1
|
Yuan K, Rampal N, Adapa S, Evans BR, Bracco JN, Boebinger MG, Stack AG, Weber J. Iron Impurity Impairs the CO 2 Capture Performance of MgO: Insights from Microscopy and Machine Learning Molecular Dynamics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64233-64243. [PMID: 39526988 DOI: 10.1021/acsami.4c13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Magnesium oxide (MgO) is a promising sorbent for direct air capture (DAC) of carbon dioxide. Iron (Fe) is a common impurity in naturally occurring MgO and minerals used to produce MgO, yet a molecular-scale understanding of Fe-doping effects on carbonation is lacking. Here, we observed reduced carbonation performance in Fe-doped MgO experimentally. The energetics of adsorbing a (bi)carbonate ion on pristine and Fe-doped MgO(001) surfaces were further investigated using ab initio and machine learning potential molecular dynamics coupled with metadynamics simulations. Both pristine and Fe-doped surfaces exhibited a basic (OH-) hydration layer, where the (bi)carbonate ion adsorption is thermodynamically favorable. However, the dissolution of surface Fe had smaller energy barriers and was more favorable than Mg. Leached Fe likely neutralized the near-surface basicity, yielding reduced reactivity on Fe-doped MgO. Our observations offer critical insights for material selection and emphasize the importance of evaluating the geologic origin of earth materials used for DAC.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Nikhil Rampal
- Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Sai Adapa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jacquelyn N Bracco
- School of Earth and Environmental Sciences, Queens College, New York, New York 11367, United States
| | - Matthew G Boebinger
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Juliane Weber
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
2
|
Elzein B. Nano Revolution: "Tiny tech, big impact: How nanotechnology is driving SDGs progress". Heliyon 2024; 10:e31393. [PMID: 38818162 PMCID: PMC11137564 DOI: 10.1016/j.heliyon.2024.e31393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Nanotechnology has emerged as a powerful tool in addressing global challenges and advancing sustainable development. By manipulating materials at the nanoscale, researchers have unlocked new possibilities in various fields, including energy, healthcare, agriculture, construction, transportation, and environmental conservation. This paper explores the potential of nanotechnology and nanostructures in contributing to the achievement of the United Nations (UN) Sustainable Development Goals (SDGs) by improving energy efficiency and energy conversion, leading to a more sustainable and clean energy future, improving water purification processes, enabling access to clean drinking water for communities, enabling targeted drug delivery systems, early disease detection, and personalized medicine, thus revolutionizing healthcare, improving crop yields, efficient nutrient delivery systems, pest control mechanisms, and many other areas, therefore addressing food security issues. It also highlights the potential of nanomaterials in environmental remediation and pollution control. Therefore, by understanding and harnessing nanotechnology's potential, policymakers, researchers, and stakeholders can work together toward a more sustainable future by achieving the 17 UN SDGs.
Collapse
Affiliation(s)
- Basma Elzein
- Electrical Engineering Department, College of Engineering, University of Business and Technology, Jeddah, 21451, Saudi Arabia
- Sustainable Development Department, Global Council for Tolerance and Peace, Valetta, Malta
| |
Collapse
|
3
|
Ma Q, Zhang X, Li J, Zhang Y, Wang Q, Zeng L, Yang Y, Xie Y, Huang J. Transition Metal Catalysts for Atmospheric Heavy Metal Removal: A Review of Current Innovations and Advances. Molecules 2023; 28:7620. [PMID: 38005340 PMCID: PMC10673307 DOI: 10.3390/molecules28227620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Atmospheric heavy metal pollution presents a severe threat to public health and environmental stability. Transition metal catalysts have emerged as a potent solution for the selective capture and removal of these pollutants. This review provides a comprehensive summary of current advancements in the field, emphasizing the efficiency and specificity of nanostructured transition metals, including manganese, iron, cobalt, nickel, copper, and zinc. Looking forward, we delve into the prospective trajectory of catalyst development, underscoring the need for materials with enhanced stability, regenerability, and environmental compatibility. We project that advancements in computational materials science, nanotechnology, and green chemistry will be pivotal in discovering innovative catalysts that are economically and environmentally sustainable. The integration of smart technologies for real-time monitoring and adaptive control is anticipated to revolutionize heavy metal remediation, ensuring efficient and responsive pollution abatement strategies in the face of evolving industrial scenarios and regulatory landscapes.
Collapse
Affiliation(s)
- Qiang Ma
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Xianglong Zhang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Jie Li
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China;
| | - Qingyuan Wang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Li Zeng
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| | - Yige Yang
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610091, China
| | - Yonghong Xie
- Sichuan Province Environmental Monitoring Station, Chengdu 610091, China
| | - Jin Huang
- Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion & Utilization Technology, Key Laboratory of Drinking Water Source Protection in Chengdu Basin of Sichuan Province, Chengdu University, Chengdu 610106, China; (Q.M.); (X.Z.); (J.H.)
| |
Collapse
|
4
|
Liu M, Zhang G, Ming R, Fu X, Jiang R, Tian L, Chen X. Reconstruction of Highly-Defective MgO and Exceptional Photochemical Activity on CO 2 Upgrade in Aqueous Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303405. [PMID: 37431200 DOI: 10.1002/smll.202303405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Defects on metal oxide have attracted extensive attention in photo-/electrocatalytic CO2 reduction. Herein, porous MgO nanosheets with abundant oxygen vacancies (Vo s) and three-coordinated oxygen atoms (O3c ) at corners are reported, which reconstruct into defective MgCO3 ·3H2 O exposing rich surface unsaturated -OH groups and vacancies to initiate photocatalytic CO2 reduction to CO and CH4 . In consecutive 7-cycle tests (each run for 6 h) in pure water, CO2 conversion keeps stable. The total production of CH4 and CO attains ≈367 µmol gcata -1 h-1 . The selectivity of CH4 gradually increases from ≈3.1% (1st run) to ≈24.5% (4th run) and then remains unchanged under UV-light irradiation. With triethanolamine (3.3 vol.%) as the sacrificial agent, the total production of CO and CH4 production rapidly increases to ≈28 000 µmol gcata -1 in 2 h reaction. Photoluminescence spectra reveal that Vo s induces the formation of donor bands to promote charge carrier seperation. A series of trace spectra and theoretical analysis indicate Mg-Vo sites in the derived MgCO3 ·3H2 O are active centers, which play a crucial role in modulating CO2 adsorption and triggering photoreduction reactions. These intriguing results on defective alkaline earth oxides as potential photocatalysts in CO2 conversion may spur some exciting and novel findings in this field.
Collapse
Affiliation(s)
- Mengping Liu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ganbing Zhang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ruiqi Ming
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Xin Fu
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Ruiyi Jiang
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Lihong Tian
- Hubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Xiaobo Chen
- Division of Energy, Matter, and Systems, School of Science and Engineering, University of Missouri - Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
5
|
Refaat Z, Saied ME, Naga AOAE, Shaban SA, Hassan HB, Shehata MR, Kady FYE. Mesoporous carbon nitride supported MgO for enhanced CO 2 capture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53817-53832. [PMID: 36864335 PMCID: PMC10119236 DOI: 10.1007/s11356-023-26013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The growing concern about the environmental consequences of anthropogenic CO2 emissions significantly stimulated the research of low-cost, efficient, and recyclable solid adsorbents for CO2 capture. In this work, a series of MgO-supported mesoporous carbon nitride adsorbents with different MgO contents (xMgO/MCN) was prepared using a facile process. The obtained materials were tested for CO2 capture from 10 vol% CO2 mixture gas with N2 using a fixed bed adsorber at atmospheric pressure. At 25 ºC, the bare MCN support and unsupported MgO samples demonstrated CO2 capture capacities of 0.99, and 0.74 mmol g-1, respectively, which were lower than those of the xMgO/MCN composites.The incorporation of MgO into the MCN improved the CO2 uptake, and the 20MgO/MCN exhibited the highest CO2 capture capacity of 1.15 mmol g-1 at 25 °C. The improved performance of the 20MgO/MCN nanohybrid can be possibly assigned to the presence of high content of highly dispersed MgO NPs along with its improved textural properties in terms of high specific surface area (215 m2g-1), large pore volume (0.22 cm3g-1), and abundant mesoporous structure. The efffects of temperature and CO2 flow rate were also investigated on the CO2 capture performance of 20MgO/MCN. Temperature was found to have a negative influence on the CO2 capture capacity of the 20MgO/MCN, which decreased from 1.15 to 0.65 mmol g-1with temperature rise from 25 C to 150º C, due to the endothermicity of the process. Similarly, the capture capacity decreased from 1.15 to 0.54 mmol g-1 with the increase of the flow rate from 50 to 200 ml minute-1 respectively. Importantly, 20MgO/MCN showed excellent reusability with consistent CO2 capture capacity over five sequential sorption-desorption cycles, suggesting its suitability for the practical capture of CO2.
Collapse
Affiliation(s)
- Zakaria Refaat
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed El Saied
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Ahmed O Abo El Naga
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Seham A Shaban
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| | - Hanaa B Hassan
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Fathy Y El Kady
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
6
|
Li T, Guo H, Wang X, Wang H, Liu L, Cui W, Sun X, Liang Y. Loading CuO on the Surface of MgO with Low-coordination Basic O2-Sites for Effective Enhanced CO2Capture and Photothermal Synergistic Catalytic Reduction of CO2to Ethanol. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Fathalian F, Aarabi S, Ghaemi A, Hemmati A. Intelligent prediction models based on machine learning for CO 2 capture performance by graphene oxide-based adsorbents. Sci Rep 2022; 12:21507. [PMID: 36513731 PMCID: PMC9747901 DOI: 10.1038/s41598-022-26138-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Designing a model to connect CO2 adsorption data with various adsorbents based on graphene oxide (GO) which is produced from various forms of solid biomass, can be a promising method to develop novel and efficient adsorbents for CO2 adsorption application. In this work, the information of several GO-based solid sorbents were extracted from 17 articles aimed to develop a machine learning based model for CO2 adsorption capacity prediction. The extracted data including specific surface area, pore volume, temperature, and pressure were considered as input parameter, and CO2 uptake capacity was defined as model response, alsoseven different models, including support vector machine, gradient boosting, random forest, artificial neural network (ANN) based on multilayer perceptron (MLP) and radial basis function (RBF), Extra trees regressor and extreme gradient boosting, were employed to estimate the CO2 adsorption capacity. The best performance was obtained for ANN based on MLP method (R2 > 0.99) with hyperparameters of the following: hidden layer size = [45 35 45 45], optimizer = Adam, the learning rate = 0.003, β1 = 0.9, β2 = 0.999, epochs = 1971, and batch size = 32. To investigate CO2 uptake dependency on mentioned effective parameters, three dimensional diagrams were reported based on MLP network, also the MLP network characteristics including weight and bias matrices were reported for further application of CO2 adsorption process design. The accurately predicted capability of the generated models may considerably minimize experimental efforts, such as estimating CO2 removal efficiency as the target based on adsorbent properties to pick more efficient adsorbents without increasing processing time. Current work employed statistical analysis and machine learning to support the logical design of porous GO for CO2 separation, aiding in screening adsorbents for cleaner manufacturing.
Collapse
Affiliation(s)
- Farnoush Fathalian
- Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Sepehr Aarabi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Narmak, Tehran, 16846, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Narmak, Tehran, 16846, Iran
| | - Alireza Hemmati
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, (IUST), Narmak, Tehran, 16846, Iran.
| |
Collapse
|
8
|
Carbon Dioxide Capture through Physical and Chemical Adsorption Using Porous Carbon Materials: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to rapid industrialization and urban development across the globe, the emission of carbon dioxide (CO2) has been significantly increased, resulting in adverse effects on the climate and ecosystems. In this regard, carbon capture and storage (CCS) is considered to be a promising technology in reducing atmospheric CO2 concentration. Among the CO2 capture technologies, adsorption has grabbed significant attention owing to its advantageous characteristics discovered in recent years. Porous carbon-based materials have emerged as one of the most versatile CO2 adsorbents. Numerous research activities have been conducted by synthesizing carbon-based adsorbents using different precursors to investigate their performances towards CCS. Additionally, amine-functionalized carbon-based adsorbents have exhibited remarkable potential for selective capturing of CO2 in the presence of other gases and humidity conditions. The present review describes the CO2 emission sources, health, and environmental impacts of CO2 towards the human beings, options for CCS, and different CO2 separation technologies. Apart from the above, different synthesis routes of carbon-based adsorbents using various precursors have been elucidated. The CO2 adsorption selectivity, capacity, and reusability of the current and applied carbon materials have also been summarized. Furthermore, the critical factors controlling the adsorption performance (e.g., the effect of textural and functional properties) are comprehensively discussed. Finally, the current challenges and future research directions have also been summarized.
Collapse
|
9
|
Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduced graphene oxide is a material that has a variety of applications, especially in CO2 adsorption. The study of this research is the preparation of reduced graphene oxide with different heteroatoms and how the adsorption capacity is changed. The functionalization with other compounds bearing Si, S, N, and O was before reducing graphene oxide. Different monoliths were prepared by changing the ascorbic acid analogy and the temperature of reduction. The different porosity values, percentages of heteroatoms, and synthetic parameters show that the adsorption capacity is a complex procedure that can be affected by multiple parameters. Microporosity, different functionalities from heteroatoms, and high surface/volume of pores are the significant parameters that affect adsorption. All parameters should establish a balance among all parameters to achieve high adsorption of CO2.
Collapse
|
10
|
Li J, Zhang W, Bao A. Design of Hierarchically Structured Porous Boron/Nitrogen-Codoped Carbon Materials with Excellent Performance for CO 2 Capture. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jinhao Li
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Wunengerile Zhang
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
11
|
Singh JP, Singh V, Sharma A, Pandey G, Chae KH, Lee S. Approaches to synthesize MgO nanostructures for diverse applications. Heliyon 2020; 6:e04882. [PMID: 33024853 PMCID: PMC7527648 DOI: 10.1016/j.heliyon.2020.e04882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/26/2020] [Accepted: 09/07/2020] [Indexed: 10/27/2022] Open
Abstract
Magnesium oxide remained interesting from long time for several important phenomena like; defect induced magnetism, spin electron reflectivity, broad laser emission etc. Moreover, nanostructures of this material exhibited suitability for different kinds of applications ranging from wastewater treatment to spintronics depending upon their shape and size. In this way, researchers had grown nanostructures in the form of nanoparticles, thin films, nanotubes, nanowalls, nanobelts. Though nanoparticles and thin films are well known form of nanostructures and wide variety of synthesis approaches are available, however, limited methodology for other nanostructures are available. In order to grow these nanostructures in an optimized way an understanding of these methods is essential. Thus, this review article depicts an overview of various approaches for design of different kinds of nanostructures.
Collapse
Affiliation(s)
- Jitendra Pal Singh
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Varsha Singh
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Aditya Sharma
- Department of Physics, Manav Rachna University, Faridabad, Haryana, 121004, India
| | - Ganesh Pandey
- University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India
- Gus Global Services ( India) Private Limited, Gurugram, Haryana, 122011, India
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Xavisoptics Ltd., Pohang 37673, Republic of Korea
| |
Collapse
|
12
|
Han G, Rodriguez KM, Qian Q, Smith ZP. Acid-Modulated Synthesis of High Surface Area Amine-Functionalized MIL-101(Cr) Nanoparticles for CO 2 Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gang Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Katherine Mizrahi Rodriguez
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qihui Qian
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zachary P. Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Nityashree N, Manohara GV, Maroto-Valer MM, Garcia S. Advanced High-Temperature CO 2 Sorbents with Improved Long-Term Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33765-33774. [PMID: 32609484 DOI: 10.1021/acsami.0c08652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing novel sorbents with maximum carbonation efficiency and good cycling stability for CO2 capture is a promising route to sequester anthropogenic CO2. In this work, we have employed a green synthesis method to synthesize CaO-based sorbents suitably stabilized by MgO and supported by in situ generated carbon under inert atmosphere. The varied amounts (10-30 wt %) of MgO were used to stabilize the CaO. The supported mixed metal oxide (MMO) sorbents were screened for high-temperature CO2 capture under CO2 rich (86% CO2) and lean (14% CO2) gas streams at 650 °C and atmospheric pressure. The MMO sorbents captured 53-63 wt % of CO2 per gram of sorbent under 86 and 14% CO2, accounting for about 98% carbonation efficiency, which outperforms the CO2 capture capacity of limestone derived CaO (L-CaO) sorbents (22.8 wt %). All of the synthetic MMO sorbents showed greater capture capacity and cyclic stability when compared to benchmark L-CaO. Because of the high carbonation efficiency and cycling stability of g-Ca0.69Mg0.3O sorbent, it was tested for 100 carbonation/regeneration cycles of 5 min each under CO2 lean conditions. The g-Ca0.69Mg0.3O sorbent showed exceptional CO2 capture capacity and cycling stability and retained about 65% of its initial capture capacity after 100 cycles.
Collapse
Affiliation(s)
- N Nityashree
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - G V Manohara
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - S Garcia
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
14
|
Li P, Lin Y, Chen R, Li W. Construction of a hierarchical-structured MgO-carbon nanocomposite from a metal–organic complex for efficient CO2 capture and organic pollutant removal. Dalton Trans 2020; 49:5183-5191. [DOI: 10.1039/d0dt00722f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A hierarchical-structured porous MgO/C nanocomposite derived from a metal–organic complex performs as a remarkable adsorbent for CO2 adsorption and organic pollutant removal.
Collapse
Affiliation(s)
- Ping Li
- School of Environment Science and Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou 510275
- PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology
| | - Yunan Lin
- School of Environment Science and Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou 510275
- PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology
| | - Ran Chen
- School of Environment Science and Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou 510275
- PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology
| | - Wenqin Li
- School of Environment Science and Engineering
- Sun Yat-Sen (Zhongshan) University
- Guangzhou 510275
- PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology
| |
Collapse
|
15
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
16
|
Wu W, Li Z, Chen Y, Li W. Polydopamine-Modified Metal-Organic Framework Membrane with Enhanced Selectivity for Carbon Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3764-3772. [PMID: 30835449 DOI: 10.1021/acs.est.9b00408] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, a versatile postmodification strategy based polydopamine (PDA) grafting is reported for improving CO2 separation performance of MOF membranes. Owning to the strong bioadhesion, PDA can be deposited on the UiO-66 membrane through a simple and mild process. Since PDA impregnation in invalid nanometer-sized pinholes and grain boundaries of the MOF membrane suppress nonselective gas transports, the modified PDA/UiO-66 membrane exhibits significantly enhanced CO2/N2 and CO2/CH4 selectivities of 51.6 and 28.9, respectively, which are 2-3 times higher than the reported MOF membranes with similar permeance. Meanwhile, because PDA modification do not change UiO-66 intrinsic pores and membrane thickness is submicrometer-sized, the CO2 permeance is 2-3 orders of magnitude larger than those membranes with similar selectivity, up to 3.7 × 10-7 mol m-2 s-1 Pa-1 (1115 GPU). Moreover, the PDA/UiO-66 membrane with good reproducibility has excellent long-term stability for CO2 capture under moist condition in 36 h measurement period.
Collapse
Affiliation(s)
- Wufeng Wu
- School of Environment, and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 511443 , P.R. China
| | - Zhanjun Li
- School of Environment, and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 511443 , P.R. China
| | - Yu Chen
- Huizhou Research Institute , Sun Yat-sen University , Huizhou 516081 , P.R. China
| | - Wanbin Li
- School of Environment, and Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou 511443 , P.R. China
| |
Collapse
|
17
|
Zheng Y, Geng H, Zhang Y, Chen L, Li CC. Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts. Chemistry 2018; 24:10280-10290. [DOI: 10.1002/chem.201800625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yun Zheng
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
- Institute of Materials Research and Engineering; A*STAR (Agency for Science, Technology and Research); 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Hongbo Geng
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy; Central South University; Changsha 410083 China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|