution for Ag NPs of different characteristics, including pristine, bare, as well as PVP-capped Ag NPs. Normalization of silver dissolution with the geometric surface area was shown promising, but more extensive studies are required to unambiguously conclude whether it is a way forward to enable grouping of the dissolution behavior of Ag NPs released from consumer products.
Collapse
Affiliation(s)
- Jonas Hedberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden.
| | - Madeleine Eriksson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Amina Kesraoui
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Alexander Norén
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| | - Inger Odnevall Wallinder
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, Stockholm, Sweden
| |
Collapse
|
12
|
Design and manufacturing of monodisperse and malleable phytantriol-based cubosomes for drug delivery applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
CeO 2 Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro. NANOMATERIALS 2020; 10:nano10122327. [PMID: 33255415 PMCID: PMC7760532 DOI: 10.3390/nano10122327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are widely used in nano-based diesel additives to decrease the emission of toxic compounds, but they have been shown to increase the emission of ultrafine particles as well as the amount of released Ce. The Organization for Economic Cooperation and Development included CeO2 NMs in the priority list of nanomaterials that require urgent evaluation, and the potential hazard of aged CeO2 NM exposure remains unexplored. Herein, human and rat sperm cells were exposed in vitro to a CeO2 NM-based diesel additive (called EnviroxTM), burned at 850 °C to mimic its release after combustion in a diesel engine. We demonstrated significant DNA damage after in vitro exposure to the lowest tested concentration (1 µg·L−1) using the alkaline comet assay (ACA). We also showed a significant increase in oxidative stress in human sperm after in vitro exposure to 1 µg·L−1 aged CeO2 NMs evaluated by the H2DCF-DA probe. Electron microscopy showed no internalization of aged CeO2 NMs in human sperm but an affinity for the head plasma membrane. The results obtained in this study provide some insight on the complex cellular mechanisms by which aged CeO2 NMs could exert in vitro biological effects on human spermatozoa and generate ROS.
Collapse
|
14
|
Cervantes-Avilés P, Huang Y, Keller AA. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. WATER RESEARCH 2019; 166:115072. [PMID: 31525511 DOI: 10.1016/j.watres.2019.115072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The concentration of silver nanoparticles (nano-Ag) in aqueous media influences the kinetics of ion release; hence, the transformation and stability of nano-Ag are also influenced. The stability, dissolution and further transformation of nano-Ag in aqueous media at predicted environmental concentrations (PECs) ≤ μg/L may differ from that reported at higher concentrations. Analytical techniques characterizing nanoparticles (NPs) at μg/L have advantages and limitations, including an inherent bias based on theoretical and analytical considerations, as well as the matrix effects. In this work, we applied nanoparticle tracking analysis (NTA), single particle ICP-MS (sp-ICP-MS), and localized surface plasmon resonance (LSPR) analysis to study the stability and dissolution of nano-Ag with different nominal sizes (20, 40, 80 and 100 nm) at PECs in synthetic wastewater (SWW). The influence of the main wastewater constituents, such as organic matter, Cl-, S2-, PO43- and NH4+, on the stability and dissolution of nano-Ag (40 nm) at PECs was also determined. Diagrams of the predominant species of silver exposed to major ligands were generated using MINTEQ. After 5 h in SWW, 20 nm nano-Ag dissolved 19.27% and 40 nm nano-Ag dissolved 14.8%. Aggregates of Ag particles were clearly noted for 80 and 100 nm nano-Ag after 5 h of exposure to SWW. Aggregates size also ranged very similar for both techniques, NTA and sp-ICP-MS, 29-211 nm and 38-241 for NTA and 48-210 and 50-220 nm, for sp-ICP-MS, respectively. Monodispersed size distribution (22-85 nm) and low dissolution (up to 5.1%) of nano-Ag at PECs were observed in presence of organic matter (5-800 μg/L) and PO43- (9.5-47.5 mg/L), while precipitation and higher dissolution (up to 74.9%) were observed in media containing either Cl- (0.07-10.64 g/L), S2- (0.32-32.1 mg/L) or NH4+ (36-90 mg/L), respectively. Speciation diagrams predict the formation of Ag2S(s) and AgCl(s), and soluble species such as AgClx(x-1)-, AgNH3+ and Ag(NH3)2+ when Ag+ at PECs in wastewater. The NTA and sp-ICP-MS were suitable techniques for sizing nano-Ag in wastewater at PECs at experimented nominal sizes. sp-ICP-MS was also useful to quantify the coexistence of Ag+ and nano-Ag. The LSPR analysis served to determine the relative persistence of original nano-Ag at PECs in the wastewater during the first 5 h after spiking.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA
| | - Yuxiong Huang
- UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; UC Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
15
|
Folarin O, Nesbeth D, Ward JM, Keshavarz-Moore E. Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy. Bioengineering (Basel) 2019; 6:bioengineering6020054. [PMID: 31248216 PMCID: PMC6631426 DOI: 10.3390/bioengineering6020054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVβ-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVβ-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVβ-Gal398 maintaining a superhelical density of −0.022, and pSVβ-Gal −0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.
Collapse
Affiliation(s)
- Olusegun Folarin
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Darren Nesbeth
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - John M Ward
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Eli Keshavarz-Moore
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Montoro Bustos AR, Pettibone JM, Murphy KE. Characterization of Nanoparticles: Advances. NANOPARTICLE DESIGN AND CHARACTERIZATION FOR CATALYTIC APPLICATIONS IN SUSTAINABLE CHEMISTRY 2019. [DOI: 10.1039/9781788016292-00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past two decades, the unique properties of engineered nanoparticles (NPs) have placed them at the centre of revolutionary advancements in many sectors of science, technology and commerce. Multi-technique and multi-disciplinary analytical approaches are required to identify, quantify, and characterize the chemical composition, size and size distribution, surface properties and the number and concentration of NPs. In this chapter, an overview of the recent advances in the characterization of NPs will be presented.
Collapse
Affiliation(s)
- A. R. Montoro Bustos
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - J. M. Pettibone
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| | - K. E. Murphy
- National Institute of Standards and Technology 100 Bureau Drive Gaithersburg MD 20899-1070 USA
| |
Collapse
|
17
|
Fernando I, Zhou Y. Concentration dependent effect of humic acid on the transformations of silver nanoparticles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Fernando I, Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. CHEMOSPHERE 2019; 216:297-305. [PMID: 30384298 DOI: 10.1016/j.chemosphere.2018.10.122] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Widespread usage of silver nanoparticles (AgNPs) in consumer products has resulted in their presence in the aquatic environment. The evolution of the properties of AgNPs with changes in pH and time in terms of colloidal stability, dissolution and aggregation were investigated in a series of short and long-term experiments using freshly synthesized uncoated AgNPs. The solution pH modifies the surface charge and the oxidative dissolution of AgNPs. As a result, the particle behavior varied in acidic and alkaline conditions. The particle size decreased with the increasing pH at a given time frame resulting in lower aggregation in the higher pH regime and increased particle stability. These results have been further proved with the direct evidence obtained using time resolved in situ imaging acquired through Liquid cell transmission electron microscopy (LCTEM). Furthermore, the magnitude of the impact of the pH on the particle properties is higher than the impact of the dissolved oxygen concentration. The derived empirical formulae reflect that the AgNP oxidation depends on both dissolved oxygen and protons while the AgNP dissolution increasing with the increase of either of these. Overall, our results highlight the impact of the solution pH on the evolution of the properties of AgNPs over the time and provide an insight to confidently extend the results to predict the environmental transformation of AgNPs from ideal systems to the real.
Collapse
Affiliation(s)
- Ishara Fernando
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; School of Civil & Environmental Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
19
|
Hou J, Ci H, Wang P, Wang C, Lv B, Miao L, You G. Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca 2+ and alginate on the aggregation of cerium oxide nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:319-328. [PMID: 30125748 DOI: 10.1016/j.jhazmat.2018.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/16/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
The effect of Ca2+ and alginate on the stability of CeO2 nanoparticles (NPs) was investigated using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA); the two methods were then compared. DLS showed rapid aggregation of CeO2 NPs in 8 mM Ca2+ solution; however, NTA showed that some primary aggregates (200-400 nm) still remained-a result that was obscured in DLS measurements. Aggregation of alginate molecules was also studied using DLS and NTA, where NTA particle concentration and video provided additional information on the alginate aggregation progress. Finally, DLS showed that in the presence of alginate, the aggregation rate and size of CeO2 NPs increased. NTA intensity measurements provided insight into a heteroaggregation and bridging mechanism. NTA particle concentration and video also showed CeO2 NPs were linked by alginate gel in high Ca2+ concentration (>4 mM). the DLS and NTA had different advantages in measuring particle size. DLS could better study the initial aggregation stage and large aggregates, while NTA could better detect small aggregates. NTA also measured particle number concentration, individual intensity, and particle motion video, which provided additional insight. Combining these two methods could help us to better understand the behavior and fate of NPs in water.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Hanlin Ci
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bowen Lv
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
20
|
Wu W, Zhang R, McClements DJ, Chefetz B, Polubesova T, Xing B. Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8792-8800. [PMID: 29969018 DOI: 10.1021/acs.est.8b01393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Knowledge of the physicochemical properties of ingestible silver nanoparticles (AgNPs) in the human gastrointestinal tract (GIT) is essential for assessing their bioavailability, bioactivity, and potential health risks. The gastrointestinal fate of AgNPs and silver ions from a commercial dietary supplement was therefore investigated using a simulated human GIT. In the mouth, no dissolution or aggregation of AgNPs occurred, which was attributed to the neutral pH and the formation of biomolecular corona, while the silver ions formed complexes with biomolecules (Ag-biomolecule). In the stomach, aggregation of AgNPs did not occur, but extensive dissolution was observed due to the low pH and the presence of Cl-. In the fed state (after meal), 72% AgNPs (by mass) dissolved, with 74% silver ions forming Ag-biomolecule and 26% forming AgCl. In the fasted state (before meal), 76% AgNPs dissolved, with 82% silver ions forming Ag-biomolecule and 18% forming AgCl. A biomolecular corona around AgNPs, comprised of mucin with multiple sulfhydryl groups, inhibited aggregation and dissolution of AgNPs. In the small intestine, no further dissolution or aggregation of AgNPs occurred, while the silver ions existed only as Ag-biomolecule. These results provide useful information for assessing the bioavailability of ingestible AgNPs and their subsequently potential health risks, and for the safe design and utilization of AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Wenhao Wu
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Ruojie Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Benny Chefetz
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Tamara Polubesova
- Department of Soil and Water Sciences , Hebrew University of Jerusalem , Rehovot 76100 , Israel
| | - Baoshan Xing
- Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
21
|
Part F, Berge N, Baran P, Stringfellow A, Sun W, Bartelt-Hunt S, Mitrano D, Li L, Hennebert P, Quicker P, Bolyard SC, Huber-Humer M. A review of the fate of engineered nanomaterials in municipal solid waste streams. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 75:427-449. [PMID: 29477652 DOI: 10.1016/j.wasman.2018.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/15/2018] [Accepted: 02/06/2018] [Indexed: 05/16/2023]
Abstract
Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area.
Collapse
Affiliation(s)
- Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Nicole Berge
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States.
| | - Paweł Baran
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Anne Stringfellow
- Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, England, United Kingdom
| | - Wenjie Sun
- Department of Civil and Environmental Engineering, Southern Methodist University, 3101 Dyer Street, Dallas, TX 75205, United States
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, 1110 S. 67th St., Omaha, NE 68182-0178, United States
| | - Denise Mitrano
- Process Engineering, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Liang Li
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States
| | - Pierre Hennebert
- National Institute for Industrial and Environmental Risk Assessment (INERIS), BP 33, 13545 Aix-en-Provence Cedex 4, France
| | - Peter Quicker
- Unit of Technologies of Fuels, RWTH Aachen University, Wüllnerstraße 2, 52062 Aachen, Germany
| | - Stephanie C Bolyard
- Environmental Research & Education Foundation, 3301 Benson Drive, Suite 101, Raleigh, NC 27609, United States
| | - Marion Huber-Humer
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| |
Collapse
|