1
|
Wu J, Zhong Y, Deng Y, Yang S, Wang H, Yang Q, Li D, Song J, Zhang H, Peng P. Sustainable Abiotic-Biotic Dechlorination of Perchloroethene with Sulfidated Nanoscale Zero-Valent Iron as Electron Donor Source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39469852 DOI: 10.1021/acs.est.3c10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Combining organohalide-respiring bacteria with nanoscale zero-valent iron (nZVI) represents a promising approach for remediating chloroethene-contaminated aquifers. However, limited information is available regarding their synergistic dechlorinating ability for chloroethenes when nZVI is sulfidated (S-nZVI) under the organic electron donor-limited conditions typically found in deep aquifers. Herein, we developed a combined system utilizing a mixed culture containing Dehalococcoides (Dhc) and S-nZVI particles, which achieved sustainable dechlorination with repeated rounds of spiking with 110 μM perchloroethene (PCE). The relative abundance of Dhc considerably increased from 5.2 to 91.5% after five rounds of spiking with PCE, as evidenced by 16S rRNA gene amplicon sequencing. S-nZVI corrosion generated hydrogen as an electron donor for Dhc and other volatile fatty acid (VFA)-producing bacteria. Electron balance analysis indicated that 68.1% of electrons from Fe0 consumed in S-nZVI were involved in dechlorination, and 6.2, 1.1, and 3.2% were stored in formate, acetate, and other VFAs, respectively. The produced acetate possibly served as a carbon source for Dhc. Metagenomic analysis revealed that Desulfovibrio, Syntrophomonas, Clostridium, and Mesotoga were likely involved in VFA production. These findings provide valuable insights into the synergistic mechanisms of biotic and abiotic dechlorination, with important implications for sustainable remediation of electron donor-limited aquifers contaminated by chloroethenes.
Collapse
Affiliation(s)
- Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yirong Deng
- China Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- China Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Huanheng Zhang
- Guangzhou Environmental Protection Investment Group Co., Ltd., Guangzhou 510016, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Wang J, Li X, Jin H, Yang S, Yu L, Wang H, Huang S, Liao H, Wang X, Yan J, Yang Y. CO-driven electron and carbon flux fuels synergistic microbial reductive dechlorination. MICROBIOME 2024; 12:154. [PMID: 39160636 PMCID: PMC11334346 DOI: 10.1186/s40168-024-01869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Carbon monoxide (CO), hypothetically linked to prebiotic biosynthesis and possibly the origin of the life, emerges as a substantive growth substrate for numerous microorganisms. In anoxic environments, the coupling of CO oxidation with hydrogen (H2) production is an essential source of electrons, which can subsequently be utilized by hydrogenotrophic bacteria (e.g., organohalide-respring bacteria). While Dehalococcoides strains assume pivotal roles in the natural turnover of halogenated organics and the bioremediation of chlorinated ethenes, relying on external H2 as their electron donor and acetate as their carbon source, the synergistic dynamics within the anaerobic microbiome have received comparatively less scrutiny. This study delves into the intriguing prospect of CO serving as both the exclusive carbon source and electron donor, thereby supporting the reductive dechlorination of trichloroethene (TCE). RESULTS The metabolic pathway involved anaerobic CO oxidation, specifically the Wood-Ljungdahl pathway, which produced H2 and acetate as primary metabolic products. In an intricate microbial interplay, these H2 and acetate were subsequently utilized by Dehalococcoides, facilitating the dechlorination of TCE. Notably, Acetobacterium emerged as one of the pivotal collaborators for Dehalococcoides, furnishing not only a crucial carbon source essential for its growth and proliferation but also providing a defense against CO inhibition. CONCLUSIONS This research expands our understanding of CO's versatility as a microbial energy and carbon source and unveils the intricate syntrophic dynamics underlying reductive dechlorination.
Collapse
Grants
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No. 41907220, 42177220, 41907287, 41977295, 41907220 National Natural Science Foundation of China
- Grant No.2023004 Zhiyuan Science Foundation of BIPT
- Grant No. 2019YFC1804400 National Key Research and Development Program of China
- Grant No. ZDBS-LY-DQC038 Key Research Program of Frontier Science, Chinese Academy of Sciences
- Grant No. 2021-MS-026 Natural Science Foundation of Liaoning Province of China
- Grant No. IAEMP202201 Major Program of Institute of Applied Ecology, Chinese Academy of Sciences
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Shujing Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- Shenyang Pharmaceutical University, Shenyang, Liaoning, 117004, China
| | - Lian Yu
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengyi Liao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuhao Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
- Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
3
|
Blázquez-Pallí N, Torrentó C, Marco-Urrea E, Garriga D, González M, Bosch M. Pilot tests for the optimization of the bioremediation strategy of a multi-layered aquifer at a multi-focus site impacted with chlorinated ethenes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173093. [PMID: 38768723 DOI: 10.1016/j.scitotenv.2024.173093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
A multi-layered aquifer in an industrial area in the north of the Iberian Peninsula is severely contaminated with the chlorinated ethenes (CEs) tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. Both shallow and deep aquifers are polluted, with two differentiated north and south CEs plumes. Hydrogeochemical and isotopic data (δ13C of CEs) evidenced natural attenuation of CEs. To select the optimal remediation strategy to clean-up the contamination plumes, laboratory treatability studies were performed, which confirmed the intrinsic biodegradation potential of the north and south shallow aquifers to fully dechlorinate CEs to ethene after injection of lactate, but also the combination of lactate and sulfidized mZVI as an alternative treatment for the north deep aquifer. In the lactate-amended microcosms, full dechlorination of CEs was accompanied by an increase in 16S rRNA gene copies of Dehalococcoides and Dehalogenimonas, and the tceA, vcrA and bvcA reductive dehalogenases. Three in situ pilot tests were implemented, which consisted in injections of lactate in the north and south shallow aquifers, and injections of lactate and sulfidized mZVI in the north deep aquifer. The hydrogeochemical, isotopic and molecular analyses used to monitor the pilot tests evidenced that results obtained mimicked the laboratory observations, albeit at different dechlorination rates. It is likely that the efficiency of the injections was affected by the amendment distribution. In addition, monitoring of the pilot tests in the shallow aquifers showed the release of CEs due to back diffusion from secondary sources, which limited the use of isotopic data for assessing treatment efficiency. In the pilot test that combined the injection of lactate and sulfidized mZVI, both biotic and abiotic pathways contributed to the production of ethene. This study demonstrates the usefulness of integrating different chemical, isotopic and biomolecular approaches for a more robust selection and implementation of optimal remediation strategies in CEs polluted sites.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain.
| | - Clara Torrentó
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Hidrogeologia (MAGH), Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain; Serra Húnter Fellowship, Generalitat de Catalunya, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193 Cerdanyola del Vallès, Spain
| | - David Garriga
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marta González
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| | - Marçal Bosch
- LITOCLEAN, S.L., Environmental site assessment and remediation, c/ Numància 36, 08029 Barcelona, Spain
| |
Collapse
|
4
|
Niu S, Li C, Gao S, Tian J, Zhang C, Li L, Huang Y, Lyu H. Biochar, microbes, and biochar-microbe synergistic treatment of chlorinated hydrocarbons in groundwater: a review. Front Microbiol 2024; 15:1443682. [PMID: 39091302 PMCID: PMC11291464 DOI: 10.3389/fmicb.2024.1443682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Dehalogenating bacteria are still deficient when targeted to deal with chlorinated hydrocarbons (CHCs) contamination: e.g., slow metabolic rates, limited substrate range, formation of toxic intermediates. To enhance its dechlorination capacity, biochar and its composites with appropriate surface activity and biocompatibility are selected for coupled dechlorination. Because of its special surface physical and chemical properties, it promotes biofilm formation by dehalogenating bacteria on its surface and improves the living environment for dehalogenating bacteria. Next, biochar and its composites provide active sites for the removal of CHCs through adsorption, activation and catalysis. These sites can be specific metal centers, functional groups or structural defects. Under microbial mediation, these sites can undergo activation and catalytic cycles, thereby increasing dechlorination efficiency. However, there is a lack of systematic understanding of the mechanisms of dechlorination in biogenic and abiogenic systems based on biochar. Therefore, this article comprehensively summarizes the recent research progress of biochar and its composites as a "Taiwan balm" for the degradation of CHCs in terms of adsorption, catalysis, improvement of microbial community structure and promotion of degradation and metabolism of CHCs. The removal efficiency, influencing factors and reaction mechanism of the degraded CHCs were also discussed. The following conclusions were drawn, in the pure biochar system, the CHCs are fixed to its surface by adsorption through chemical bonds on its surface; the biochar composite material relies on persistent free radicals and electron shuttle mechanisms to react with CHCs, disrupting their molecular structure and reducing them; biochar-coupled microorganisms reduce CHCs primarily by forming an "electron shuttle bridge" between biological and non-biological organisms. Finally, the experimental directions to be carried out in the future are suggested to explore the optimal solution to improve the treatment efficiency of CHCs in water.
Collapse
Affiliation(s)
- Shixin Niu
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Changsuo Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Shuai Gao
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Jingya Tian
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Chao Zhang
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Lixia Li
- Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong Provincial Bureau of Geology & Mineral Resources, Jinan, China
- Shandong Engineering Research Center for Environmental Protection and Remediation on Groundwater, Jinan, China
| | - Yao Huang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
5
|
Yang SY, Lai CY, Zhao HP. Influence of microbial inoculation site on trichloroethylene degradation in electrokinetic-enhanced bioremediation of low-permeability soils. ENVIRONMENTAL RESEARCH 2024; 252:118899. [PMID: 38604486 DOI: 10.1016/j.envres.2024.118899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The integration of electrokinetic and bioremediation (EK-BIO) represents an innovative approach for addressing trichloroethylene (TCE) contamination in low-permeability soil. However, there remains a knowledge gap in the impact of the inoculation approach on TCE dechlorination and the microbial response with the presence of co-existing substances. In this study, four 1-dimensional columns were constructed with different inoculation treatments. Monitoring the operation conditions revealed that a stabilization period (∼40 days) was required to reduce voltage fluctuation. The group with inoculation into the soil middle (Group B) exhibited the highest TCE dechlorination efficiency, achieving a TCE removal rate of 84%, which was 1.1-3.2 fold higher compared to the others. Among degraded products in Group B, 39% was ethylene. The physicochemical properties of the post-soil at different regions illustrated that dechlorination coincided with the Fe(III) and SO42- reduction, meaning that the EK-BIO system promoted the formation of a reducing environment. Microbial community analysis demonstrated that Dehalococcoides was only detected in the treatment of injection at soil middle or near the cathode, with abundance enriched by 2.1%-7.2%. The principal components analysis indicated that the inoculation approach significantly affected the evolution of functional bacteria. Quantitative polymerase chain reaction (qPCR) analysis demonstrated that Group B exhibited at least 2.8 and 4.2-fold higher copies of functional genes (tceA, vcrA) than those of other groups. In conclusion, this study contributes to the development of effective strategies for enhancing TCE biodechlorination in the EK-BIO system, which is particularly beneficial for the remediation of low-permeability soils.
Collapse
Affiliation(s)
- Si-Ying Yang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
He G, Chen G, Xie Y, Swift CM, Ramirez D, Cha G, Konstantinidis KT, Radosevich M, Löffler FE. Sustained bacterial N 2O reduction at acidic pH. Nat Commun 2024; 15:4092. [PMID: 38750010 PMCID: PMC11096178 DOI: 10.1038/s41467-024-48236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Nitrous oxide (N2O) is a climate-active gas with emissions predicted to increase due to agricultural intensification. Microbial reduction of N2O to dinitrogen (N2) is the major consumption process but microbial N2O reduction under acidic conditions is considered negligible, albeit strongly acidic soils harbor nosZ genes encoding N2O reductase. Here, we study a co-culture derived from acidic tropical forest soil that reduces N2O at pH 4.5. The co-culture exhibits bimodal growth with a Serratia sp. fermenting pyruvate followed by hydrogenotrophic N2O reduction by a Desulfosporosinus sp. Integrated omics and physiological characterization revealed interspecies nutritional interactions, with the pyruvate fermenting Serratia sp. supplying amino acids as essential growth factors to the N2O-reducing Desulfosporosinus sp. Thus, we demonstrate growth-linked N2O reduction between pH 4.5 and 6, highlighting microbial N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Guang He
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Diana Ramirez
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Frank E Löffler
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA.
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
7
|
Zhang Z, Ali M, Tang Z, Sun Q, Wang Q, Liu X, Yin L, Yan S, Xu M, Coulon F, Song X. Unveiling complete natural reductive dechlorination mechanisms of chlorinated ethenes in groundwater: Insights from functional gene analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134034. [PMID: 38521036 DOI: 10.1016/j.jhazmat.2024.134034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Monitored natural attenuation (MNA) of chlorinated ethenes (CEs) has proven to be a cost-effective and environment-friendly approach for groundwater remediation. In this study, the complete dechlorination of CEs with formation of ethene under natural conditions, were observed at two CE-contaminated sites, including a pesticide manufacturing facility (PMF) and a fluorochemical plant (FCP), particularly in the deeply weathered bedrock aquifer at the FCP site. Additionally, a higher abundance of CE-degrading bacteria was identified with heightened dechlorination activities at the PMF site, compared to the FCP site. The reductive dehalogenase genes and Dhc 16 S rRNA gene were prevalent at both sites, even in groundwater where no CE dechlorination was observed. vcrA and bvcA was responsible for the complete dechlorination at the PMF and FCP site, respectively, indicating the distinct contributions of functional microbial species at each site. The correlation analyses suggested that Sediminibacterium has the potential to achieve the complete dechlorination at the FCP site. Moreover, the profiles of CE-degrading bacteria suggested that dechlorination occurred under Fe3+/sulfate-reducing and nitrate-reducing conditions at the PMF and FCP site, respectively. Overall these findings provided multi-lines of evidence on the diverse mechanisms of CE-dechlorination under natural conditions, which can provide valuable guidance for MNA strategies implementation.
Collapse
Affiliation(s)
- Zhuanxia Zhang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mukhtiar Ali
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Tang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qing Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xin Liu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lipu Yin
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Song Yan
- China State Science Dingshi Environmental Engineering CO., LTD, Beijing, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Xin Song
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Yan PF, Dong S, Woodcock MJ, Manz KE, Garza-Rubalcava U, Abriola LM, Pennell KD, Cápiro NL. Biotransformation of 6:2 fluorotelomer sulfonate and microbial community dynamics in water-saturated one-dimensional flow-through columns. WATER RESEARCH 2024; 252:121146. [PMID: 38306753 DOI: 10.1016/j.watres.2024.121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Nearly all per- and polyfluoroalkyl substances (PFAS) biotransformation studies reported to date have been limited to laboratory-scale batch reactors. The fate and transport of PFAS in systems that more closely represent field conditions, i.e., in saturated porous media under flowing conditions, remain largely unexplored. This study investigated the biotransformation of 6:2 fluorotelomer sulfonate (6:2 FTS), a representative PFAS of widespread environmental occurrence, in one-dimensional water-saturated flow-through columns packed with soil obtained from a PFAS-contaminated site. The 305-day column experiments demonstrated that 6:2 FTS biotransformation was rate-limited, where a decrease in pore-water velocity from 3.7 to 2.4 cm/day, resulted in a 21.7-26.1 % decrease in effluent concentrations of 6:2 FTS and higher yields (1.0-1.4 mol% vs. 0.3 mol%) of late-stage biotransformation products (C4C7 perfluoroalkyl carboxylates). Flow interruptions (2 and 7 days) were found to enhance 6:2 FTS biotransformation during the 6-7 pore volumes following flow resumption. Model-fitted 6:2 FTS column biotransformation rates (0.039-0.041 cmw3/gs/d) were ∼3.5 times smaller than those observed in microcosms (0.137 cmw3/gs/d). Additionally, during column experiments, planktonic microbial communities remained relatively stable, whereas the composition of the attached microbial communities shifted along the flow path, which may have been attributed to oxygen availability and the toxicity of 6:2 FTS and associated biotransformation products. Genus Pseudomonas dominated in planktonic microbial communities, while in the attached microbial communities, Rhodococcus decreased and Pelotomaculum increased along the flow path, suggesting their potential involvement in early- and late-stage 6:2 FTS biotransformation, respectively. Overall, this study highlights the importance of incorporating realistic environmental conditions into experimental systems to obtain a more representative assessment of in-situ PFAS biotransformation.
Collapse
Affiliation(s)
- Peng-Fei Yan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| | - Sheng Dong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | | | - Katherine E Manz
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Linda M Abriola
- School of Engineering, Brown University, Providence, RI, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
9
|
Zhao S, Rogers MJ, Ding C, Xu G, He J. Interspecies Mobility of Organohalide Respiration Gene Clusters Enables Genetic Bioaugmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4214-4225. [PMID: 38373236 DOI: 10.1021/acs.est.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chang Ding
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße, 15, Leipzig 04318, Germany
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
10
|
Ojo AO, Castillo J, Cason ED, Valverde A. Biodegradation of chloroethene compounds under microoxic conditions. Biotechnol Bioeng 2024; 121:1036-1049. [PMID: 38116701 DOI: 10.1002/bit.28630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
The biodegradation of chloroethene compounds under oxic and anoxic conditions is well established. However, the biological reactions that take place under microoxic conditions are unknown. Here, we report the biostimulated (BIOST: addition of lactate) and natural attenuated (NAT) degradation of chloroethene compounds under microoxic conditions by bacterial communities from chloroethene compounds-contaminated groundwater. The degradation of tetrachloroethene was significantly higher in NAT (15.14% on average) than in BIOST (10.13% on average) conditions at the end of the experiment (90 days). Sporomusa, Paracoccus, Sedimentibacter, Pseudomonas, and Desulfosporosinus were overrepresented in NAT and BIOST compared to the source groundwater. The NAT metagenome contains phenol hydrolase P1 oxygenase (dmpL), catechol-1,2-dioxygenase (catA), catechol-2,3-dioxygenases (dmpB, todE, and xylE) genes, which could be involved in the cometabolic degradation of chloroethene compounds; and chlorate reductase (clrA), that could be associated with partial reductive dechlorination of chloroethene compounds. Our data provide a better understanding of the bacterial communities, genes, and pathways potentially implicated in the reductive and cometabolic degradation of chloroethene compounds under microoxic conditions.
Collapse
Affiliation(s)
- Abidemi Oluranti Ojo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein, South Africa
| | - Julio Castillo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Errol Duncan Cason
- Department of Animal Sciences, University of the Free State, Bloemfontein, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
11
|
Sun Y, Yin Y, He G, Cha G, Ayala-del-Río HL, González G, Konstantinidis KT, Löffler FE. pH selects for distinct N 2O-reducing microbiomes in tropical soil microcosms. ISME COMMUNICATIONS 2024; 4:ycae070. [PMID: 38808123 PMCID: PMC11131594 DOI: 10.1093/ismeco/ycae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024]
Abstract
Nitrous oxide (N2O), a greenhouse gas with ozone destruction potential, is mitigated by the microbial reduction to dinitrogen catalyzed by N2O reductase (NosZ). Bacteria with NosZ activity have been studied at circumneutral pH but the microbiology of low pH N2O reduction has remained elusive. Acidic (pH < 5) tropical forest soils were collected in the Luquillo Experimental Forest in Puerto Rico, and microcosms maintained with low (0.02 mM) and high (2 mM) N2O assessed N2O reduction at pH 4.5 and 7.3. All microcosms consumed N2O, with lag times of up to 7 months observed in microcosms with 2 mM N2O. Comparative metagenome analysis revealed that Rhodocyclaceae dominated in circumneutral microcosms under both N2O feeding regimes. At pH 4.5, Peptococcaceae dominated in high-N2O, and Hyphomicrobiaceae in low-N2O microcosms. Seventeen high-quality metagenome-assembled genomes (MAGs) recovered from the N2O-reducing microcosms harbored nos operons, with all eight MAGs derived from acidic microcosms carrying the Clade II type nosZ and lacking nitrite reductase genes (nirS/K). Five of the eight MAGs recovered from pH 4.5 microcosms represent novel taxa indicating an unexplored N2O-reducing diversity exists in acidic tropical soils. A survey of pH 3.5-5.7 soil metagenome datasets revealed that nosZ genes commonly occur, suggesting broad distribution of N2O reduction potential in acidic soils.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Present address: Department of Biology, Antimicrobial Discovery Center, Northeastern University, Boston, MA 02148, United States
| | - Guang He
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| | - Gyuhyon Cha
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | | | - Grizelle González
- USDA Forest Service, International Institute of Tropical Forestry, San Juan 00926, Puerto Rico
| | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
12
|
Hnatko JP, Liu C, Elsey JL, Dong S, Fortner JD, Pennell KD, Abriola LM, Cápiro NL. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216485 DOI: 10.1021/acs.est.2c04815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ bioremediation are a critical concern for comingled PFAA-chlorinated ethene plumes. Batch reactor (no soil) and microcosm (with soil) experiments, containing a PFAA mixture and bioaugmented with KB-1, were completed to assess the impact of PFAAs on chlorinated ethene organohalide respiration. In batch reactors, PFAAs delayed complete biodegradation of cis-1,2-dichloroethene (cis-DCE) to ethene. Maximum substrate utilization rates (a metric for quantifying biodegradation rates) were fit to batch reactor experiments using a numerical model that accounted for chlorinated ethene losses to septa. Fitted values for cis-DCE and vinyl chloride biodegradation were significantly lower (p < 0.05) in batch reactors containing ≥50 mg/L PFAAs. Examination of reductive dehalogenase genes implicated in ethene formation revealed a PFAA-associated change in the Dhc community from cells harboring the vcrA gene to those harboring the bvcA gene. Organohalide respiration of chlorinated ethenes was not impaired in microcosm experiments with PFAA concentrations of 38.7 mg/L and less, suggesting that a microbial community containing multiple strains of Dhc is unlikely to be inhibited by PFAAs at lower, environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jason P Hnatko
- Environmental Resources Management (ERM), Boston, Massachusetts 02108, United States
| | - Chen Liu
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jack L Elsey
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sheng Dong
- Department of Civil and Environmental Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Saffari Ghandehari S, Boyer J, Ronin D, White JR, Hapeman CJ, Jackson D, Kaya D, Torrents A, Kjellerup BV. Use of organic amendments derived from biosolids for groundwater remediation of TCE. CHEMOSPHERE 2023; 323:138059. [PMID: 36806806 DOI: 10.1016/j.chemosphere.2023.138059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Many groundwater aquifers around the world are contaminated with trichloroethene (TCE), which can be harmful to human and ecosystem health. Permeable Reactive Barriers (PRB) are commonly used to remediate TCE-contaminated groundwaters especially when a point source is ill defined. Using biosolids from wastewater treatment plants as a PRB filling material can provide a source of carbon and nutrients for dechlorinating bacterial activity. However, under the anaerobic conditions of the PRB, methanogenesis can also occur which can adversely affect reductive dechlorination. We conducted bench scale experiments to evaluate the effect of biosolids on TCE reductive dechlorination and found that methanogenesis was significantly higher in the reactors amended with biosolids, but that reductive dechlorination did not decrease. Furthermore, the microbial communities in the biosolid-enhanced reactors were more abundant with obligate dechlorinators, such as Dehalobacter and Dehalogenimonas, than the reactors amended only with the dechlorinating culture. The biosolids enhanced the presence and abundance of methanogens and acetogens, which had a positive effect on maintaining an efficient dechlorinating microbial community and provided the necessary enzymes, cofactors, and electron donors. These results indicate that waste materials such as biosolids can be turned into a valuable resource for bioremediation of TCE and likely other contaminants.
Collapse
Affiliation(s)
- Shahrzad Saffari Ghandehari
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA
| | - Jessica Boyer
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA
| | - Dana Ronin
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA
| | | | - Cathleen J Hapeman
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | | | - Devrim Kaya
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA; Oregon State University, School of Chemical, Biological, and Environmental Engineering, 105 SW 26th St #116, Corvallis, OR, 97331, USA
| | - Alba Torrents
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA
| | - Birthe V Kjellerup
- University of Maryland, Department of Civil and Environmental Engineering, 1153 Glenn L. Martin Hall, College Park, MD, 20740, USA.
| |
Collapse
|
14
|
Hwangbo M, Shao Y, Hatzinger PB, Chu KH. Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 37041665 DOI: 10.1111/1758-2229.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH4 ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH4 , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH4 monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yiru Shao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul B Hatzinger
- Aptim Federal Services, LLC, 17 Princess Road, Lawrenceville, New Jersey, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
15
|
Jin H, Huo L, Yang Y, Lv Y, Wang J, Maillard J, Holliger C, Löffler FE, Yan J. Sulfurospirillum diekertiae sp. nov., a tetrachloroethene-respiring bacterium isolated from contaminated soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 36735579 DOI: 10.1099/ijsem.0.005693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two anaerobic, tetrachloroethene- (PCE-) respiring bacterial isolates, designated strain ACSDCE
T and strain ACSTCE, were characterized using a polyphasic approach. Cells were Gram-stain-negative, motile, non-spore-forming and shared a vibrioid- to spirillum-shaped morphology. Optimum growth occurred at 30 °C and 0.1–0.4 % salinity. The pH range for growth was pH 5.5–7.5, with an optimum at pH 7.2. Hydrogen, formate, pyruvate and lactate as electron donors supported respiratory reductive dechlorination of PCE to cis-1,2-dichloroethene (cDCE) in strain ACSDCE
T and of PCE to trichloroethene (TCE) in strain ACSTCE. Both strains were able to grow with pyruvate under microaerobic conditions. Nitrate, elemental sulphur, and thiosulphate were alternative electron acceptors. Autotrophic growth was not observed and acetate served as carbon source for both strains. The major cellular fatty acids were C16 : 1
ω7c, C16 : 0, C14 : 0 and C18 : 1
ω7c. Both genomes feature a circular plasmid. Strains ACSDCE
T and ACSTCE were previously assigned to the candidate species 'Sulfurospirillum acididehalogenans'. Here, based on key genomic features and pairwise comparisons of whole-genome sequences, including average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity, strains ACSDCE
T and ACSTCE, 'Ca. Sulfurospirillum diekertiae' strains SL2-1 and SL2-2, and the unclassified
Sulfurospirillum
sp. strain SPD-1 are grouped into one distinct species separate from previously described
Sulfurospirillum
species. Compared to
Sulfurospirillum multivorans
and
Sulfurospirillum halorespirans
, which dechlorinate PCE to cDCE without substantial TCE accumulation, these five strains produce TCE or cDCE as the end product. In addition, some cellular fatty acids (e.g., C16 : 0 3OH, C17 : 0 iso 3OH, C17 : 0 2OH) were detected in strains ACSDCE
T and ACSTCE but not in other
Sulfurospirillum
species. On the basis of phylogenetic, physiological and phenotypic characteristics, 'Ca. Sulfurospirillum acididehalogenans' and 'Ca. Sulfurospirillum diekertiae' are proposed to be merged into one novel species within the genus
Sulfurospirillum
, for which the name
Sulfurospirillum diekertiae
sp. nov. is proposed. The type strain is ACSDCE
T (=JCM 33349T= KCTC 15819T=CGMCC 1.5292T).
Collapse
Affiliation(s)
- Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Leitao Huo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Yan Lv
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| | - Julien Maillard
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| | - Christof Holliger
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering, Laboratory for Environmental Biotechnology, Station 6, CH-1015 Lausanne, Switzerland
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, PR China
| |
Collapse
|
16
|
Cheng YH, Chang SC, Lai YL, Hu CC. Microbiome reengineering by four environmental factors for the rapid biodegradation of trichloroethylene. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116658. [PMID: 36399881 DOI: 10.1016/j.jenvman.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Trichloroethylene (TCE) was once a widely applied industrial solvent, but is now an infamous contaminant in groundwater. Although anaerobic reductive dechlorination is considered a greener remediation approach, the accumulation of toxic intermediates, such as vinyl chloride (VC), and a longer remediation period are highly concerning. Biostimulation and bioaugmentation have been developed to solve these problems. The former method may not be effective, and the latter may introduce foreign genes. Here, we propose a new approach by applying environmental stresses to reshape the indigenous microbiome. In this study, by using the Taguchi method, the effects of heating, pH, salinity, and desiccation were systematically examined. The optimum conditions were defined as 50 °C, pH 9, 3.50% salinity (w/v), and 21% volumetric water content (θW). The top performing group, G7, can complete the conversion of 11.81 mg/L TCE into ethene in 3.0 days with a 1.23% abundance of Dehalococcoides mccartyi 195 (Dhc 195). Redundancy analysis confirmed that temperature and salinity were the predominant factors in reorganizing the microbiomes. The microbiome structure and its effectiveness can last for at least 90 d. The repetitive selection conditions and sustainable degradation capability strongly supported that microbiome reengineering is feasible for the rapid bioremediation of TCE-contaminated environmental matrices.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Shu-Chi Chang
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan.
| | - Yan-Lin Lai
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, No. 145, Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
17
|
Czinnerova M, Stejskal V, Markova K, Nosek J, Riha J, Sevcu A. Field application of glycerol to enhance reductive dechlorination of chlorinated ethenes and its impact on microbial community. CHEMOSPHERE 2022; 309:136640. [PMID: 36181841 DOI: 10.1016/j.chemosphere.2022.136640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Chlorinated ethenes (CEs) are common and persistent contaminants of soil and groundwater. Their degradation is mostly driven by a process of bacterial reductive dechlorination (also called organohalide respiration) in anaerobic conditions. This study summarizes the outcomes of the long-term in-situ application of glycerol for the enhanced reductive dechlorination of CEs on a highly contaminated site. Glycerol injection resulted in an almost immediate increase in the abundance of fermentative Firmicutes, which produce essential sources of carbon (acetate) and electrons (H2) for organohalide-respiring bacteria (OHRB) and change groundwater conditions to be suitable for OHRB growth. The decreased redox potential of groundwater promoted also the proliferation of sulfate-reducing bacteria, which compete for electron donors with OHRB but at the same time support their growth by producing essential corrinoids and acetate. A considerable increase in the abundance of OHRB Dehalococcoides, concurrently with vinyl chloride (VC) reductase gene levels, was revealed by real time polymerase chain reaction (qPCR) method. Consistent with the shifts in bacterial populations, the concentrations of pollutants tetrachloroethylene and trichloroethylene decreased during the monitoring period, with rising levels of cis-1,2-dichloroethylene, VC, and most importantly, the final CE degradation products: ethene and ethane. Our study implies the importance of syntrophic bacterial interactions for successful and complete CE degradation and evaluates glycerol as convenient substrate to enhance reductive dechlorination and as an effective source of electrons for OHRB.
Collapse
Affiliation(s)
- Marie Czinnerova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| | - Vojtech Stejskal
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Kristyna Markova
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jaroslav Nosek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jakub Riha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Alena Sevcu
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
18
|
Ortiz-Medina JF, Yuncu B, Ross L, Elkins B. The importance of proper pH adjustment and control to achieve complete in situ enhanced reductive dechlorination. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022. [PMID: 36239064 DOI: 10.1002/ieam.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In situ bioremediation of chlorinated compounds such as perchloroethylene (PCE) and trichloroethylene (TCE) through enhanced reductive dechlorination (ERD) requires appropriate growth conditions for organohalide-respiring bacteria (OHRB). One of the most important factors controlling OHRB metabolism is groundwater pH. Dehalococcoides spp. (DHC) growth may be inhibited when pH is lower than 6.0, which can lead to the accumulation of toxic daughter compounds including cis-dichloroethylene (cDCE) and vinyl chloride (VC). Aquifer pH may decline as HCl is released during reductive dechlorination and from substrate fermentation to fatty acids and carbonic acid. In this article, we demonstrate that using proper pH adjustment and control in situ is an appropriate strategy to achieve complete ERD (i.e., complete conversion of PCE and TCE to nontoxic ethylene) in remediation sites with inherently low pH values and/or low buffering capacity. To analyze the effectiveness of this approach, field monitoring results are presented for a challenging site containing high concentrations of PCE and TCE (>10 000 µg/L and >1000 µg/L, respectively) and low aquifer pH (~4.9). Addition of a bioaugmentation culture, emulsified vegetable oil (EVO), and a colloidal buffer (CoBupHTM ) to increase pH, stimulated rapid conversion of PCE and TCE to cDCE and VC. However, further conversion of cDCE and VC was very limited. To stimulate complete conversion to ethylene, additional CoBupHTM and nutrients were injected, resulting in a rapid increase in metabolic rates, and maintained the aquifer pH at ~6.5 for more than five years, thus demonstrating that complete ERD can be achieved in sites with similar characteristics. Proper pH adjustment and control is needed to limit the accumulation of toxic intermediates, maintaining in situ bioremediation as an efficient, affordable, and environmentally friendly option to treat chlorinated compounds. Integr Environ Assess Manag 2022;00:1-6. © 2022 SETAC.
Collapse
Affiliation(s)
| | - Bilgen Yuncu
- Draper Aden Associates, Cary, North Carolina, USA
| | - Lydia Ross
- EOS Remediation LLC, Research Triangle Park, North Carolina, USA
| | - Brad Elkins
- EOS Remediation LLC, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Li X, Yang Y, Wang J, Jin H, Zhang Y, Cui Y, Song Y, Yan J. Organohalide Respiration with Diclofenac by Dehalogenimonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11266-11276. [PMID: 35921385 DOI: 10.1021/acs.est.1c08824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diclofenac (DCF) is a pharmaceutically active contaminant frequently found in aquatic ecosystems. The transformation pathways and microbiology involved in the biodegradation of DCF, particularly under anoxic conditions, remain poorly understood. Here, we demonstrated microbially mediated reductive dechlorination of DCF in anaerobic enrichment culture derived from contaminated river sediment. Over 90% of the initial 76.7 ± 3.6 μM DCF was dechlorinated at a maximum rate of 1.8 ± 0.3 μM day-1 during a 160 days' incubation. Mass spectrometric analysis confirmed that 2-(2-((2-chlorophenyl)amino)phenyl)acetic acid (2-CPA) and 2-anilinophenylacetic acid (2-APA) were formed as the monochlorinated and nonchlorinated DCF transformation products, respectively. A survey of microbial composition and Sanger sequencing revealed the enrichment and dominance of a new Dehalogenimonas population, designated as Dehalogenimonas sp. strain DCF, in the DCF-dechlorinating community. Following the stoichiometric conversion of DCF to 2-CPA (76.0 ± 2.1 μM) and 2-APA (3.7 ± 0.8 μM), strain DCF cell densities increased by 24.4 ± 4.4-fold with a growth yield of 9.0 ± 0.1 × 108 cells per μmol chloride released. Our findings expand the metabolic capability in the genus Dehalogenimonas and highlight the relevant roles of organohalide-respiring bacteria for the natural attenuation of halogenated contaminants of emerging concerns (e.g., DCF).
Collapse
Affiliation(s)
- Xiuying Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jingjing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaozhi Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiru Cui
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufang Song
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Room 512 South Building, 72 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
20
|
Tang Z, Song X, Xu M, Yao J, Ali M, Wang Q, Zeng J, Ding X, Wang C, Zhang Z, Liu X. Effects of co-occurrence of PFASs and chlorinated aliphatic hydrocarbons on microbial communities in groundwater: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128969. [PMID: 35472535 DOI: 10.1016/j.jhazmat.2022.128969] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
The effects of per- and polyfluoroalkyl substances (PFASs) and chlorinated aliphatic hydrocarbons (CAHs) co-contamination on the microbial community in the field have not been studied. In this study, we evaluated the presence of PFASs and CAHs in groundwater collected from a fluorochemical plant (FCP), and carried out Illumina MiSeq sequencing to understand the impact of mixed PFASs and CAHs on the indigenous microbial community. The sum concentrations of 20 PFASs in FCP groundwater ranged from 2.05 to 317.40 μg/L, and the highest PFOA concentration was observed in the deep aquifer (60 m below ground surface), co-contaminated by dense non-aqueous-phase liquid (DNAPL). The existence of PFASs and CAHs co-contamination in groundwater resulted in a considerable decrease in the diversity of microbial communities, while the abundance of metabolisms associated with contaminants biodegradation has increased significantly compared to the background wells. Furthermore, Acinetobacter, Pseudomonas and Arthrobacter were the dominant genera in PFASs and CAHs co-contaminated groundwater. The presence of high concentrations of PFASs and CAHs has been positively associated with the genus of Citreitalea. Finally, geochemical parameters, such as ORP, sulfate and nitrate were the key factors to shape up the structure of the microbial community and sources to rich the abundance of the potential functional bacteria.
Collapse
Affiliation(s)
- Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., LTD, Jinan 250013, China
| | - Jin Yao
- Zhongke Hualu Soil Remediation Engineering Co., LTD, Dezhou 253500, China
| | - Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congjun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
21
|
Hudari MSB, Richnow H, Vogt C, Nijenhuis I. Mini-review: effect of temperature on microbial reductive dehalogenation of chlorinated ethenes: a review. FEMS Microbiol Ecol 2022; 98:6638985. [PMID: 35810002 DOI: 10.1093/femsec/fiac081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Temperature is a key factor affecting microbial activity and ecology. An increase in temperature generally increases rates of microbial processes up to a certain threshold, above which rates decline rapidly. In the subsurface, temperature of groundwater is usually stable and related to the annual average temperature at the surface. However, anthropogenic activities related to the use of the subsurface, e.g. for thermal heat management, foremost heat storage, will affect the temperature of groundwater locally. This mini-review intends to summarize the current knowledge on reductive dehalogenation activities of the chlorinated ethenes, common urban groundwater contaminants, at different temperatures. This includes an overview of activity and dehalogenation extent at different temperatures in laboratory isolates and enrichment cultures, the effect of shifts in temperature in micro- and mesocosm studies as well as observed biotransformation at different natural and induced temperatures at contaminated field sites. Furthermore, we address indirect effects on biotransformation, e.g. changes in fermentation, methanogenesis and sulfate reduction as competing or synergetic microbial processes. Finally, we address the current gaps in knowledge regarding bioremediation of chlorinated ethenes, microbial community shifts and bottlenecks for active combination with thermal energy storage, and necessities for bioaugmentation and/or natural re-populations after exposure to high temperature.
Collapse
Affiliation(s)
- Mohammad Sufian Bin Hudari
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hans Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
22
|
Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, " Candidatus Dehalogenimonas etheniformans". Appl Environ Microbiol 2022; 88:e0044322. [PMID: 35674428 DOI: 10.1128/aem.00443-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yields of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. The isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring. IMPORTANCE Chlorinated ethenes are risk drivers at many contaminated sites, and current bioremediation efforts focus on organohalide-respiring Dehalococcoides mccartyi strains to achieve detoxification. We isolated and characterized the first non-Dehalococcoides bacterium, "Candidatus Dehalogenimonas etheniformans" strain GP, capable of metabolic reductive dechlorination of TCE, all DCE isomers, and VC to environmentally benign ethene. In addition to hydrogen, the new isolate utilizes formate as electron donor for reductive dechlorination, providing opportunities for more effective electron donor delivery to the contaminated subsurface. The discovery that a broader microbial diversity can achieve detoxification of toxic chlorinated ethenes in anoxic aquifers illustrates the potential of naturally occurring microbes for biotechnological applications.
Collapse
|
23
|
Jiang L, Yang Y, Jin H, Wang H, Swift CM, Xie Y, Schubert T, Löffler FE, Yan J. Geobacter sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3430-3440. [PMID: 35239320 DOI: 10.1021/acs.est.1c05952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chlorinated ethanes, including 1,2-dichloroethane (1,2-DCA) and 1,1,2-trichloroethane (1,1,2-TCA), are widespread groundwater contaminants. Enrichment cultures XRDCA and XRTCA derived from river sediment dihaloeliminated 1,2-DCA to ethene and 1,1,2-TCA to vinyl chloride (VC), respectively. The XRTCA culture subsequently converted VC to ethene via hydrogenolysis. Microbial community profiling demonstrated the enrichment of Geobacter 16S rRNA gene sequences in both the XRDCA and XRTCA cultures, and Dehalococcoides mccartyi (Dhc) sequences were only detected in the ethene-producing XRTCA culture. The presence of a novel Geobacter population, designated as Geobacter sp. strain IAE, was identified by the 16S rRNA gene-targeted polymerase chain reaction and Sanger sequencing. Time-resolved population dynamics attributed the dihaloelimination activity to strain IAE, which attained the growth yields of 0.93 ± 0.06 × 107 and 1.18 ± 0.14 × 107 cells per μmol Cl- released with 1,2-DCA and 1,1,2-TCA as electron acceptors, respectively. In contrast, Dhc growth only occurred during VC-to-ethene hydrogenolysis. Our findings discover a Geobacter sp. strain capable of respiring multiple chlorinated ethanes and demonstrate the involvement of a broader diversity of organohalide-respiring bacteria in the detoxification of 1,2-DCA and 1,1,2-TCA.
Collapse
Affiliation(s)
- Lisi Jiang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Huijuan Jin
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cynthia M Swift
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torsten Schubert
- Research Group Anaerobic Microbiology, Friedrich Schiller University, Jena 07743, Germany
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jun Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
24
|
Lo KH, Lu CW, Chien CC, Sheu YT, Lin WH, Chen SC, Kao CM. Cleanup chlorinated ethene-polluted groundwater using an innovative immobilized Clostridium butyricum column scheme: A pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114836. [PMID: 35272161 DOI: 10.1016/j.jenvman.2022.114836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
In this study, the developed innovative immobilized Clostridium butyricum (ICB) (hydrogen-producing bacteria) column scheme was applied to cleanup chlorinated-ethene [mainly cis-1,2-dichloroethene (cis-DCE)] polluted groundwater in situ via the anaerobic reductive dechlorinating processes. The objectives were to assess the effectiveness of the field application of ICB scheme on the cleanup of cis-DCE polluted groundwater, and characterize changes of microbial communities after ICB application. Three remediation wells and two monitor wells were installed within the cis-DCE plume. In the remediation well, a 1.2-m PVC column (radius = 2.5 cm) (filled with ICB beads) and 20 L of slow polycolloid-releasing substrate (SPRS) were supplied for hydrogen production enhancement and primary carbon supply, respectively. Groundwater samples from remediation and monitor wells were analyzed periodically for cis-DCE and its degradation byproducts, microbial diversity, reductive dehalogenase, and geochemical indicators. Results reveal that cis-DCE was significantly decreased within the ICB and SPRS influence zone. In a remediation well with ICB injection, approximately 98.4% of cis-DCE removal (initial concentration = 1.46 mg/L) was observed with the production of ethene (end-product of cis-DCE dechlorination) after 56 days of system operation. Up to 0.72 mg/L of hydrogen was observed in remediation wells after 14 days of ICB and SPRS introduction, which corresponded with the increased population of Dehalococcoides spp. (Dhc) (increased from 3.76 × 103 to 5.08 × 105 gene copies/L). Results of metagenomics analyses show that the SPRS and ICB introduction caused significant impacts on the bacterial communities, and increased Bacteroides, Citrobacter, and Desulfovibrio populations were observed, which had significant contributions to the reductive dechlorination of cis-DCE. Application of ICB could effectively result in increased populations of Dhc and RDase genes, which corresponded with improved dechlorination of cis-DCE and vinyl chloride. Introduction of ICB and SPRS could be applied as a potential in situ remedial option to enhance anaerobic dechlorination efficiencies of chlorinated ethenes.
Collapse
Affiliation(s)
- Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Yi-Tern Sheu
- General Education Center, National University of Kaohsiung, Kaohsiung City, Taiwan
| | - Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
25
|
Comparative Genomic Analysis Reveals Preserved Features in Organohalide-Respiring Sulfurospirillum Strains. mSphere 2022; 7:e0093121. [PMID: 35196120 PMCID: PMC8865925 DOI: 10.1128/msphere.00931-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sulfurospirillum species strains are frequently detected in various pristine and contaminated environments and participate in carbon, sulfur, nitrogen, and halogen elements cycling. Recently we obtained the complete genome sequences of two newly isolated Sulfurospirillum strains, ACSDCE and ACSTCE, capable of dechlorinating tetrachloroethene to cis-1,2-dichloroethene and trichloroethene under low-pH conditions, but a detailed analysis of these two genomes in reference to other Sulfurospirillum genomes for an improved understanding of Sulfurospirillum evolution and ecophysiology has not been accomplished. Here, we performed phylogenetic and pangenome analyses with 12 completed Sulfurospirillum genomes, including those of strain ACSTCE and strain ACSDCE, to unravel the evolutionary and metabolic potentials in the genus Sulfurospirillum. Based on 16S rRNA gene and whole-genome phylogenies, strains ACSTCE, ACSDCE, and JPD-1 could be clustered into a single species, proposed as “Candidatus Sulfurospirillum acididehalogenans.” TimeTree analysis suggested that the organohalide-respiring (OHR) Sulfurospirillum might acquire the ability to use chlorinated electron acceptors later than other energy conservation processes. Nevertheless, the ambiguity of the phylogenetic relations among Sulfurospirillum strains complicated the interpretation of acquisition and loss of metabolic traits. Interestingly, all OHR Sulfurospirillum genomes except the ones of Sulfurospirillum multivorans strains harbor a well-aligned and conserved region comprising the genetic components required for the organohalide respiration chain. Pangenome results further revealed that a total of 34,620 gene products, annotated from the 12 Sulfurospirillum genomes, can be classified into 4,118 homolog families and 2,075 singleton families. Various Sulfurospirillum species strains have conserved metabolisms as well as individual enzymes and biosynthesis capabilities. For instance, only the OHR Sulfurospirillum species strains possess the quinone-dependent pyruvate dehydrogenase (PoxB) gene, and only “Ca. Sulfurospirillum acididehalogenans” strains harbor urea transporter and urease genes. The plasmids found in strain ACSTCE and strain ACSDCE feature genes coding for type II toxin-antitoxin systems and transposases and are promising tools for the development of robust gene editing tools for Sulfurospirillum. IMPORTANCE Organohalide-respiring bacteria (OHRB) play critical roles in the detoxification of chlorinated pollutants and bioremediation of subsurface environments (e.g., groundwater and sediment) impacted by anthropogenic chlorinated solvents. The majority of known OHRB cannot perform reductive dechlorination below neutral pH, hampering the applications of OHRB for remediating acidified groundwater due to fermentation and reductive dechlorination. Previously we isolated two Sulfurospirillum strains, ACSTCE and ACSDCE, capable of dechlorinating tetrachloroethene under acidic conditions (e.g., pH 5.5), and obtained the complete genomes of both strains. Notably, two plasmid sequences were identified in the genomes of strain ACSTCE and strain ACSDCE that may be conducive to unraveling the genetic modification mechanisms in the genus Sulfurospirillum. Our findings improve the current understanding of Sulfurospirillum species strains regarding their biogeographic evolution, genome dynamics, and functional diversity. This study has applied values for the bioremediation of toxic and persistent organohalide pollutants in low-pH environments.
Collapse
|
26
|
Chen WT, Chen KF, Surmpalli RY, Zhang TC, Ou JH, Kao CM. Bioremediation of trichloroethylene-polluted groundwater using emulsified castor oil for slow carbon release and acidification control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1673. [PMID: 34861087 DOI: 10.1002/wer.1673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/05/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
In this study, the emulsified castor oil (ECO) substrate was developed for a long-term supplement of biodegradable carbon with pH buffering capacity to anaerobically bioremediate trichloroethylene (TCE)-polluted groundwater. The ECO was produced by mixing castor oil, surfactants (sapindales and soya lecithin [SL]), vitamin complex, and a citrate/sodium phosphate dibasic buffer system together for slow carbon release. Results of the emulsification experiments and microcosm tests indicate that ECO emulsion had uniform small droplets (diameter = 539 nm) with stable oil-in-water characteristics. ECO had a long-lasting, dispersive, negative zeta potential (-13 mv), and biodegradable properties (viscosity = 357 cp). Approximately 97% of TCE could be removed with ECO supplement after a 95-day operational period without the accumulation of TCE dechlorination byproducts (dichloroethylene and vinyl chloride). The buffer system could neutralize acidified groundwater, and citrate could be served as a primary substrate. ECO addition caused an abrupt TCE adsorption at the initial stage and the subsequent removal of adsorbed TCE. Results from the next generation sequences and real-time polymerase chain reaction (PCR) indicate that the increased microbial communities and TCE-degrading bacterial consortia were observed after ECO addition. ECO could be used as a pH-control and carbon substrate to enhance anaerobic TCE biodegradation effectively. PRACTITIONER POINTS: Emulsified castor oil (ECO) contains castor oil, surfactants, and buffer for a slow carbon release and pH control. ECO can be a long-term carbon source for trichloroethylene (TCE) dechlorination without causing acidification. TCE removal after ECO addition is due to adsorption and reductive dechlorination mechanisms.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Taiwan
| | - Rao Y Surmpalli
- Global Institute for Energy, Environment and Sustainability, Lenexa, Kansas, USA
| | - Tian C Zhang
- Department of Civil & Environmental Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, USA
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Taiwan
| |
Collapse
|
27
|
Ottosen CB, Bjerg PL, Hunkeler D, Zimmermann J, Tuxen N, Harrekilde D, Bennedsen L, Leonard G, Brabæk L, Kristensen IL, Broholm MM. Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: Application of isotopic and microbial analyses. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 240:103794. [PMID: 33735692 DOI: 10.1016/j.jconhyd.2021.103794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Over the last decade, activated carbon amendments have successfully been applied to retain chlorinated ethene subsurface contamination. The concept of this remediation technology is that activated carbon and bioamendments are injected into aquifer systems to enhance biodegradation. While the scientific basis of the technology is established, there is a need for methods to characterise and quantify the biodegradation at field scale. In this study, an integrated approach was applied to assess in situ biodegradation after the establishment of a cross sectional treatment zone in a TCE plume. The amendments were liquid activated carbon, hydrogen release donors and a Dehalococcoides containing culture. The integrated approach included spatial and temporal evaluations on flow and transport, redox conditions, contaminant concentrations, biomarker abundance and compound-specific stable isotopes. This is the first study applying isotopic and microbial techniques to assess field scale biodegradation enhanced by liquid activated carbon and bioamendments. The injection enhanced biodegradation from TCE to primarily cis-DCE. The Dehalococcoides abundances facilitated characterisation of critical zones with insufficient degradation and possible explanations. A conceptual model of isotopic data together with distribution and transport information improved process understanding; the degradation of TCE was insufficient to counteract the contaminant input by inflow into the treatment zone and desorption from the sediment. The integrated approach could be used to document and characterise the in situ degradation, and the isotopic and microbial data provided process understanding that could not have been gathered from conventional monitoring tools. However, quantification of degradation through isotope data was restricted for TCE due to isotope masking effects. The combination of various monitoring tools, applied frequently at high-resolution, with system understanding, was essential for the assessment of biodegradation in the complex, non-stationary system. Furthermore, the investigations revealed prospects for future research, which should focus on monitoring contaminant fate and microbial distribution on the sediment and the activated carbon.
Collapse
Affiliation(s)
- Cecilie B Ottosen
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark.
| | - Poul L Bjerg
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Jeremy Zimmermann
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Nina Tuxen
- The Capital Region of Denmark, Center for Regional Development, Regionsgården, Kongens Vænge 2, 3400 Hillerød, Denmark
| | | | | | - Gareth Leonard
- REGENESIS Bioremediation Products Ltd, F8 Nutgrove Office Park, Rathfarnham, Dublin 14, Ireland
| | - Lærke Brabæk
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Inge Lise Kristensen
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| | - Mette M Broholm
- Department of Environmental Engineering, Technical University of Denmark (DTU), Bygningstorvet, Building 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Choi M, Yun T, Song MJ, Kim J, Lee BH, Löffler FE, Yoon S. Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5959-5969. [PMID: 33843227 DOI: 10.1021/acs.est.0c08766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Remediation of toxic chlorinated ethenes via microbial reductive dechlorination can lead to ethene formation; however, the process stalls in acidic groundwater, leading to the accumulation of carcinogenic vinyl chloride (VC). This study explored the feasibility of cometabolic VC degradation by moderately acidophilic methanotrophs. Two novel isolates, Methylomonas sp. strain JS1 and Methylocystis sp. strain MJC1, were obtained from distinct alpine peat bogs located in South Korea. Both isolates cometabolized VC with CH4 as the primary substrate under oxic conditions at pH at or below 5.5. VC cometabolism in axenic cultures occurred in the presence (10 μM) or absence (<0.01 μM) of copper, suggesting that VC removal had little dependence on copper availability, which regulates expression and activity of soluble and particulate methane monooxygenases in methanotrophs. The model neutrophilic methanotroph Methylosinus trichosporium strain OB3b also grew and cometabolized VC at pH 5.0 regardless of copper availability. Bioaugmentation of acidic peat soil slurries with methanotroph isolates demonstrated enhanced VC degradation and VC consumption below the maximum concentration level of 2 μg L-1. Community profiling of the microcosms suggested species-specific differences, indicating that robust bioaugmentation with methanotroph cultures requires further research.
Collapse
Affiliation(s)
- Munjeong Choi
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Taeho Yun
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Jisun Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, NIBR, Incheon 22689, South Korea
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
29
|
Li Y, Zhao HP, Zhu L. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143413. [PMID: 33246720 DOI: 10.1016/j.scitotenv.2020.143413] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In recent years, nanoscale zero-valent iron (nZVI) has been gradually applied in soil remediation due to its strong reducing ability and large specific surface area. Compared to conventional remediation solutions, in situ remediation using nZVI offers some unique advantages. In this review, respective merits and demerits of each approach to nZVI synthesis are summarized in detail, particularly the most commonly used aqueous-phase reduction method featuring surface modification. In order to overcome undesired oxidation and agglomeration of fresh nZVI due to its high reactivity, modifications of nZVI have been developed such as doping with transition metals, stabilization using macromolecules or surfactants, and sulfidation. Mechanisms underlying efficient removal of organic pollutants enabled by the modified nZVI lie in alleviative oxidation and agglomeration of nZVI and enhanced electron utilization efficiency. In addition to chemical modification, other assisting methods for further improving nZVI mobility and reactivity, such as electrokinetics and microbial technologies, are evaluated. The effects of different remediation technologies and soil physicochemical properties on remediation performance of nZVI are also summarized. Overall, this review offers an up-to-date comprehensive understanding of nZVI-driven soil remediation from scientific and practical perspectives.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Svensson T, Kylin H, Montelius M, Sandén P, Bastviken D. Chlorine cycling and the fate of Cl in terrestrial environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7691-7709. [PMID: 33400105 PMCID: PMC7854439 DOI: 10.1007/s11356-020-12144-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 05/11/2023]
Abstract
Chlorine (Cl) in the terrestrial environment is of interest from multiple perspectives, including the use of chloride as a tracer for water flow and contaminant transport, organochlorine pollutants, Cl cycling, radioactive waste (radioecology; 36Cl is of large concern) and plant science (Cl as essential element for living plants). During the past decades, there has been a rapid development towards improved understanding of the terrestrial Cl cycle. There is a ubiquitous and extensive natural chlorination of organic matter in terrestrial ecosystems where naturally formed chlorinated organic compounds (Clorg) in soil frequently exceed the abundance of chloride. Chloride dominates import and export from terrestrial ecosystems while soil Clorg and biomass Cl can dominate the standing stock Cl. This has important implications for Cl transport, as chloride will enter the Cl pools resulting in prolonged residence times. Clearly, these pools must be considered separately in future monitoring programs addressing Cl cycling. Moreover, there are indications that (1) large amounts of Cl can accumulate in biomass, in some cases representing the main Cl pool; (2) emissions of volatile organic chlorines could be a significant export pathway of Cl and (3) that there is a production of Clorg in tissues of, e.g. plants and animals and that Cl can accumulate as, e.g. chlorinated fatty acids in organisms. Yet, data focusing on ecosystem perspectives and combined spatiotemporal variability regarding various Cl pools are still scarce, and the processes and ecological roles of the extensive biological Cl cycling are still poorly understood.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden.
| | - Henrik Kylin
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Malin Montelius
- Swedish Geotechnical Institute (SGI), SE-581 93, Linkoping, Sweden
| | - Per Sandén
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| |
Collapse
|
31
|
Complete Genome Sequence of Sulfurospirillum sp. Strain ACS DCE, an Anaerobic Bacterium That Respires Tetrachloroethene under Acidic pH Conditions. Microbiol Resour Announc 2021; 10:10/2/e01360-20. [PMID: 33446597 PMCID: PMC7849710 DOI: 10.1128/mra.01360-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Sulfurospirillum sp. strain ACSDCE couples growth with reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene at pH values as low as 5.5. The genome sequence of strain ACSDCE consists of a circular 2,737,849-bp chromosome and a 39,868-bp plasmid and carries 2,737 protein-coding sequences, including two reductive dehalogenase genes. Sulfurospirillum sp. strain ACSDCE couples growth with reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene at pH values as low as 5.5. The genome sequence of strain ACSDCE consists of a circular 2,737,849-bp chromosome and a 39,868-bp plasmid and carries 2,737 protein-coding sequences, including two reductive dehalogenase genes.
Collapse
|
32
|
Complete Genome Sequence of Sulfurospirillum Strain ACS TCE, a Tetrachloroethene-Respiring Anaerobe Isolated from Contaminated Soil. Microbiol Resour Announc 2020; 9:9/40/e00941-20. [PMID: 33004458 PMCID: PMC7530930 DOI: 10.1128/mra.00941-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of the tetrachloroethene-to-trichloroethene dechlorinator Sulfurospirillum sp. strain ACSTCE The genome consists of a 38.05-kb circular plasmid and a 2.69-Mb circular chromosome, which encodes 3 identical reductive dehalogenases with 91.47% amino acid identity to the PceA of Sulfurospirillum multivorans strain DSM 12446.
Collapse
|
33
|
Summer D, Schöftner P, Watzinger A, Reichenauer TG. Inhibition and stimulation of two perchloroethene degrading bacterial cultures by nano- and micro-scaled zero-valent iron particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137802. [PMID: 32199366 DOI: 10.1016/j.scitotenv.2020.137802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The pollutant perchloroethene (PCE) can often be found at urban contaminated sites. Thus in-situ clean-up methods, like remediation using zero valent iron (ZVI) or bacterial dechlorination, are preferred. During the remediation with ZVI particles anaerobic corrosion occurs as an unwanted, particle consuming side reaction with water. However, in this reaction H2 is formed, which is usually scarce during anaerobic microbial dechlorination. Dehalococcoides needs H2 for cell growth using it as an electron donor to dechlorinate chlorinated hydrocarbons. Combining application of ZVI with bacterial dechlorination can turn ZVI in a H2 donor leading to a more controllable bacterial dechlorination, a smaller amount of ZVI suspension and decreased remediation costs. In this study nano- and micro scaled ZVI particles (nZVI, mZVI) were combined in microcosms with two dechlorinating bacterial cultures. The two cultures showed different dechlorination behaviors with ethene and cis-DCE as final products. Phospholipid fatty acids (PLFA) associated with Dehalococcoides (18:1w7, 18:1w7c, 10:Me16:0) and Geobacteriaceae (16,1w7c; 15:0; 16:0) have been found in both bacterial cultures, slight differences in their abundance could explain the different dechlorinating behaviors. The combination of both bacterial cultures with mZVI led to a stimulated dechlorination process leading to about two times higher kobs for PCE dechlorination (0.01-0.05 h-1). In the otherwise cis-DCE accumulating culture complete dechlorination to ethene was achieved. While addition of nZVI inhibited both cultures. Combined with nZVI the completely dechlorinating culture produced lower amounts of dechlorinated products (3.2 μmol) as compared to the single biotic treatment (5.1 μmol). Combining the incompletely dechlorinating culture with nZVI significantly reduced the kobs,PCE (single: 8 × 10-3 ± 3 × 10-4 h-1; combination: 5 × 10-3 ± 2 × 10-4 h-1). H2 produced by nZVI and mZVI was utilized by both bacterial cultures. The particle size, resulting specific surface areas, agglomeration tendencies and reactivity appears to be crucial for the effect on microbial cells.
Collapse
Affiliation(s)
- Dorothea Summer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Philipp Schöftner
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria
| | - Andrea Watzinger
- Institute of Soil Research, Department of Forest- and Soil Sciences, Institute of Soil Sciences, University of Natural Resources and Applied Life Sciences, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Thomas G Reichenauer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln a.d. Donau, Austria.
| |
Collapse
|
34
|
Low A, Zhao S, Rogers MJ, Zemb O, Lee M, He J, Manefield M. Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. FEMS Microbiol Ecol 2020; 95:5454739. [PMID: 30980656 DOI: 10.1093/femsec/fiz055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/11/2019] [Indexed: 01/14/2023] Open
Abstract
A Desulfitobacterium sp. strain AusDCA of the Peptococcaceae family capable of respiring 1,2-dichloroethane (1,2-DCA) to ethene anaerobically with ethanol or hydrogen as electron donor at pH 5.0 with optimal range between pH 6.5-7.5 was isolated from an acidic aquifer near Sydney, Australia. Strain AusDCA is distant (94% nucleotide identity) from its nearest phylogenetic neighbor, D. metallireducens, and could represent a new species. Reference gene-based quantification of growth indicated a doubling time of 2 days in cultures buffered at pH 7.2, and a yield of 7.66 (± 4.0) × 106 cells µmol-1 of 1,2-DCA. A putative 1,2-DCA reductive dehalogenase was translated from a dcaAB locus and had high amino acid identity (97.3% for DcaA and 100% for DcaB) to RdhA1B1 of the 1,2-DCA respiring Dehalobacter strain WL. Proteomic analysis confirmed DcaA expression in the pure culture. Dehalogenation of 1,2-DCA (1.6 mM) was observed in batch cultures established from groundwater at pH 5.5 collected 38 days after in situ bioaugmentation but not in cultures established with groundwater collected at the same time from wells not receiving bioaugmentation. Overall, strain AusDCA can tolerate lower pH than previously characterized organohalide respiring bacteria and remained viable in groundwater at pH 5.5.
Collapse
Affiliation(s)
- Adrian Low
- Genome Structural Biology, Temasek Lifesciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Matthew Lee
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore 117576, Singapore
| | - Mike Manefield
- School of Chemical Engineering, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Summer D, Schöftner P, Wimmer B, Pastar M, Kostic T, Sessitsch A, Gerzabek MH, Reichenauer TG. Synergistic effects of microbial anaerobic dechlorination of perchloroethene and nano zero-valent iron (nZVI) - A lysimeter experiment. N Biotechnol 2020; 57:34-44. [PMID: 32247067 DOI: 10.1016/j.nbt.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022]
Abstract
Perchloroethene (PCE) is a hazardous and persistent groundwater pollutant. Both treatment with nanoscaled zero-valent iron (nZVI) and biological degradation by bacteria have downsides. Distribution of nZVI underground is difficult and a high percentage of injected nZVI is consumed by anaerobic corrosion, forming H2 rather than being available for PCE dechlorination. On the other hand, microbial PCE degradation can suffer from the absence of H2. This can cause the accumulation of the hazardous metabolites cis-1,2-dichloroethene (DCE) or vinylchloride (VC). The combination of chemical and biological PCE degradation is a promising approach to overcome the disadvantages of each method alone. In this lysimeter study, artificial aquifers were created to test the influence of nZVI on anaerobic microbial PCE dechlorination by a commercially available culture containing Dehalococcoides spp. under field-like conditions. The effect of the combined treatment was investigated with molasses as an additional electron source and after cessation of molasses addition. The combination of nZVI and the Dehalococcoides spp. containing culture led to a PCE discharge in the lysimeter outflow that was 4.7 times smaller than that with nZVI and 1.6 times smaller than with bacterial treatment. Moreover, fully dechlorinated end-products showed an 11-fold increase compared to nZVI and a 4.2-fold increase compared to the microbial culture. The addition of nZVI to the microbial culture also decreased the accumulation of hazardous metabolites by 1.7 (cis-DCE) and 1.2 fold (VC). The stimulatory effect of nZVI on microbial degradation was most obvious after the addition of molasses was stopped.
Collapse
Affiliation(s)
- Dorothea Summer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| | - Philipp Schöftner
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| | - Bernhard Wimmer
- Quality Management, AIT Austrian Institute of Technology GmbH, 2444, Seibersdorf, Austria.
| | - Milica Pastar
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Tanja Kostic
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Angela Sessitsch
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria
| | - Martin Hubert Gerzabek
- Department of Forestry and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, 1190, Vienna, Austria.
| | - Thomas Gerhard Reichenauer
- Center of Health & Bioresources, Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln a.d. Donau, Austria.
| |
Collapse
|
36
|
Chen WY, Wu JH, Chu SC. Deciphering microbiomes in anaerobic reactors with superior trichloroethylene dechlorination performance at low pH conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113567. [PMID: 31733964 DOI: 10.1016/j.envpol.2019.113567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Different pH conditions have been demonstrated to affect the activities of dechlorinating populations participating in the successive dechlorination of trichloroethylene to ethylene. However, the mechanism of the effect of pH conditions on the assembly of dechlorinating populations and their relations to the structure, function, and dynamics of the microbiome are unclear. In this study, we evaluated the effects of pH on microbiomes assembled in anaerobic trichloroethylene-dechlorinating reactors under neutral (pH 7.2), acidic (pH 6.2), and alkaline (pH 8.2) conditions. The results revealed that among the reactors, the acidic reactor had the highest efficiency for dechlorination without accumulation of dechlorinated metabolites, even at high loading rates. The results of high-throughput sequencing of the 16S rRNA gene indicated that the microbiomes in the 3 reactors underwent varied dynamic succession. The acidic reactor harbored a higher degree of complex microbes, dechlorinator diversity, and abundance of the Victoria subgroup of Dehalococcoides (1.2 ± 0.1 × 106 cell/mL), which were approximately 10-102-fold higher than those at neutral and alkaline conditions. The pH settings altered species-species connectivity and complexity of microbial interaction networks, with more commensal interactions in the dechlorinators of the acidic reactor. As predicted, abundances of several functional gene categories were in strong linearity with pH values, and the microbiome possessed significantly more abundant functions in the acidic reactor (P < 0.001), such as potentially stimulating hydrogen production, cobalamin synthesis, cobalt transport, transport and metabolism of amino acids and secondary metabolites, cell motility, and transcription. All results of microbiomic analyses consistently revealed the observed superior dechlorination process and suggested an association of the reductive dechlorination process with the pH-dependent microbiome. The results of this study provide a new insight into the trichloroethylene dechlorination with regards to pH, and they will be useful for improving bioremediation and management of trichloroethylene-contaminated sites.
Collapse
Affiliation(s)
- Wei-Yu Chen
- Department of Environmental Engineering, National Cheng Kung University, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, Taiwan.
| | - Shun-Chieh Chu
- Environmental Forensic Department, Sustainable Environment Technology Division, Green Energy and Environment Research Labs (GEL), Industrial Technology Research Institute, Taiwan
| |
Collapse
|
37
|
Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E. Integrative isotopic and molecular approach for the diagnosis and implementation of an efficient in-situ enhanced biological reductive dechlorination of chlorinated ethenes. WATER RESEARCH 2019; 167:115106. [PMID: 31581036 DOI: 10.1016/j.watres.2019.115106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Based on the previously observed intrinsic bioremediation potential of a site originally contaminated with perchloroethene (PCE), field-derived lactate-amended microcosms were performed to test different lactate isomers and concentrations, and find clearer isotopic and molecular parameters proving the feasibility of an in-situ enhanced reductive dechlorination (ERD) from PCE-to-ethene (ETH). According to these laboratory results, which confirmed the presence of Dehalococcoides sp. and the vcrA gene, an in-situ ERD pilot test consisting of a single injection of lactate in a monitoring well was performed and monitored for 190 days. The parameters used to follow the performance of the ERD comprised the analysis of i) hydrochemistry, including redox potential (Eh), and the concentrations of redox sensitive species, chlorinated ethenes (CEs), lactate, and acetate; ii) stable isotope composition of carbon of CEs, and sulphur and oxygen of sulphate; and iii) 16S rRNA gene sequencing from groundwater samples. Thus, it was proved that the injection of lactate promoted sulphate-reducing conditions, with the subsequent decrease in Eh, which allowed for the full reductive dechlorination of PCE to ETH in the injection well. The biodegradation of CEs was also confirmed by the enrichment in 13C and carbon isotopic mass balances. The metagenomic results evidenced the shift in the composition of the microbial population towards the predominance of fermentative bacteria. Given the success of the in-situ pilot test, a full-scale ERD with lactate was then implemented at the site. After one year of treatment, PCE and trichloroethene were mostly depleted, whereas vinyl chloride (VC) and ETH were the predominant metabolites. Most importantly, the shift of the carbon isotopic mass balances towards more positive values confirmed the complete reductive dechlorination, including the VC-to-ETH reaction step. The combination of techniques used here provides complementary lines of evidence for the diagnosis of the intrinsic biodegradation potential of a polluted site, but also to monitor the progress, identify potential difficulties, and evaluate the success of ERD at the field scale.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain; Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Joan Varias
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Marçal Bosch
- Litoclean, S.L, c/ Numància 36, 08029, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
38
|
Luo SG, Chen SC, Cao WZ, Lin WH, Sheu YT, Kao CM. Application of γ-PGA as the primary carbon source to bioremediate a TCE-polluted aquifer: A pilot-scale study. CHEMOSPHERE 2019; 237:124449. [PMID: 31376698 DOI: 10.1016/j.chemosphere.2019.124449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of using gamma poly-glutamic acid (γ-PGA) as the primary carbon and nitrogen sources to bioremediate trichloroethene (TCE)-contaminated groundwater was studied in this pilot-scale study. γ-PGA (40 L) solution was injected into the aquifer via the injection well (IW) for substrate supplement. Groundwater samples were collected from monitor wells and IW and analyzed for TCE and its byproducts, geochemical indicators, dechlorinating bacteria, and microbial diversity periodically. Injected γ-PGA resulted in an increase in total organic carbon (TOC) (up to 9820 mg/L in IW), and the TOC biodegradation caused the formation of anaerobic conditions. Increased ammonia concentration (because of amine release from γ-PGA) resulted in the neutral condition in groundwater, which benefited the growth of Dehalococcoides. The negative zeta potential and micro-scale diameter of γ-PGA allowed its globule to distribute evenly within soil pores. Up to 93% of TCE removal was observed (TCE dropped from 0.14 to 0.01 mg/L) after 59 days of γ-PGA injection, and TCE dechlorination byproducts were also biodegraded subsequently. Next generation sequence (NGS) analyses were applied to determine the dominant bacterial communities. γ-PGA supplement developed reductive dechlorinating conditions and caused variations in microbial diversity and dominant bacterial species. The dominant four groups of bacterial communities including dechlorinating bacteria, vinyl chloride degrading bacteria, hydrogen producing bacteria, and carbon biodegrading bacteria.
Collapse
Affiliation(s)
- S G Luo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - S C Chen
- Department of Life Sciences, National Central University, Chung-Li, Taiwan.
| | - W Z Cao
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - W H Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Y T Sheu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - C M Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
39
|
Puentes Jácome LA, Wang PH, Molenda O, Li YXJJ, Islam MA, Edwards EA. Sustained Dechlorination of Vinyl Chloride to Ethene in Dehalococcoides-Enriched Cultures Grown without Addition of Exogenous Vitamins and at Low pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11364-11374. [PMID: 31441646 DOI: 10.1021/acs.est.9b02339] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethene (TCE) bioremediation has been demonstrated at field sites using microbial cultures harboring TCE-respiring Dehalococcoides whose growth is cobalamin (vitamin B12)-dependent. Bioaugmentation cultures grown ex situ with ample exogenous vitamins and at neutral pH may become vitamin-limited or inhibited by acidic pH once injected into field sites, resulting in incomplete TCE dechlorination and accumulation of vinyl chloride (VC). Here, we report growth of the Dehalococcoides-containing bioaugmentation culture KB-1 in a TCE-amended mineral medium devoid of vitamins and in a VC-amended mineral medium at low pH (6.0 and 5.5). In these cultures, Acetobacterium, which can synthesize 5,6-dimethylbenzimidazole (DMB), the lower ligand of cobalamin, and Sporomusa are dominant acetogens. At neutral pH, Acetobacterium supports complete TCE dechlorination by Dehalococcoides at millimolar levels with a substantial increase in cobalamin (∼20-fold). Sustained dechlorination of VC to ethene was achieved at pH as low as 5.5. Below pH 5.0, dechlorination was not stimulated by DMB supplementation but was restored by raising pH to neutral. Cell-extract assays revealed that vinyl chloride reductase activity declines significantly below pH 6.0 and is undetectable below pH 5.0. This study highlights the importance of cobamide-producing populations and pH in microbial dechlorinating communities for successful bioremediation at field sites.
Collapse
Affiliation(s)
- Luz A Puentes Jácome
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Po-Hsiang Wang
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Olivia Molenda
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Yi Xuan Jine-Jine Li
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - M Ahsanul Islam
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
- Department of Cell and Systems Biology , University of Toronto , Toronto , Ontario M5S 3G5 , Canada
| |
Collapse
|
40
|
Targeted detection of Dehalococcoides mccartyi microbial protein biomarkers as indicators of reductive dechlorination activity in contaminated groundwater. Sci Rep 2019; 9:10604. [PMID: 31332202 PMCID: PMC6646388 DOI: 10.1038/s41598-019-46901-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Dehalococcoides mccartyi (Dhc) bacterial strains expressing active reductive dehalogenase (RDase) enzymes play key roles in the transformation and detoxification of chlorinated pollutants, including chlorinated ethenes. Site monitoring regimes traditionally rely on qPCR to assess the presence of Dhc biomarker genes; however, this technique alone cannot directly inform about dechlorination activity. To supplement gene-centric approaches and provide a more reliable proxy for dechlorination activity, we sought to demonstrate a targeted proteomics approach that can characterize Dhc mediated dechlorination in groundwater contaminated with chlorinated ethenes. Targeted peptide selection was conducted in axenic cultures of Dhc strains 195, FL2, and BAV1. These experiments yielded 37 peptides from housekeeping and structural proteins (i.e., GroEL, EF-TU, rpL7/L2 and the S-layer), as well as proteins involved in the reductive dechlorination activity (i.e., FdhA, TceA, and BvcA). The application of targeted proteomics to a defined bacterial consortium and contaminated groundwater samples resulted in the detection of FdhA peptides, which revealed active dechlorination with Dhc strain-level resolution, and the detection of RDases peptides indicating specific reductive dechlorination steps. The results presented here show that targeted proteomics can be applied to groundwater samples and provide protein level information about Dhc dechlorination activity.
Collapse
|
41
|
Rodrigues R, Betelu S, Colombano S, Masselot G, Tzedakis T, Ignatiadis I. Elucidating the dechlorination mechanism of hexachloroethane by Pd-doped zerovalent iron microparticles in dissolved lactic acid polymers using chromatography and indirect monitoring of iron corrosion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:7177-7194. [PMID: 30652270 DOI: 10.1007/s11356-019-04128-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
The degradation mechanism of the pollutant hexachloroethane (HCA) by a suspension of Pd-doped zerovalent iron microparticles (Pd-mZVI) in dissolved lactic acid polymers and oligomers (referred to as PLA) was investigated using gas chromatography and the indirect monitoring of iron corrosion by continuous measurements of pH, oxidation-reduction potential (ORP), and conductivity. The first experiments took place in the absence of HCA, to understand the evolution of the Pd-mZVI/PLA/H2O system. This showed that the evolution of pH, ORP, and conductivity is related to changes in solution chemistry due to iron corrosion and that the system is initially cathodically controlled by H+ mass transport to Pd surfaces because of the presence of an extensive PLA layer. We then investigated the effects of Pd-mZVI particles, temperature, initial HCA concentration, and PLA content on the Pd-mZVI/PLA/HCA/H2O system, to obtain a better understanding of the degradation mechanism. In all cases, HCA dechlorination first requires the production of atomic hydrogen H*-involving the accumulation of tetrachloroethylene (PCE) as an intermediate-before its subsequent reduction to non-chlorinated C2 and C4 compounds. The ratio between Pd-mZVI dosage, initial HCA concentration, and PLA content affects the rate of H* generation as well as the rate-determining step of the process. A pseudo-first-order equation can be applied when Pd-mZVI dosage is much higher than the theoretical stoichiometry (600 mg for [HCA]0 = 5-20 mg L-1). Our results indicate that the HCA degradation mechanism includes mass transfer, sorption, surface reaction with H*, and desorption of the product.
Collapse
Affiliation(s)
- Romain Rodrigues
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France.
- ADEME (French Environment and Energy Management Agency), 20 avenue du Grésillé, 49000, Angers Cedex 1, France.
- LGC (Chemical Engineering Laboratory), 118 route de Narbonne, 31062, Toulouse Cedex 9, France.
- Iris Instruments, 1 Avenue Buffon, 45100, Orléans, France.
| | - Stéphanie Betelu
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| | - Stéfan Colombano
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| | - Guillaume Masselot
- ADEME (French Environment and Energy Management Agency), 20 avenue du Grésillé, 49000, Angers Cedex 1, France
| | - Theodore Tzedakis
- LGC (Chemical Engineering Laboratory), 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Ioannis Ignatiadis
- BRGM (French Geological Survey), 3 avenue Claude Guillemin, 45060, Orléans Cedex 2, France
| |
Collapse
|
42
|
Yin Y, Yan J, Chen G, Murdoch FK, Pfisterer N, Löffler FE. Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:692-701. [PMID: 30558413 PMCID: PMC6944068 DOI: 10.1021/acs.est.8b05871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organohalide-respiring bacteria are key players for the turnover of organohalogens. At sites impacted with chlorinated ethenes, bioremediation promotes reductive dechlorination; however, stoichiometric conversion to environmentally benign ethene is not always achieved. We demonstrate that nitrous oxide (N2O), a compound commonly present in groundwater, inhibits organohalide respiration. N2O concentrations in the low micromolar range decreased dechlorination rates and resulted in incomplete dechlorination of tetrachloroethene (PCE) in Geobacter lovleyi strain SZ and of cis-1,2-dichloroethene ( cDCE) and vinyl chloride (VC) in Dehalococcoides mccartyi strain BAV1 axenic cultures. Presumably, N2O interferes with reductive dechlorination by reacting with super-reduced Co(I)-corrinoids of reductive dehalogenases, which is supported by the finding that N2O did not inhibit corrinoid-independent fumarate-to-succinate reduction in strain SZ. Kinetic analyses revealed a best fit to the noncompetitive Michaelis-Menten inhibition model and determined N2O inhibitory constants, KI, for PCE and cDCE dechlorination of 40.8 ± 3.8 and 21.2 ± 3.5 μM in strain SZ and strain BAV1, respectively. The lowest KI value of 9.6 ± 0.4 μM was determined for VC to ethene reductive dechlorination in strain BAV1, suggesting that this crucial dechlorination step for achieving detoxification is most susceptible to N2O inhibition. Groundwater N2O concentrations exceeding 100 μM are not uncommon, especially in watersheds impacted by nitrate runoff from agricultural sources. Thus, dissolved N2O measurements can inform about cDCE and VC stalls at sites impacted with chlorinated ethenes.
Collapse
Affiliation(s)
- Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Yan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, People’s Republic of China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Fadime Kara Murdoch
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nina Pfisterer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank E. Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Corresponding Author: Phone: (865) 974-4933.
| |
Collapse
|
43
|
Blázquez-Pallí N, Rosell M, Varias J, Bosch M, Soler A, Vicent T, Marco-Urrea E. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:165-173. [PMID: 30326388 DOI: 10.1016/j.envpol.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The bioremediation potential of an aquifer contaminated with tetrachloroethene (PCE) was assessed by combining hydrogeochemical data of the site, microcosm studies, metabolites concentrations, compound specific-stable carbon isotope analysis and the identification of selected reductive dechlorination biomarker genes. The characterization of the site through 10 monitoring wells evidenced that leaked PCE was transformed to TCE and cis-DCE via hydrogenolysis. Carbon isotopic mass balance of chlorinated ethenes pointed to two distinct sources of contamination and discarded relevant alternate degradation pathways in the aquifer. Application of specific-genus primers targeting Dehalococcoides mccartyi species and the vinyl chloride-to-ethene reductive dehalogenase vcrA indicated the presence of autochthonous bacteria capable of the complete dechlorination of PCE. The observed cis-DCE stall was consistent with the aquifer geochemistry (positive redox potentials; presence of dissolved oxygen, nitrate, and sulphate; absence of ferrous iron), which was thermodynamically favourable to dechlorinate highly chlorinated ethenes but required lower redox potentials to evolve beyond cis-DCE to the innocuous end product ethene. Accordingly, the addition of lactate or a mixture of ethanol plus methanol as electron donor sources in parallel field-derived anoxic microcosms accelerated dechlorination of PCE and passed cis-DCE up to ethene, unlike the controls (without amendments, representative of field natural attenuation). Lactate fermentation produced acetate at near-stoichiometric amounts. The array of techniques used in this study provided complementary lines of evidence to suggest that enhanced anaerobic bioremediation using lactate as electron donor source is a feasible strategy to successfully decontaminate this site.
Collapse
Affiliation(s)
- Natàlia Blázquez-Pallí
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain; Litoclean, S.L., c/ Numància 36, 08029, Barcelona, Spain
| | - Mònica Rosell
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Joan Varias
- Litoclean, S.L., c/ Numància 36, 08029, Barcelona, Spain
| | - Marçal Bosch
- Litoclean, S.L., c/ Numància 36, 08029, Barcelona, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), c/ Martí Franquès s/n, 08028, Barcelona, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), c/ de les Sitges s/n, 08193, Cerdanyola del Vallès, Spain.
| |
Collapse
|
44
|
Marcet TF, Cápiro NL, Yang Y, Löffler FE, Pennell KD. Impacts of low-temperature thermal treatment on microbial detoxification of tetrachloroethene under continuous flow conditions. WATER RESEARCH 2018; 145:21-29. [PMID: 30114555 DOI: 10.1016/j.watres.2018.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/20/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Coupling in situ thermal treatment (ISTT) with microbial reductive dechlorination (MRD) has the potential to enhance contaminant degradation and reduce cleanup costs compared to conventional standalone remediation technologies. Impacts of low-temperature ISTT on Dehalococcoides mccartyi (Dhc), a relevant species in the anaerobic degradation of cis-1,2-dichloroethene (cis-DCE) and vinyl chloride (VC) to nontoxic ethene, were assessed in sand-packed columns under dynamic flow conditions. Dissolved tetrachloroethene (PCE; 258 ± 46 μM) was introduced to identical columns bioaugmented with the PCE-to-ethene dechlorinating consortium KB-1®. Initial column temperatures represented a typical aquifer (15 °C) or a site undergoing low-temperature ISTT (35 °C), and were subsequently increased to 35 and 74 °C, respectively, to assess temperature impacts on reductive dechlorination activity. In the 15 °C column, PCE was transformed primarily to cis-DCE (159 ± 2 μM), which was further degraded to VC (164 ± 3 μM) and ethene (30 ± 0 μM) within 17 pore volumes (PVs) after the temperature was increased to 35 °C. Regardless of the initial column temperature, ethene constituted >50 mol% of effluent degradation products in both columns after 73-74 PVs at 35 °C, indicating that MRD performance was greatly improved under low-temperature ISTT conditions. Increasing the temperature of the column initially at 35 °C resulted in continued VC and ethene production until a temperature of approximately 43 °C was reached, at which point Dhc activity substantially decreased. The abundance of the vcrA reductive dehalogenase gene exceeded that of the bvcA gene by 1-2.5 orders of magnitude at 15 °C, but this relationship inversed at temperatures >35 °C, suggesting Dhc strain-specific responses to temperature. These findings demonstrate improved MRD performance with low-temperature thermal treatment and emphasize potential synergistic effects at sites undergoing ISTT.
Collapse
Affiliation(s)
- Tyler F Marcet
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States.
| | - Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States; Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, TN 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, United States; School of Engineering, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
45
|
Yang Y, Cápiro NL, Yan J, Marcet TF, Pennell KD, Löffler FE. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure. FEMS Microbiol Ecol 2017; 93:4411799. [DOI: 10.1093/femsec/fix130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/05/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, 325 John D. Tickle Bldg, 851 Neyland Drive, Knoxville, TN 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Natalie L. Cápiro
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Department of Microbiology, University of Tennessee, M409 Walters Life Science Bldg, Knoxville, TN 37996, USA
| | - Tyler F. Marcet
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Kurt D. Pennell
- Department of Civil and Environmental Engineering, 200 College Avenue, Tufts University, Medford, MA 02155, USA
| | - Frank E. Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, 325 John D. Tickle Bldg, 851 Neyland Drive, Knoxville, TN 37996, USA
- Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, 1416 Circle Drive, Knoxville, TN 37996, USA
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Bldg 1520, Bethel Valley Road, Oak Ridge, TN 37831, USA
- Department of Microbiology, University of Tennessee, M409 Walters Life Science Bldg, Knoxville, TN 37996, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Dr., Knoxville, TN 37996, USA
| |
Collapse
|