1
|
Bao Y, Wang Y, Hu M, Hu P, Wu N, Qu X, Liu X, Huang W, Wen J, Li S, Sun M, Zhang Q. Deciphering the impact of cascade reservoirs on nitrogen transport and nitrate transformation: Insights from multiple isotope analysis and machine learning. WATER RESEARCH 2024; 268:122638. [PMID: 39432994 DOI: 10.1016/j.watres.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Construction of cascade reservoirs has altered nutrient dynamics and biogeochemical cycles, thereby influencing the composition and productivity of river ecosystems. The Lancang River (LCR), characterized by its cascade reservoir system, presents uncertainties in nitrogen transport and nitrate transformation mechanisms. Herein, we conducted monthly monitoring of hydrochemistry and multiple stable isotopes (δ15N-NO3-, δ18O-NO3-, δ18O-H2O, δD-H2O) throughout 2019 in both the natural river reach (NRR) and cascade reservoirs reach (CRR) of the LCR. Through the monthly detection of nitrogen forms and runoff in the import (M2) and export (M9) section, the average annual retention ratios for Total nitrogen (TN), Nitrate nitrogen (NO3--N), Particulate Nitrogen (PN) and Ammonium Nitrogen (NH4+-N) were about -35%, -53%, 48% and -65%, respectively. The retention rates were positively correlated with hydraulic retention time and negatively correlated with reservoir age, especially in the flood season. Compared to the NRR, the reservoir had significantly affected the nitrogen transport characteristics, especially for the large reservoirs (like Xiaowan and Nuozhadu), which enhanced phytoplankton uptake of NO3--N to form PN capabilities in the lentic environment and subsequently to precipitate or intercept it at the reservoir. This led to the overall decreasing trend of TN and PN concentrations along the CRR. The Bayesian stable isotope model quantified NO3--N sources from the NRR to the CRR. During this transition, soil nitrogen (SN) ratios decreased from 69.3% to 61.8%, while Manure & sewage (M&S) increased from 24.0% to 31.3%. Anthropogenic and natural factors, including urban sewage discharge, population density, and precipitation, were selected as key predictor variables. The eXtreme Gradient Boosting (XGBoost) model exhibited superior predictive performance for NO3--N concentrations, achieving an R2 of 0.70. These findings deepen our understanding of the impact of reservoirs on river ecology.
Collapse
Affiliation(s)
- Yufei Bao
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yuchun Wang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Mingming Hu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Peng Hu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Nanping Wu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaodong Qu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaobo Liu
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Wei Huang
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jie Wen
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Shanze Li
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Meng Sun
- State Key Laboratory of Watershed Water Cycle Simulation and Regulation, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Chen Q, Chen Y, Lin Y, Zhang J, Ni J, Xia J, Xiao L, Feng T, Ma H. Does a hydropower reservoir cascade really harm downstream nutrient regimes. Sci Bull (Beijing) 2024; 69:661-670. [PMID: 38245450 DOI: 10.1016/j.scib.2024.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
River damming is believed to largely intercept nutrients, particularly retain more phosphorus (P) than nitrogen (N), and thus harm primary productivity, fishery catches, and food security downstream, which seriously constrain global hydropower development and poverty relief in undeveloped regions and can drive geo-political disputes between nations along trans-boundary rivers. In this study, we investigated whether reservoirs can instead improve nutrient regimes downstream. We measured different species of N and P as well as microbial functions in water and sediment of cascade reservoirs in the upper Mekong River over 5 years and modelled the influx and outflux of N and P species in each reservoir. Despite partially retaining total N and total P, reservoirs increased the downstream flux of ammonium and soluble reactive phosphorus (SRP). The increase in ammonium and SRP between outflux and influx showed positive linear relationships with the hydraulic residence time of the cascade reservoirs; and the ratio of SRP to dissolved inorganic nitrogen increased along the reservoir cascade. The lentic environment of reservoirs stimulated algae-mediated conversion of nitrate into ammonium in surface water; the hypoxic condition and the priming effect of algae-induced organic matter enhanced release of ammonium from sediment; the synergy of microbial phosphorylation, reductive condition and sediment geochemical properties increased release of SRP. This study is the first to provide solid evidence that hydropower reservoirs improve downstream nutrient bioavailability and N-P balance through a process of retention-transformation-transport, which may benefit primary productivity. These findings could advance our understanding of the eco-environmental impacts of river damming.
Collapse
Affiliation(s)
- Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210024, China.
| | - Yuchen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; School of the Environment, Nanjing University, Nanjing 210008, China
| | - Yuqing Lin
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210024, China
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210024, China.
| | - Jinren Ni
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100091, China
| | - Jun Xia
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Lin Xiao
- School of the Environment, Nanjing University, Nanjing 210008, China
| | - Tao Feng
- Yangtze Institute for Conservation and Green Development, Nanjing 210024, China
| | - Honghai Ma
- Yangtze Institute for Conservation and Green Development, Nanjing 210024, China
| |
Collapse
|
3
|
Ren H, Zhu G, Ni J, Shen M, Show PL, Sun FF. Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy. CHEMOSPHERE 2022; 307:135533. [PMID: 35787884 DOI: 10.1016/j.chemosphere.2022.135533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Microalgae biomass production with starch wastewater (SW) is a promising approach to realize waste recovery and cost reduction due to the inherent copious nutrients and nontoxic compounds in SW. However, the application of this technique is significantly hindered by low biomass production on account of the poor photosynthetic efficiency of microalgae. In this regard, we proposed a photo-regulation strategy characterized by the adjusting of numbers of light/dark (L/D) cycles, and compositions of light wavelength, which was proved to be an effective method for stimulating intracellular photo electron transfer and enhancing photosynthetic efficiency, to boost microalgae biomass accumulation. Additionally, responses of the microalgae photo-biochemical conversion, and the wastewater treatment performance at various number of L/D cycles and light wavelengths were discussed. The experimental results indicated that the biomass production increased when the L/D period was increased from 2 h:2 h-12 h:12 h. When the L/D period was 2 h:2 h, the biomass production reached a maximum value of 1.28 g L-1, which was 19.6% higher than that of the control group when the L/D period was 12 h:12 h. Furthermore, with respect to microalgae growth under monochromatic light, the maximum biomass concentration (1.25 g L-1) and lipid content (32.2%) of Chlorella were achieved under blue light; whereas, the minimum values were attained under red light (1.05 g L-1 and 19.3%, respectively). When the red light and blue light were mixed and supplied, the microalgae biomass productivity was higher than that under white light, and the highest lipid productivity was 109.0 mg-1 L-1 d under a blue: red ratio of 2:1. Moreover, gas chromatography analysis demonstrated that the methyl in the range of C16-C18 in the system was higher than 70%. Fatty acid methyl esters (FAMEs) containing palmitic acid (C16:0) and oleic acid (C18:1) are beneficial for production of biodiesel, and the quality of fatty acid methyl ester used in biodiesel production can be improved using microalgae cultured under the mixed wavelengths of blue and red. Finally, Chlorella was cultured in PBR and reached the peak concentration of 2.45 g L-1 by semi-continuous process with the HRT regulation.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China.
| | - Guoqing Zhu
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Jing Ni
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Mingwei Shen
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
|
5
|
Perera IA, Abinandan S, Subashchandrabose SR, Venkateswarlu K, Naidu R, Megharaj M. Impact of Nitrate and Ammonium Concentrations on Co-Culturing of Tetradesmus obliquus IS2 with Variovorax paradoxus IS1 as Revealed by Phenotypic Responses. MICROBIAL ECOLOGY 2022; 83:951-959. [PMID: 34363515 DOI: 10.1007/s00248-021-01832-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Mutual interactions in co-cultures of microalgae and bacteria are well known for establishing consortia and nutrient uptake in aquatic habitats, but the phenotypic changes in terms of morphological, physiological, and biochemical attributes that drive these interactions have not been clearly understood. In this novel study, we demonstrated the phenotypic response in a co-culture involving a microalga, Tetradesmus obliquus IS2, and a bacterium, Variovorax paradoxus IS1, grown with varying concentrations of two inorganic nitrogen sources. Modified Bold's basal medium was supplemented with five ratios (%) of NO3-N:NH4-N (100:0, 75:25, 50:50, 25:75, and 0:100), and by maintaining N:P Redfield ratio of 16:1. The observed morphological changes in microalga included an increase in granularity and a broad range of cell sizes under the influence of increased ammonium levels. Co-culturing in presence of NO3-N alone or combination with NH4-N up to equimolar concentrations resulted in complete nitrogen uptake, increased growth in both the microbial strains, and enhanced accumulation of carbohydrates, proteins, and lipids. Total chlorophyll content in microalga was also significantly higher when it was grown as a co-culture with NO3-N and NH4-N up to a ratio of 50:50. Significant upregulation in the synthesis of amino acids and sugars and downregulation of organic acids were evident with higher ammonium uptake in the co-culture, indicating the regulation of carbon and nitrogen assimilation pathways and energy synthesis. Our data suggest that the co-culture of strains IS1 and IS2 could be exploited for effluent treatment by considering the concentrations of inorganic sources, particularly ammonium, in the wastewaters.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Sudharsanam Abinandan
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for, Environmental Remediation (GCER), School of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, NSW, 2308, Callaghan, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
6
|
Biodiversity and disease risk in an algal biofuel system: An experimental test in outdoor ponds using a before-after-control-impact (BACI) design. PLoS One 2022; 17:e0267674. [PMID: 35482813 PMCID: PMC9049517 DOI: 10.1371/journal.pone.0267674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
For outdoor cultivation of algal feedstocks to become a commercially viable and sustainable option for biofuel production, algal cultivation must maintain high yields and temporal stability in environmentally variable outdoor ponds. One of the main challenges is mitigating disease outbreaks that leads to culture crashes. Drawing on predictions from the ‘dilution effect’ hypothesis, in which increased biodiversity is thought to reduce disease risk in a community, a teste of whether algal polycultures would reduce disease risk and improve feedstock production efficiencies compared to monocultures was performed. While the positive benefits of biodiversity on disease risk have been demonstrated in various systems, to the best of our knowledge this is the first test in an algal biofuel system. Here, the results a before-after-control-impact (BACI) experimental design to compare mean monoculture (control) and polyculture (impact) yield, stability, and productivity before and after fungal infection when grown in 400-L outdoor raceway ponds are presented. It has been found that polycultures did not experience a reduction in disease risk compared to monocultures or differ in production efficiencies throughout the course of the 43-day experiment. These results show that polyculture feedstocks can maintain similar levels of productivity, stability, and disease resistance to that of a monoculture. Determining whether these results are generalizable or represent one case study requires additional outdoor experiments using a larger variety of host and pathogen species.
Collapse
|
7
|
Bradley IM, Li Y, Guest JS. Solids Residence Time Impacts Carbon Dynamics and Bioenergy Feedstock Potential in Phototrophic Wastewater Treatment Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12574-12584. [PMID: 34478624 DOI: 10.1021/acs.est.1c02590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of wastewater-grown microalgae has the potential to reduce the cost of algae-derived biofuels while simultaneously advancing nutrient recovery at water resource recovery facilities (WRRFs). However, a significant barrier has been the low yield and high protein content of phototrophic biomass. Here, we examine the use of solids residence time (SRT) as a selective pressure in driving biochemical composition, yield, biofuel production, and WRRF nutrient management cost. We cultivated mixed phototrophic communities in controlled, laboratory-scale photobioreactors on the local WRRF secondary effluent to link SRT with biochemical composition and techno-economic analysis to yield insights into biomass composition and downstream processing effects on minimum fuel selling price. SRT significantly impacted biochemical composition, with total and dynamic carbohydrates the highest at low SRT (total carbohydrates being 0.60 and 0.32 mg-carbohydrate·mg-protein-1 at SRT 5 and 15 days, respectively). However, there were distinct differences between extant, steady-state performance and intrinsic potential, and longer SRT communities were able to accumulate significant fractions (51% on an ash-free dry weight basis, AFDW %) of carbohydrate reserves under nutrient starvation. Overall, hydrothermal liquefaction (HTL) was found to be more suitable than lipid extraction for hydrotreating (LEH) and combined algal processing (CAP) for conversion of biomass to fuels, but LEH and CAP became more competitive when intrinsic carbon storage potential was realized. The results suggest that the use of algae for nutrient recovery could reduce the nutrient management cost at WRRFs through revenue from algal biofuels, with HTL resulting in a net revenue.
Collapse
Affiliation(s)
- Ian M Bradley
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, 212 Ketter Hall, Buffalo, New York 14260, United States
- Research and Education in Energy, Environment and Water Institute, University at Buffalo, 112 Cooke Hall, Buffalo, New York 14260, United States
| | - Yalin Li
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
| | - Jeremy S Guest
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, 1101 West Peabody Drive, Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
9
|
Mandal S, Shurin JB, Efroymson RA, Mathews TJ. Functional divergence in nitrogen uptake rates explains diversity–productivity relationship in microalgal communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shovon Mandal
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | | | - Rebecca A. Efroymson
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| | - Teresa J. Mathews
- Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA
| |
Collapse
|