1
|
Bu Y, Song M, Huang G, Chen C, Li R. High-rate nitrogen and phosphorus removal in a sulfur and pyrrhotite modified foam concrete constructed wetland. BIORESOURCE TECHNOLOGY 2024; 419:132008. [PMID: 39710204 DOI: 10.1016/j.biortech.2024.132008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In order to develop constructed wetland (CW) with high-rate N and P removal, sulfur and pyrrhotite modified foam concrete (SPFC) was prepared and used as a substrate to construct CW (SPFC-CW). At hydraulic retention time 6 h, SPFC-CW achieved effluent total nitrogen (TN) 9.96 mg/L and PO43--P 0.11 mg/L as influent TN and PO43--P were 24.52 and 1.04 mg/L, respectively. TN and PO43--P removal rates of SPFC-CW were 21.8 and 1.4 g/m2d, respectively. Many precipitates with high content of Ca and P attached on SPFC. Sulfurimonas was the most dominant bacterium, and its relative abundances at upper, middle and bottom of SPFC-CW were 53.8 %, 68.4 % and 87.3 %, respectively. SPFC could slowly release Sn2- and S2O32-, which had higher autotrophic denitrification rate than pyrrhotite and sulfur, and more Ca2+ than foam concrete. In SPFC-CW sulfur autotrophic denitrification and Ca-P precipitation were the major N and P removal processes, respectively.
Collapse
Affiliation(s)
- Yiming Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Ming Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Gaopan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Changxin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China
| | - Ruihua Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163# Xianlin Avenue, Nanjing 210023, PR China.
| |
Collapse
|
2
|
Yang P, Li J, Hou R, Yuan R, Chen Y, Liu W, Yu G, Wang W, Zhou B, Chen Z, Chen H. Mitigating N 2O emissions in land treatment systems: Mechanisms, influences, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175638. [PMID: 39168319 DOI: 10.1016/j.scitotenv.2024.175638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Land treatment systems (LTS) are widely used in decentralized domestic wastewater treatment due to low energy requirements and effective treatment outcomes. However, LTS operations are also a significant source of N2O emissions, a potent greenhouse gas threatening the ozone layer and posing risks to human health. Despite the importance of understanding and controlling N2O emissions, existing literature lacks comprehensive analyses of the mechanisms driving N2O generation and effective control strategies within LTS. This study addresses this gap by reviewing current research and identifying key factors influencing N2O emissions in LTS. This review reveals that in addition to traditional nitrification and denitrification processes, co-denitrification and complete ammonia oxidation are crucial for microbial nitrogen removal in LTS. Plant selection is primarily based on their nitrogen absorption capacity while using materials such as biochar and iron can provide carbon sources or electrons to support microbial activities. Optimizing operational parameters is essential for reducing N2O emissions and enhancing nitrogen removal efficiency in LTS. Specifically, the carbon-to‑nitrogen ratio should be maintained between 5 and 12, and the hydraulic loading rate should be kept within 0.08-0.2 m3/(m2·d). Dissolved oxygen and oxidation-reduction potential should be adjusted to meet the aerobic or anaerobic conditions the microorganisms require. Additionally, maintaining a pH range of 6.5-7.5 by adding alkaline substances is crucial for sustaining nitrous oxide reductase activity. The operating temperature should be maintained between 20 and 30 °C to support optimal microbial activity. This review further explores the relationship between environmental factors and microbial enzyme activity, community structure changes, and functional gene expression related to N2O production. Future research directions are proposed to refine N2O flux control strategies. By consolidating current knowledge and identifying research gaps, this review advances LTS management strategies that improve wastewater treatment efficiency while mitigating the environmental and health impacts of N2O emissions.
Collapse
Affiliation(s)
- Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Junhong Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuefang Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Weiqing Liu
- Beijing Institute of Geology for Mineral Resources, Yuanlin East Road, Mi Yun, Beijing 101500, China
| | - Guoqing Yu
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Weiqiang Wang
- Beijing Geo-Exploration and Water Environment Engineering Institute Co., Ltd., Tiancun Road, Beijing 100142, China
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic.
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
He Q, Feng M, Wang J. Impact of iron-modified fillers on enhancing water purification performance and mitigating greenhouse effect in constructed wetlands. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 39323087 DOI: 10.1080/09593330.2024.2405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Iron is gradually being introduced into constructed wetlands (CWs) to enhance the removal of pollutants due to its active chemical properties and ability to participate in various reactions, but its effectiveness in greenhouse effect control needs to be studied. In this study, three CWs were established to evaluate the effect of iron scraps and iron-carbon as substrates on pollutants removal and greenhouse gas (GHG) emissions, and the corresponding mechanisms were explored through analysis of microbial characteristics. The results showed that iron scraps and iron - carbon are effective in enhancing the effluent quality of CWs. Iron-carbon exhibited notable efficacy in removing nitrate nitrogen (NO3--N) and chemical oxygen demand (COD), achieving stable removal rates of 98.46% and 84.89%, respectively. Iron scraps had advantages in promoting the removal of ammonia nitrogen (NH4+-N) and total nitrogen (TN), with removal rates of 43.73% and 71.56%, respectively. The emission fluxes of nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) had temporal variability, always peaking in the early phases of operation. While iron scraps and iron-carbon effectively reduced the average emission flux of N2O and CO2, they simultaneously increased the average emission flux of CH4 (from 0.2349-2.2698 and 1.1956mg/m2/h, respectively). From the perspective of reducing global warming potential (GWP), iron - carbon had superior performance (from 146.2548-86.7447 mg/m2/h). In addition, the greenhouse gas emission flux was closely related to the microbial community structure in CWs, particularly with a more pronounced response observed in N2O emissions.
Collapse
Affiliation(s)
- Qiumei He
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Minquan Feng
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| | - Jiakang Wang
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Li X, Xia M, Liu L, Li Y, Wu J. Response of bacterial and micro-eukaryotic communities to spatio-temporal fluctuations of wastewater in full scale constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 399:130626. [PMID: 38521174 DOI: 10.1016/j.biortech.2024.130626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
How microbial communities respond to wastewater fluctuations is poorly understood. Full-scale surface flow constructed wetlands (SFCWs) were constructed for investigating microbial communities. Results showed that influent wastewater changed sediment bacterial community composition seasonally, indicating that a single bacterial taxonomic group had low resistance (especially, Actinobacteriota and Gammaproteobacteria). However, copy numbers of 16S rRNA, ammonia oxidizing archaea, ammonia oxidizing bacteria, nirS and nirK in the first stage SFCWs were 2.49 × 1010, 3.48 × 109, 5.76 × 106, 8.77 × 108 and 9.06 × 108 g-1 dry sediment, respectively, which remained stable between seasons. Moreover, decreases in the nitrogen concentration in wastewater, changed microbial system state from heterotrophic to autotrophic. Micro-eukaryotic communities were more sensitive to wastewater fluctuations than bacterial communities. Overall, results revealed that microbial communities responded to spatio-temporal fluctuations in wastewater through state changes and species asynchrony. This highlighted complex processes of wastewater treatment by microbial components in SFCWs.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Menghua Xia
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| | - Lemian Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yuyuan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China.
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China
| |
Collapse
|
5
|
Rytkönen A, Meriläinen P, Valkama K, Hokajärvi AM, Ruponen J, Nummela J, Mattila H, Tulonen T, Kivistö R, Pitkänen T. Scenario-based assessment of fecal pathogen sources affecting bathing water quality: novel treatment options to reduce norovirus and Campylobacter infection risks. Front Microbiol 2024; 15:1353798. [PMID: 38628869 PMCID: PMC11018956 DOI: 10.3389/fmicb.2024.1353798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Wastewater discharge and runoff waters are significant sources of human and animal fecal microbes in surface waters. Human-derived fecal contamination of water is generally estimated to pose a greater risk to human health than animal fecal contamination, but animals may serve as reservoirs of zoonotic pathogens. In this study, quantitative microbial risk assessment (QMRA) tools were used to evaluate the hygienic impact of sewage effluents and runoff water from municipalities and animal farms on surface and bathing waters. The human-specific microbial source tracking (MST) marker HF183 was used to evaluate the dilution of fecal pathogens originating from the sewage effluent discharge to the downstream watershed. As novel risk management options, the efficiency of UV-LED disinfection and wetland treatment as well as biochar filtration was tested on-site for the contamination sources. According to the dilution pattern of the MST marker HF183, microbes from wastewater were diluted (2.3-3.7 log10) in the receiving waters. The scenario-based QMRA revealed, that the health risks posed by exposure to human-specific norovirus GII and zoonotic Campylobacter jejuni during the bathing events were evaluated. The risk for gastroenteritis was found to be elevated during wastewater contamination events, where especially norovirus GII infection risk increased (1-15 cases per day among 50 bathers) compared with the business as usual (BAU) situation (1 case per day). The noted C. jejuni infection risk was associated with animal farm contamination (1 case per day, versus 0.2-0.6 cases during BAU). Tertiary treatment of wastewater with wetland treatment and UV-LED disinfection effectively reduced the waterborne gastroenteritis risks associated with bathing. Based on the experiences from this study, a QMRA-based approach for health risk evaluations at bathing sites can be useful and is recommended for bathing site risk assessments in the future. In case of low pathogen numbers at the exposure sites, the MST marker HF183 could be used as a pathogen dilution coefficient for the watershed under evaluation. The full-scale implementation of novel tertiary treatment options at wastewater treatment plants (WWTPs) as well as on-site runoff water treatment options should be considered for infection risk management at locations where scenario-based QMRA implies elevated infection risks.
Collapse
Affiliation(s)
- Annastiina Rytkönen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Meriläinen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kristiina Valkama
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Josefiina Ruponen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Jarkko Nummela
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Harri Mattila
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Tiina Tulonen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
6
|
Fan H, Huang Z, Feng C, Wu Z, Tian Y, Ma F, Li H, Huang J, Qin X, Zhou Z, Zhang X. Functional keystone taxa promote N and P removal of the constructed wetland to mitigate agricultural nonpoint source pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169155. [PMID: 38065493 DOI: 10.1016/j.scitotenv.2023.169155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Characterized by irregular spatial and temporal variations of pollutant loading and complex occurrence mechanisms, agricultural nonpoint source pollution (ANPSP) has always been a great challenge in field restoration worldwide. Returning farmlands to wetlands (RFWs) as an ecological restoration mode among various constructed wetlands was selected to manage ANPSP in this study. Triarrhena lutarioriparia, Nelumbo nucifera and Zizania latifolia monocultures were designed and the water pollutants was monitored. N. nucifera and Z. latifolia could reach the highest TN (53.28 %) and TP (53.22 %) removal efficiency, respectively. By 16s high-throughput sequencing of rhizosphere bacteria, 45 functional species were the main contributors for efficient N and P removal, and 38 functional keystone taxa (FKT) were found with significant ecological niche roles and metabolic functions. To our knowledge, this is the first study to explore the microbial driving N and P removal mechanism in response to ANPSP treated by field scale RFWs.
Collapse
Affiliation(s)
- Huixin Fan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Zijian Wu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Yuxin Tian
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Fengfeng Ma
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Xiaoli Qin
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China
| | - Zhou Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Xuan Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, PR China.
| |
Collapse
|
7
|
Barathan BP, Chen W, Su Y, Wang X, Chen Y. The effects of nutrient loading from different sources on eutrophication in a large shallow lake in Southeast China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7603-7620. [PMID: 37395908 DOI: 10.1007/s10653-023-01641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lake water eutrophication has become one of the leading obstacles to sustainable economic development in China. Research on the effects of mainstream currents on reservoirs has been relatively underdeveloped compared with research on tributaries, though changes in the water-sediment transport regime in a downstream river may affect nutrient transport behavior in a lake connected to that river. This is particularly problematic because certain wastewater sources, including runoff from agricultural wastes and industrial discharges, adversely affect lake water. Our study focused on Sanshiliujiao Lake, a significant drinking water source in Fujian, Southeast China, that has suffered considerably from eutrophication over the past few decades. This study aimed to estimate the phosphorus and nitrogen loads to the lake, exploring their sources and their ecologic effects using in situ observation and the export coefficient model. Our results showed that the pollution loads of total phosphorus (TP) and total nitrogen (TN) were 2.390 and 46.040 t/year, respectively, most of which were derived from the water diversion (TP 45.7%, TN 29.2%) and non-point source (TP 30.2%, TN 41.6%). The TN input was the highest in East river (3.557 kg/d), followed by Red river (2.524 kg/d). During the wet season, the input of TP and TN increased by 14.6 and 18.7 times, respectively, but produced only slight variations in concentration. Water diversion enriched the nutrients inputs and altered the structure and abundance of phytoplankton communities. In addition, when water flows from the main river directly to Sanshiliujiao Lake, algal blooms in river-connected lakes are significantly exacerbated, so our study may also serve as a theoretical basis to regulate eutrophication in Sanshiliujiao Lake.
Collapse
Affiliation(s)
- Balaji-Prasath Barathan
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
- Fujian Province Research Centre for River and Lake Health Assessment, Fuzhou, 350007, People's Republic of China
| | - Wenting Chen
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China.
- Fujian Province Research Centre for River and Lake Health Assessment, Fuzhou, 350007, People's Republic of China.
| | - Xue Wang
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Yinxing Chen
- Environmental Science and Engineering College, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| |
Collapse
|
8
|
Pu Y, Li Y, Zhu L, Cheng Y, Nuamah LA, Zhang H, Chen H, Du G, Wang L, Song C. Long-term assessment on performance and seasonal optimal operation of a full-scale integrated multiple constructed wetland-pond system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:161219. [PMID: 36584951 DOI: 10.1016/j.scitotenv.2022.161219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands as natural process-based water treatment technologies are popular globally. However, lack of detailed long-term assessment on the impact of seasonal variations on their performance with focus on optimal seasonal adjustments of controllable operating parameters significantly limits their efficient and sustainable long-term operation. To address this, a full-scale integrated multiple surface flow constructed wetlands-pond system situated between slightly polluted river water and outflow-receiving waterworks in a subtropical monsoon climate area of middle-eastern China was seasonally assessed over a period of six years. During this period, the removal rate (R) and mass removal rate (MRR) of total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) possessed strong seasonality (p < 0.05). The highest R (%) and MRR (mg/m2/d) were in summer for TN (51.53 %, 114.35), COD (16.30 %, 143.85) and TP (62.39 %, 23.89) and least in spring for TN (23.88 %, 39.36) and COD. Whereas for TP, the least R was in autumn (37.82 %) and least MRR was in winter (9.35). Applying a first-order kinetics model coupled with Spearman's rank correlation analysis, purification efficiency exhibited significant dependence on temperature as nutrient reaction rates constant, k generally increased with temperature and was highest in summer. Meanwhile, the R of TN, TP and COD were positively correlated with influent concentration whiles MRR of TP was negatively correlated with hydraulic retention time but positively correlated with hydraulic loading rate (HLR) (p < 0.05). Also, MRR of COD and TN were positively correlated with mass loading rates (MLR) in summer and autumn. Through linear optimization, the best operating parameters according to the compliance rate were determined and a set of guidelines were proposed to determine the optimal operational change of hydrological index in each season (Spring, 0.1-0.12 m/d; Summer, 0.14-0.16 m/d; Autumn, 0.15-0.17 m/d; Winter, 0.1-0.11 m/d) for efficient and sustainable long-term operation.
Collapse
Affiliation(s)
- Yashuai Pu
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yiping Li
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Liqin Zhu
- College of Marxism, Hohai University, Nanjing 210098, PR China
| | - Yu Cheng
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linda A Nuamah
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Haikuo Zhang
- College of Environment, Hohai University, Nanjing 210098, PR China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hongwei Chen
- Water Conservancy Bureau of Jiangsu Province, Yancheng 224002, PR China
| | - Guanchao Du
- Yanlong Lake Drinking Water Source Management Office, Yancheng 224002, PR China
| | - Ling Wang
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| | - Congqing Song
- Yancheng Water Affairs Group Co., Ltd, Yancheng 224007, China
| |
Collapse
|
9
|
Jiang Z, Tang S, Liao Y, Li S, Wang S, Zhu X, Ji G. Effect of low temperature on contributions of ammonia oxidizing archaea and bacteria to nitrous oxide in constructed wetlands. CHEMOSPHERE 2023; 313:137585. [PMID: 36529166 DOI: 10.1016/j.chemosphere.2022.137585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands (CWs) have been widely used for ecological remediation of micro-polluted source water. Nitrous oxide (N2O) from CWs has caused great concern as a greenhouse gas. However, the contribution of ammonia oxidation driven by ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) to N2O emission, especially at low temperature, was unknown. This study aimed to quantify the contributions of AOA and AOB to N2O through lab-scale subsurface CWs. The N2O emission flux of CW at 8 °C was 1.23 mg m-2·h-1, significantly lower than that at 25 °C (1.92 mg m-2·h-1). The contribution of ammonia oxidation to N2O at 8 °C (33.04%) was significantly higher than that at 25 °C (24.17%). The N2O production from AOA increased from 1.91 ng N·g-1 at 25 °C to 4.11 ng N·g-1 soil at 8 °C and its contribution increased from 23.38% to 30.18% (P < 0.05). Low temperature impaired functional gene groups and inhibited the activity of AOB, resulting in its declined contribution. Based on the transcriptional analysis, AOA was less affected by low temperature, thus stably contributing to N2O. Moreover, community diversity and relationships of AOA were enhanced at 8 °C, while AOB declined. The results confirmed the significant contribution of AOA and demonstrated molecular mechanisms (higher activity and community stability) of the increased contribution of AOA to N2O at low temperature.
Collapse
Affiliation(s)
- Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuangyu Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Mohamed AYA, Siggins A, Healy MG, Ó hUallacháin D, Fenton O, Tuohy P. A novel hybrid coagulation-constructed wetland system for the treatment of dairy wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157567. [PMID: 35882332 DOI: 10.1016/j.scitotenv.2022.157567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Constructed wetlands (CWs) are a cost-effective and sustainable treatment technology that may be used on farms to treat dairy wastewater (DWW). However, CWs require a large area for optimal treatment and have poor long-term phosphorus removal. To overcome these limitations, this study uses a novel, pilot-scale coagulation-sedimentation process prior to loading CWs with DWW. This hybrid system, which was operated on an Irish farm over an entire milking season, performed well at higher hydraulic loading rates than conventional CWs, and obtained removal efficiencies ≥99 % for all measured water quality parameters (chemical oxygen demand, total nitrogen and phosphorus, total suspended solids and turbidity), which complied with EU directives concerning urban wastewater treatment. Overall, the hybrid coagulation-CW is a promising technology that requires a smaller area than conventional CWs and minimal operator input, and produces high effluent quality.
Collapse
Affiliation(s)
- A Y A Mohamed
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| | - A Siggins
- Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland
| | - M G Healy
- Civil Engineering and Ryan Institute, College of Science and Engineering, University of Galway, Ireland.
| | - D Ó hUallacháin
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - O Fenton
- Environment Research Centre, Teagasc, Johnstown Castle, Wexford, Co. Wexford, Ireland
| | - P Tuohy
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
11
|
Liao R, Song P, Wang J, Hu J, Li Y, Li S. Development of water quality management strategies based on multi-scale field investigation of nitrogen distribution: a case study of Beiyun River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56511-56524. [PMID: 35338467 DOI: 10.1007/s11356-022-19835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Accurately quantifying the distribution of nitrogen (N) contaminants in a river ecosystem is an essential prerequisite for developing scientific water quality management strategy. In this study, we have conducted a series of field investigations along the Beiyun River to collect samples from multiple scales, including surface water, riverbed sediments, vadose zone, and aquifer, for evaluating the spatial distribution of N; besides, column simulation experiments were carried out to characterize the transport behavior of N in riverbed sediments. The surface water of the Beiyun River was detected to be eutrophic because of its elevated total N concentration, which is 33 times of the threshold value causing the potential eutrophication. The hydrodynamic dispersion coefficient (D) of riverbed sediments was estimated by CXTFIT 2.1, demonstrating that the D of upstream section was lower than that of midstream and downstream sections (Dupstream < Dmidstream < Ddownstream), with the estimated annual N leaching volume of 130,524, 241,776, and 269,808 L/(m2·a), respectively. The average total N concentration in vadose zone and aquifer of upstream Sect. (297.88 mg/kg) was obviously lower than that of midstream Sect. (402.62 mg/kg) and downstream Sect. (447.02 mg/kg). Based on multi-scale investigation data, subsequently, water quality management strategies have been achieved, that is, limiting the discharge of N from the midstream and downstream banks to the river and setting up the impermeable layer in the downstream reaches to reduce infiltration. The findings of this study are of great significance for the improvement of river environmental quality and river management.
Collapse
Affiliation(s)
- Renkuan Liao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peng Song
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jia Wang
- Water Environment Research Institute, Beijing Enterprises Water Group Limited (BEWG), Beijing, 100102, People's Republic of China
| | - Jieyun Hu
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yunkai Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Shuqin Li
- College of Water Conservancy and Civil Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
12
|
|
13
|
Zeng L, Dai Y, Zhang X, Man Y, Tai Y, Yang Y, Tao R. Keystone Species and Niche Differentiation Promote Microbial N, P, and COD Removal in Pilot Scale Constructed Wetlands Treating Domestic Sewage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12652-12663. [PMID: 34478283 DOI: 10.1021/acs.est.1c03880] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The microbial characteristics related to nitrogen (N), phosphorus (P), and chemical oxygen demand (COD) removal were investigated in three pilot scale constructed wetlands (CWs). Compared to horizontal subsurface flow (HSSF) and surface flow (SF) CWs, the aerobic vertical flow (VF) CW enriched more functional bacteria carrying genes for nitrification (nxrA, amoA), denitrification (nosZ), dephosphorization (phoD), and methane oxidation (mmoX), while the removal of COD, total P, and total N increased by 33.28%, 255.28%, and 299.06%, respectively. The co-occurrence network of functional bacteria in the HSSF CW was complex, with equivalent bacterial cooperation and competition. Both the VF and SF CWs exhibited a simple functional topological structure. The VF CW reduced functional redundancy by forming niche differentiation, which filtered out keystone species that were closely related to each other, thus achieving effective sewage purification. Alternatively, bacterial niche overlap protected a single function in the SF CW. Compared with the construction type, temperature, and plants had less effect on nutrient removal in the CWs from this subtropical region. Partial least-squares path modeling (PLS-PM) suggests that high dissolved oxygen and oxidation-reduction potential promoted a diverse bacterial community and that the nonkeystone bacteria reduced external stress for functional bacteria, thereby indirectly promoting nutrient removal.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yunv Dai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Xiaomeng Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ying Man
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yiping Tai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
14
|
Li H, Ma X, Zhou B, Ren G, Yuan D, Liu H, Wei Z, Gu X, Zhao B, Hu Y, Wang H. An integrated migration and transformation model to evaluate the occurrence characteristics and environmental risks of Nitrogen and phosphorus in constructed wetland. CHEMOSPHERE 2021; 277:130219. [PMID: 33774246 DOI: 10.1016/j.chemosphere.2021.130219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, an integrated migration and transformation (IMT) model based on microbial action, plant absorption, sediment release and substrate adsorption was firstly established to evaluate the temporal-spatial distribution of N and P in Lingang hybrid constructed wetland (CW), Tianjin. Compared to the conventional transformation model that only considers the microbial action, the IMT model could accurately predict the occurrence characteristics of N and P. In Lingang CW, NO3--N (0.56-3.63 mg/L) was the most important form of N, and the TP was at a relatively low concentration level (0.04-0.07 mg/L). The spatial distribution results showed that a certain amount of N and P could be removed by CW. Form the temporal perspective, the N and P concentrations were greatly affected by the dissolved oxygen (DO). The simulated values obtained by IMT model indicated that the distribution of N and P was more affected by the temporality compared with the spatiality, which was consistent with measured values. Besides, the PCA indicated that TN, NO3--N and DO were important factors, which affected the water quality of CW. The Nemerow pollution index method based on the simulated values indicated that Lingang CW was overall moderately polluted, and the subsurface area was the main functional unit of pollutants removal in CW. This work provides a new model for accurately predicting the occurrence characteristics of N and P pollutants in CW, which is of great significance for identifying its environmental risks and optimizing the construction of wetlands.
Collapse
Affiliation(s)
- Hongrui Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Bin Zhou
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Gengbo Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Dekui Yuan
- School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Honglei Liu
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Zizhang Wei
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Xiujun Gu
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| | - Bin Zhao
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| | - Yanhua Hu
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| | - Hongguang Wang
- Tianjin Lingang Construction Development Co., Ltd, Tianjin, 300450, China
| |
Collapse
|
15
|
Rytkönen A, Tiwari A, Hokajärvi AM, Uusheimo S, Vepsäläinen A, Tulonen T, Pitkänen T. The Use of Ribosomal RNA as a Microbial Source Tracking Target Highlights the Assay Host-Specificity Requirement in Water Quality Assessments. Front Microbiol 2021; 12:673306. [PMID: 34149662 PMCID: PMC8206488 DOI: 10.3389/fmicb.2021.673306] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
For microbial source tracking (MST), the 16S ribosomal RNA genes (rDNA) of host-specific bacteria and mitochondrial DNA (mtDNA) of animal species, known to cause fecal contamination of water, have been commonly used as molecular targets. However, low levels of contamination might remain undetected by using these DNA-based qPCR assays. The high copy numbers of ribosomal RNA (rRNA) could offer a solution for such applications of MST. This study compared the performance of eight MST assays: GenBac3 (general Bacteroidales), HF183 (human), BacCan (dog), Rum-2-Bac (ruminant), Pig-2-Bac (swine), Gull4 (gull), GFD, and Av4143 (birds) between rRNA-based and rDNA-based approaches. Three mtDNA-based approaches were tested: DogND5, SheepCytB, and HorseCytB. A total of 151 animal fecal samples and eight municipal sewage samples from four regions of Finland were collected for the marker evaluation. The usability of these markers was tested by using a total of 95 surface water samples with an unknown pollution load. Overall, the performance (specificity, sensitivity, and accuracy) of mtDNA-based assays was excellent (95–100%), but these markers were very seldom detected from the tested surface water samples. The rRNA template increased the sensitivity of assays in comparison to the rDNA template. All rRNA-based assays (except Av4143) had more than 80% sensitivity. In contrast, only half (HF183, Rum-2-Bac, Pig-2-Bac, and Gull4) of rDNA-based assays reached this value. For markers targeted to bird feces, the use of the rRNA-based assay increased or at least did not change the performance. Regarding specificity, all the assays had >95% specificity with a DNA template, except the BacCan assay (71%). While using the RNA template for the assays, HF183 and BacCan exhibited only a low level of specificity (54 and 55%, respectively). Further, the HF183 assay amplified from multiple non-targeted animal fecal samples with the RNA template and the marker showed cross-amplification with the DNA template as well. This study recommends using the rRNA-based approach for MST assays targeting bird fecal contamination. In the case of mammal-specific MST assays, the use of the rRNA template increases the sensitivity but may reduce the specificity and accuracy of the assay. The finding of increased sensitivity calls for a further need to develop better rRNA-based approaches to reach the required assay performance.
Collapse
Affiliation(s)
- Annastiina Rytkönen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sari Uusheimo
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Asko Vepsäläinen
- Environmental Health Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tiina Tulonen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland.,Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Lu J, Guo Z, Kang Y, Fan J, Zhang J. Recent advances in the enhanced nitrogen removal by oxygen-increasing technology in constructed wetlands. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111330. [PMID: 32977288 DOI: 10.1016/j.ecoenv.2020.111330] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Constructed wetland has attracted more and more attention for wastewater purification due to its low construction cost and convenient operation recently. However, the unique waterflooding structure of constructed wetland makes the low dissolved oxygen level, which limits the effect of nitrogen removal in the system. Therefore, it is necessary to develop the oxygen-increasing technology to overcome the drawback in constructed wetlands. In this review, the mechanism of nitrogen removal in constructed wetland is discussed and oxygen is main influence factor is concluded. In addition, oxygen-increasing technologies in recent advances which improve the nitrogen removal efficiency greatly, are emphatically introduced. Finally, some future perspectives about oxygen-increasing techniques are also put forward in order to provide reference for further research and engineering application.
Collapse
Affiliation(s)
- Jiaxing Lu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Jinlin Fan
- Department of Science and Technology Management, Shandong University, Jinan, 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Introducing Life Cycle Assessment in Costs and Benefits Analysis of Vegetation Management in Drainage Canals of Lowland Agricultural Landscapes. WATER 2020. [DOI: 10.3390/w12082236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrate pollution remains an unsolved issue worldwide, causing serious effects on water quality and eutrophication of freshwater and brackish water environments. Its economic costs are still underestimated. To reduce nitrogen excess, constructed wetlands are usually recognized as a solution but, in recent years, interest has been raised in the role of ditches and canals in nitrogen removal. In this study, we investigated the environmental and economical sustainability of nitrogen removal capacity, using as a model study a lowland agricultural sub-basin of the Po River (Northern Italy), where the role of aquatic vegetation and related microbial processes on the mitigation of nitrate pollution has been extensively studied. Based on the Life Cycle Assessment (LCA) approach and costs and benefits analysis (CBA), the effectiveness of two different scenarios of vegetation management, which differ for the timing of mowing, have been compared concerning the nitrogen removal via denitrification and other terms of environmental sustainability. The results highlighted that postponing the mowing to the end of the vegetative season would contribute to buffering up to 90% of the nitrogen load conveyed by the canal network during the irrigation period and would reduce by an order of magnitude the costs of eutrophication potential.
Collapse
|
18
|
Can Constructed Wetlands be Wildlife Refuges? A Review of Their Potential Biodiversity Conservation Value. SUSTAINABILITY 2020. [DOI: 10.3390/su12041442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The degradation of wetland ecosystems is currently recognized as one of the main threats to global biodiversity. As a means of compensation, constructed wetlands (CWs), which are built to treat agricultural runoff and municipal wastewater, have become important for maintaining biodiversity. Here, we review studies on the relationships between CWs and their associated biodiversity published over the past three decades. In doing so, we provide an overview of how wildlife utilizes CWs, and the effects of biodiversity on pollutant transformation and removal. Beyond their primary aim (to purify various kinds of wastewater), CWs provide sub-optimal habitat for many species and, in turn, their purification function can be strongly influenced by the biodiversity that they support. However, there are some difficulties when using CWs to conserve biodiversity because some key characteristics of these engineered ecosystems vary from natural wetlands, including some fundamental ecological processes. Without proper management intervention, these features of CWs can promote biological invasion, as well as form an ‘ecological trap’ for native species. Management options, such as basin-wide integrative management and building in more natural wetland components, can partially offset these adverse impacts. Overall, the awareness of managers and the public regarding the potential value of CWs in biodiversity conservation remains superficial. More in-depth research, especially on how to balance different stakeholder values between wastewater managers and conservationists, is now required.
Collapse
|
19
|
Yang C, Nan J, Yu H, Li J. Embedded reservoir and constructed wetland for drinking water source protection: Effects on nutrient removal and phytoplankton succession. J Environ Sci (China) 2020; 87:260-271. [PMID: 31791499 DOI: 10.1016/j.jes.2019.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
An embedded reservoir that provides an efficient nutrient removal system protects drinking water. However, embedded reservoirs are rarely used in eutrophic shallow lakes because of their undetermined nutrient retention efficiency and unknown effects by the phytoplankton community. In this study, we aim to investigate the nutrient retention and algae succession in an embedded reservoir and adjacent wetland from April 2017 to September 2018 in the eastern part of Lake Taihu, China. More than 40% of total phosphorus (TP) and 45% of particulate phosphorous entering the reservoir were retained semi-annually, and the highest TP removal efficiency was achieved in the reservoir during autumn with an average value of 53.3% ± 9.9%. The overall nitrogen retention efficiency (21.7% ± 37.8%) was lower than that of TP (41.8% ± 27.8%). Similar trends were obtained in the wetland area. An important pathway for phosphorus removal is through particulate matter retention. Our study revealed that nutrient retention mechanisms in the reservoir were primarily via macrophyte absorption, particulate substance sedimentation, and prolonged water residence time. Consequently, the phytoplankton biomass (Chl-a) in the reservoir decreased (from 48.0 to 25.2 μg/L) and water transparency improved, due to the decreased P level and transformation of the phytoplankton group into simple structures with good ecological status. Therefore, the combination of embedded reservoir and constructed wetland ecosystem can be used successfully to protect surface water. The results will be advantageous to groups seeking to preserve drinking water sources.
Collapse
Affiliation(s)
- Changtao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Nan
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huaiyong Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
20
|
Zhuang LL, Yang T, Zhang J, Li X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. BIORESOURCE TECHNOLOGY 2019; 293:122086. [PMID: 31495460 DOI: 10.1016/j.biortech.2019.122086] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/10/2023]
Abstract
Constructed wetland (CW) for wastewater treatment has attracted increasing attention. In this review, the system configuration optimization, purification effect and general mechanisms of nitrogen removal in CW are systematically summarized and discussed. Ammonia oxidation is a crucial and primary process for total nitrogen (TN) removal in domestic or livestock wastewater treatment. Aeration, waterdrop influent and tidal operation are three main methods to strengthen the oxygen supplement and nitrification process in CW. Aeration significantly increases the ammonia removal rate (almost 100%), followed by the removal of chemical oxygen demand (COD) and TN. Solid carbon source, iron and anode material can be filled as electron donor for the denitrification process. The co-adjustment of oxygen and carbon/electron donor can form different conditions for different nitrogen removal pathways (e.g. the simultaneous nitrification-denitrification, the partial nitrification-denitrification and the anammox process), and achieve the optimal removal of nitrogen.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| | - Xiangzheng Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|