1
|
Kong FX, Chen YX, Wang YK, Chen JF. Simultaneous electrocoagulation and E-peroxone coupled with ultrafiltration membrane for shale gas produced water treatment. CHEMOSPHERE 2024; 355:141834. [PMID: 38565376 DOI: 10.1016/j.chemosphere.2024.141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.
Collapse
Affiliation(s)
- Fan-Xin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - Yu-Xuan Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Yu-Kun Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Jin-Fu Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
2
|
Zhang H, Han X, Wang G, Mao H, Chen X, Zhou L, Huang D, Zhang F, Yan X. Spatial distribution and driving factors of groundwater chemistry and pollution in an oil production region in the Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162635. [PMID: 36889386 DOI: 10.1016/j.scitotenv.2023.162635] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Concerns have been raised on the deterioration of groundwater quality associated with anthropogenic impacts such as oil extraction and overuse of fertilizers. However, it is still difficult to identify groundwater chemistry/pollution and driving forces in regional scale since both natural and anthropogenic factors are spatially complex. This study, combining self-organizing map (SOM, combined with K-means algorithm) and principal component analysis (PCA), attempted to characterize the spatial variability and driving factors of shallow groundwater hydrochemistry in Yan'an area of Northwest China where diverse land use types (e.g., various oil production sites and agriculture lands) coexist. Based on the major and trace elements (e.g., Ba, Sr, Br, Li) and total petroleum hydrocarbons (TPH), groundwater samples were classified into four clusters with obvious geographical and hydrochemical characteristics by using SOM - K-means clustering: heavily oil-contaminated groundwater (Cluster 1), slightly oil-contaminated groundwater (Cluster 2), least-polluted groundwater (Cluster 3) and NO3- contaminated groundwater (Cluster 4). Noteworthily, Cluster 1, located in a river valley with long-term oil exploitation, had the highest levels of TPH and potentially toxic elements (Ba, Sr). Multivariate analysis combined with ion ratios analysis were used to determine the causes of these clusters. The results revealed that the hydrochemical compositions in Cluster 1 were mainly caused by the oil-related produced water intrusion into the upper aquifer. The elevated NO3- concentrations in Cluster 4 were induced by agricultural activities. Water-rock interactions (e.g., carbonate as well as silicate dissolution and precipitation) also shaped the chemical constituents of groundwater in clusters 2, 3, and 4. In addition, SO42--related processes (redox, precipitation of sulfate minerals) also affected groundwater chemical compositions in Cluster 1. This work provides the insight into the driving factors of groundwater chemistry and pollution which could contribute to groundwater sustainable management and protection in this area and other oil extraction areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xu Han
- Geology Institute of China Chemical Geology and Mine Bureau, Beijing 100028, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Ling Zhou
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dandan Huang
- School of Water Resources & Environment Engineering, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Fan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Xin Yan
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
3
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
4
|
Jin B, Han M, Huang C, Arp HPH, Zhang G. Towards improved characterization of the fate and impact of hydraulic fracturing chemicals to better secure regional water quality. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:497-503. [PMID: 35404376 DOI: 10.1039/d2em00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydraulic fracturing (HF) of shale and other permeable rock formations to extract gas and oil is a water-intensive process that returns a significant amount of flowback and produced water (FPW). Due to the complex chemical composition of HF fluids and FPW, this process has led to public concern on the impacts of FPW disposal, spillage and spreading to regional freshwater resources, in particular to shallow groundwater aquifers. To address this, a better understanding of the chemical composition of HF fluid and FPW is needed, as well as the environmental fate properties of the chemical constituents, such as their persistence, mobility and toxicity (PMT) properties. Such research would support risk-based management strategies for the protection of regional water quality, including both the phase-out of problematic chemicals and better hydraulic safeguards against FPW contamination. This article presents recent strategies to advance the assessment and analysis of HF and FPW associated organic chemicals.
Collapse
Affiliation(s)
- Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Min Han
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Chen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
- University of Chinese Academy of Sciences, Beijing 10069, China
| | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box 3930 Ullevaal Stadion, N-0806 Oslo, Norway.
- Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
5
|
Faber AH, Brunner AM, Dingemans MML, Baken KA, Kools SAE, Schot PP, de Voogt P, van Wezel AP. Comparing conventional and green fracturing fluids by chemical characterisation and effect-based screening. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148727. [PMID: 34323756 DOI: 10.1016/j.scitotenv.2021.148727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
There is public and scientific concern about air, soil and water contamination and possible adverse environmental and human health effects as a result of hydraulic fracturing activities. The use of greener chemicals in fracturing fluid aims to mitigate these effects. This study compares fracturing fluids marketed as either 'conventional' or 'green', as assessed by their chemical composition and their toxicity in bioassays. Chemical composition was analysed via non-target screening using liquid chromatography - high resolution mass spectrometry, while toxicity was evaluated by the Ames fluctuation test to assess mutagenicity and CALUX reporter gene assays to determine specific toxicity. Overall, the results do not indicate that the 'green' fluids are less harmful than the 'conventional' ones. First, there is no clear indication that the selected green fluids contain chemicals present at lower concentrations than the selected conventional fluids. Second, the predicted environmental fate of the identified compounds does not seem to be clearly distinct between the 'green' and 'conventional' fluids, based on the available data for the top five chemicals based on signal intensity that were tentatively identified. Furthermore, Ames fluctuation test results indicate that the green fluids have a similar genotoxic potential than the conventional fluids. Results of the CALUX reporter gene assays add to the evidence that there is no clear difference between the green and conventional fluids. These results do not support the claim that currently available and tested green-labeled fracturing fluids are environmentally more friendly alternatives to conventional fracturing fluids.
Collapse
Affiliation(s)
- Ann-Hélène Faber
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands; KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | | | - Milou M L Dingemans
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | | | - Paul P Schot
- Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | - Pim de Voogt
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- KWR Water Research Institute, Nieuwegein, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Aghababaei M, Luek JL, Ziemkiewicz PF, Mouser PJ. Toxicity of hydraulic fracturing wastewater from black shale natural-gas wells influenced by well maturity and chemical additives. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:621-632. [PMID: 33908986 DOI: 10.1039/d1em00023c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydraulic fracturing of deep shale formations generates large volumes of wastewater that must be managed through treatment, reuse, or disposal. Produced wastewater liberates formation-derived radionuclides and contains previously uncharacterized organohalides thought to be generated within the shale well, both posing unknown toxicity to human and ecological health. Here, we assess the toxicity of 42 input media and produced fluid samples collected from four wells in the Utica formation and Marcellus Shale using two distinct endpoint screening assays. Broad spectrum acute toxicity was assessed using a bioluminescence inhibition assay employing the halotolerant bacterium Aliivibrio fischeri, while predictive mammalian cytotoxicity was evaluated using a N-acetylcysteine (NAC) thiol reactivity assay. The acute toxicity and thiol reactivity of early-stage flowback was higher than later produced fluids, with levels diminishing through time as the natural gas wells matured. Acute toxicity of early stage flowback and drilling muds were on par with the positive control, 3,5-dichlorophenol (6.8 mg L-1). Differences in both acute toxicity and thiol reactivity between paired natural gas well samples were associated with specific chemical additives. Samples from wells containing a larger diversity and concentration of organic additives resulted in higher acute toxicity, while samples from a well applying a higher composition of ammonium persulfate, a strong oxidizer, showed greater thiol reactivity, predictive of higher mammalian toxicity. Both acute toxicity and thiol reactivity are consistently detected in produced waters, in some cases present up to nine months after hydraulic fracturing. These results support that specific chemical additives, the reactions generated by the additives, or the constituents liberated from the formation by the additives contribute to the toxicity of hydraulic fracturing produced waters and reinforces the need for careful consideration of early produced fluid management.
Collapse
Affiliation(s)
- Mina Aghababaei
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| | - Jenna L Luek
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| | - Paul F Ziemkiewicz
- West Virginia Water Research Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, USA.
| |
Collapse
|
7
|
Chen M, Rholl CA, He T, Sharma A, Parker KM. Halogen Radicals Contribute to the Halogenation and Degradation of Chemical Additives Used in Hydraulic Fracturing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1545-1554. [PMID: 33449615 DOI: 10.1021/acs.est.0c03685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In hydraulic fracturing fluids, the oxidant persulfate is used to generate sulfate radical to break down polymer-based gels. However, sulfate radical may be scavenged by high concentrations of halides in hydraulic fracturing fluids, producing halogen radicals (e.g., Cl•, Cl2•-, Br•, Br2•-, and BrCl•-). In this study, we investigated how halogen radicals alter the mechanisms and kinetics of the degradation of organic chemicals in hydraulic fracturing fluids. Using a radical scavenger (i.e., isopropanol), we determined that halogenated products of additives such as cinnamaldehyde (i.e., α-chlorocinnamaldehyde and α-bromocinnamaldehyde) and citrate (i.e., trihalomethanes) were generated via a pathway involving halogen radicals. We next investigated the impact of halogen radicals on cinnamaldehyde degradation rates. The conversion of sulfate radicals to halogen radicals may result in selective degradation of organic compounds. Surprisingly, we found that the addition of halides to convert sulfate radicals to halogen radicals did not result in selective degradation of cinnamaldehyde over other compounds (i.e., benzoate and guar), which may challenge the application of radical selectivity experiments to more complex molecules. Overall, we find that halogen radicals, known to react in advanced oxidative treatment and sunlight photochemistry, also contribute to the unintended degradation and halogenation of additives in hydraulic fracturing fluids.
Collapse
Affiliation(s)
- Moshan Chen
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Carter A Rholl
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tianchen He
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Aditi Sharma
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Liberatore HK, Westerman DC, Allen JM, Plewa MJ, Wagner ED, McKenna AM, Weisbrod CR, McCord JP, Liberatore RJ, Burnett DB, Cizmas LH, Richardson SD. High-Resolution Mass Spectrometry Identification of Novel Surfactant-Derived Sulfur-Containing Disinfection Byproducts from Gas Extraction Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9374-9386. [PMID: 32600038 PMCID: PMC7469867 DOI: 10.1021/acs.est.0c01997] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Introduction of oil and gas extraction wastewaters (OGWs) to surface water leads to elevated halide levels from geogenic bromide and iodide, as well as enhanced formation of brominated and iodinated disinfection byproducts (DBPs) when treated. OGWs contain high levels of chemical additives used to optimize extraction activities, such as surfactants, which have the potential to serve as organic DBP precursors in OGW-impacted water sources. We report the first identification of olefin sulfonate surfactant-derived DBPs from laboratory-disinfected gas extraction wastewater. Over 300 sulfur-containing DBPs, with 43 unique molecular formulas, were found by high-resolution mass spectrometry, following bench-scale chlor(am)ination. DBPs consisted of mostly brominated species, including bromohydrin sulfonates, dihalo-bromosulfonates, and bromosultone sulfonates, with chlorinated/iodinated analogues formed to a lesser extent. Disinfection of a commercial C12-olefin sulfonate surfactant mixture revealed dodecene sulfonate as a likely precursor for most detected DBPs; disulfur-containing DBPs, like bromosultone sulfonate and bromohydrin disulfonate, originated from olefin disulfonate species, present as side-products of olefin sulfonate production. Disinfection of wastewaters increased mammalian cytotoxicity several orders of magnitude, with chloraminated water being more toxic. This finding is important to OGW-impacted source waters because drinking water plants with high-bromide source waters may switch to chloramination to meet DBP regulations.
Collapse
Affiliation(s)
- Hannah K Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua M Allen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael J Plewa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Elizabeth D Wagner
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Safe Global Water Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Chad R Weisbrod
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - James P McCord
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | | | - David B Burnett
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Leslie H Cizmas
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
9
|
Sumner AJ, Plata DL. A geospatially resolved database of hydraulic fracturing wells for chemical transformation assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:945-955. [PMID: 32037427 DOI: 10.1039/c9em00505f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydraulically fractured wells with horizontal drilling (HDHF) accounted for 69% of all oil and gas wells drilled and 670 000 of the 977 000 producing wells in 2016. However, only 238 flowback and produced water samples have been analyzed to date for specific organic chemicals. To aid the development of predictive tools, we constructed a database combining additive disclosure reports and physicochemical conditions at respective well sites with the goal of making synthesized analyses accessible. As proof-of-concept, we used this database to evaluate transformation pathways through two case studies: (1) a filter-based approach for flagging high-likelihood halogenation sites according to experimental criteria (e.g., for a model compound, cinnamaldehyde) and (2) a semi-quantitative, regionally comparative trihalomethane formation model that leverages an empirically derived equation. Study (1) highlighted 173 wells with high cinnamaldehyde halogenation likelihood based on combined criteria related to subsurface conditions and oxidant additive usage. Study (2) found that trihalomethane formation in certain wells within five specific basins may exceed regulatory limits for drinking water based on reaction-favorable subsurface conditions, albeit with wide uncertainty. While experimentation improves our understanding of subsurface reaction pathways, this database has immediate applications for informing environmental monitors and engineers about potential transformation products in residual fluids, guiding well operators' decisions to avoid unwanted transformations. In the future, we envision more robust components incorporating transformation, transport, toxicity, and other physicochemical parameters to predict subsurface interactions and flowback composition.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
10
|
Wagner TV, Helmus R, Quiton Tapia S, Rijnaarts HHM, de Voogt P, Langenhoff AAM, Parsons JR. Non-target screening reveals the mechanisms responsible for the antagonistic inhibiting effect of the biocides DBNPA and glutaraldehyde on benzoic acid biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121661. [PMID: 31740302 DOI: 10.1016/j.jhazmat.2019.121661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
The desalination and reuse of discharged cooling tower water (CTW) as feed water for the cooling tower could lower the industrial fresh water withdrawal. A potential pre-treatment method before CTW desalination is the use of constructed wetlands (CWs). Biodegradation is an important removal mechanism in CWs. In the present study, the impact of the biocides 2,2-dibromo-2-cyanoacetamide (DBNPA) and glutaraldehyde on the biodegradation process by CW microorganisms was quantified in batch experiments in which benzoic acid was incubated with realistic CTW biocide concentrations. DBNPA had a stronger negative impact on the biodegradation than glutaraldehyde. The combination of DBNPA and glutaraldehyde had a lower impact on the biodegradation than DBNPA alone. UHPLC-qTOF-MS/MS non-target screening combined with data-analysis script 'patRoon' revealed two mechanisms behind this low impact. Firstly, the presence of glutaraldehyde resulted in increased DBNPA transformation to the less toxic transformation product 2-bromo-2-cyanoacetamide (MBNPA) and newly discovered 2,2-dibromopropanediamide. Secondly, the interaction between glutaraldehyde and DBNPA resulted in the formation of new products that were less toxic than DBNPA. The environmental fate and toxicity of these products are still unknown. Nevertheless, their formation can have important implications for the simultaneous use of the biocides DBNPA and glutaraldehyde for a wide array of applications.
Collapse
Affiliation(s)
- Thomas V Wagner
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE, Amsterdam, the Netherlands; Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV, Wageningen, the Netherlands.
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE, Amsterdam, the Netherlands
| | - Silvana Quiton Tapia
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV, Wageningen, the Netherlands
| | - Huub H M Rijnaarts
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV, Wageningen, the Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE, Amsterdam, the Netherlands; KWR Water Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, the Netherlands
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University, P.O. Box 17, 6700 EV, Wageningen, the Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1092 GE, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Affiliation(s)
- Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29205, United States
| | - Susana Y. Kimura
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Rose MR, Roberts AL. Iodination of Dimethenamid in Chloraminated Water: Active Iodinating Agents and Distinctions between Chlorination, Bromination, and Iodination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11764-11773. [PMID: 31556600 DOI: 10.1021/acs.est.9b03645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Few studies have elucidated the agent(s) that generate iodinated disinfection byproducts during drinking water treatment. We present a kinetic investigation of iodination of dimethenamid (DM), a model compound lacking acid-base speciation. Water chemistry parameters (pH, [Cl-], [Br-], [I-], and [pH buffer]) were systematically varied. As pH increased (4-9), DM iodination rate decreased. Conventional wisdom considers hypoiodous acid (HOI) as the predominant iodinating agent; nevertheless, HOI (pKHOI = 10.4) could not have produced this result, as its concentration is essentially invariant from pH 4-9. In contrast, [H2OI+] and [ICl] both decrease as pH increases. To distinguish their contributions to DM iodination, [Cl-] was added at constant pH and ionic strength. Although chloride addition did increase the iodination rate, the reaction order in [Cl-] was fractional (≤0.36). The contribution of ICl to DM iodination remained below 47% under typical drinking water conditions ([Cl-] ≤ 250 mg/L), implicating H2OI+ as the predominant iodinating agent. Distinctions between DM iodination versus chlorination or bromination include a more pronounced role for the hypohalous acidium ion (H2OX+), negligible contributions by hypohalous acid and molecular halogen (X2), and a more muted influence of XCl, leading to lesser susceptibility to catalysis by chloride.
Collapse
Affiliation(s)
- Michael R Rose
- Department of Environmental Health and Engineering , Johns Hopkins University , 313 Ames Hall, 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - A Lynn Roberts
- Department of Environmental Health and Engineering , Johns Hopkins University , 313 Ames Hall, 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
13
|
Marrugo-Hernandez JJ, Prinsloo R, Marriott RA. Assessment of the Decomposition Kinetics of Sulfur-Containing Biocides to Hydrogen Sulfide at Simulated Downhole Conditions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Rohen Prinsloo
- Department of Chemistry, University of Calgary, Alberta, Calgary T2N 1N4, Canada
| | - Robert A. Marriott
- Department of Chemistry, University of Calgary, Alberta, Calgary T2N 1N4, Canada
| |
Collapse
|
14
|
Sumner AJ, Plata DL. Oxidative Breakers Can Stimulate Halogenation and Competitive Oxidation in Guar-Gelled Hydraulic Fracturing Fluids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8216-8226. [PMID: 31276388 DOI: 10.1021/acs.est.9b01896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A number of flowback samples derived from horizontally drilled hydraulic fracturing (HDHF) operations reveal consistent detections of halogenated organic species , yet the source of these compounds remains uncertain. Studies simulating subsurface conditions have found that oxidative "breakers" can halogenate certain additives, but these pathways are unverified in the presence of cross-linked-gels, common features of HDHF operations. Using a high-throughput custom reactor system, we implemented a reaction matrix to test the capacity for halogenation of two frequently disclosed compounds with demonstrated halogenation pathways (cinnamaldehyde and citric acid) across guar gels with varied types and concentrations of cross-linkers and oxidative breakers. Cinnamaldehyde halogenation proceeded most readily in borate cross-linked gels at high ammonium persulfate dosages. Citric acid formed trihalomethanes (THMs) broadly across the matrix, generating brominated THMs at higher levels of hypochlorite breaker. Isolated removals of cross-linker or guar enhanced or diminished certain product formations, highlighting additional capacities for relevant ingredients to influence halogenation. Finally, we analyzed flowback samples from the Denver-Julesberg Basin, finding that additions of oxidant enhanced halogenation. As a more realistic subsurface simulation, this work demonstrates strict criteria for the subsurface halogenation of cinnamaldehyde and the broad capacity for THM formation due to systematic oxidant usage as gel breakers in HDHF operations.
Collapse
Affiliation(s)
- Andrew J Sumner
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
| | - Desiree L Plata
- Department of Chemical and Environmental Engineering , Yale University , New Haven , Connecticut 06520 , United States
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
15
|
Stringfellow WT, Camarillo MK. Flowback verses first-flush: new information on the geochemistry of produced water from mandatory reporting. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:370-383. [PMID: 30520488 DOI: 10.1039/c8em00351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unconventional oil and gas development uses the subsurface injection of large amounts of a variety of industrial chemicals, and there are concerns about the return of these chemical to the surface with water produced with oil and gas from stimulated wells. Produced water, including any flowback of injected fluids, must be managed so as to protect human health and the environment, and understanding the chemistry of produced water from stimulated wells is necessary to ensure the safe management of produced water. In 2014, California instituted mandatory reporting for all well stimulations, including sampling produced water two times and comprehensive chemical characterization of fluids injected and fluids recovered from stimulated wells. In this study, we analyzed data from mandatory reporting with the objective of closing previously identified data gaps concerning oil-field chemical practices and the nature of flowback and produced water from stimulated wells. It was found that the plug-flow conceptual model of flowback developed in shale formations, where salinity increases over time as produced water is extracted, was not appropriate for characterizing produced water from unconventional wells in these oil reservoirs, which are predominately diatomite and sandstones. In these formations stimulation caused a "first-flush" phenomena, where salts and metals were initially high and then decreased in concentration over time, as more produced water was extracted. Although widely applied to meet regulatory requirements, total carbohydrate measurement was not found to be a good chemical indicator of hydraulic fracturing flowback. Mandatory reporting closed data-gaps concerning chemical use, provided new information on acid treatments, and allowed more detailed analysis of hydraulic fracturing practices, including comparison of water use by geological formation.
Collapse
Affiliation(s)
- William T Stringfellow
- Ecological Engineering Research Program, School of Engineering & Computer Science, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | | |
Collapse
|