1
|
Podgorski DC, Bekins BA. Comment on "Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management". AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106744. [PMID: 37951746 DOI: 10.1016/j.aquatox.2023.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Chemical Analysis & Mass Spectrometry Facility, Department of Chemistry, University of New Orleans, New Orleans, LA, USA; Department of Chemistry, University of Alaska Anchorage, Anchorage, AK, USA.
| | | |
Collapse
|
2
|
Zito P, Bekins BA, Martinović-Weigelt D, Harsha ML, Humpal KE, Trost J, Cozzarelli I, Mazzoleni LR, Schum SK, Podgorski DC. Photochemical mobilization of dissolved hydrocarbon oxidation products from petroleum contaminated soil into a shallow aquifer activate human nuclear receptors. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132312. [PMID: 37604033 DOI: 10.1016/j.jhazmat.2023.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Elevated non-volatile dissolved organic carbon (NVDOC) concentrations in groundwater (GW) monitoring wells under oil-contaminated hydrophobic soils originating from a pipeline rupture at the National Crude Oil Spill & Natural Attenuation Research Site near Bemidji, MN are documented. We hypothesized the elevated NVDOC is comprised of water-soluble photooxidation products transported from the surface to the aquifer. We use field and laboratory samples in combination with complementary analytical methods to test this hypothesis and determine the biological response to these products. Observations from optical spectroscopy and ultrahigh-resolution mass spectrometry reveal a significant correlation between the chemical composition of NVDOC leached from photochemically weathered soils and GW monitoring wells with high NVDOC concentrations measured in the aquifer beneath the contaminated soil. Conversely, the chemical composition from the uncontaminated soil photoleachate matches the NVDOC observed in the uncontaminated wells. Contaminated GW and photodissolution leachates from contaminated soil activated biological targets indicative of xenobiotic metabolism and exhibited potential for adverse effects. Newly formed hydrocarbon oxidation products (HOPs) from fresh oil could be distinguished from those downgradient. This study illustrates another pathway for dissolved HOPs to infiltrate GW and potentially affect human health and the environment.
Collapse
Affiliation(s)
- Phoebe Zito
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | | - Maxwell L Harsha
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Katherine E Humpal
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Jared Trost
- US Geological Survey, Mounds View, MN 55112, USA
| | - Isabelle Cozzarelli
- US Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA 20191, USA
| | - Lynn R Mazzoleni
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - Simeon K Schum
- Department of Chemistry, Chemical Advanced Resolution Methods Laboratory, Michigan Technological University, 1400, Townsend Dr., Houghton, MI 49931, USA
| | - David C Podgorski
- Department of Chemistry, Chemical Analysis Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education Research Facility, University of New Orleans, New Orleans, LA 70148 USA
| |
Collapse
|
3
|
Mindorff LM, Mahmoudi N, Hepditch SLJ, Langlois VS, Alam S, Martel R, Ahad JME. Isotopic and microbial evidence for biodegradation of diluted bitumen in the unsaturated zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121170. [PMID: 36736816 DOI: 10.1016/j.envpol.2023.121170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The oil sands region in Western Canada is one of the world's largest proven oil reserves. To facilitate pipeline transport, highly viscous oil sands bitumen is blended with lighter hydrocarbon fractions to produce diluted bitumen (dilbit). Anticipated increases in dilbit production and transport raise the risk of inland spills. To understand the behaviour of dilbit in the unsaturated or vadose zone following a surface spill, we ran parallel dilbit and conventional heavy crude exposures, along with an untreated control, using large soil-filled columns over 104 days. Phospholipid fatty acids (PLFAs), biomarkers for the active microbial population, were extracted from column soil cores. Stable carbon isotope contents (δ13C) of individual PLFAs and radiocarbon contents (Δ14C) of bulk PLFAs were characterized over the course of the experiment. The Δ14CPLFA values in soils impacted by dilbit (-221.1 to -54.7‰) and conventional heavy crude (-259.4 to -97.9‰) indicated similar levels of microbial uptake of fossil carbon. In contrast, Δ14CPLFA values in the control column (-46.1 to +53.7‰) reflected assimilation of more recently fixed organic carbon. Sequencing of 16S ribosomal RNA genes extracted from soil cores revealed a significant increase in the relative abundance of Polaromonas, a known hydrocarbon-degrader, following exposure to both types of oil. This study demonstrates that in the first several months following a surface spill, dilbit has a similar potential for biodegradation by a native shallow subsurface microbial community as conventional heavy crude oil.
Collapse
Affiliation(s)
- Leah M Mindorff
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada; Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montréal, QC, H3A 0E8, Canada
| | - Scott L J Hepditch
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Samrat Alam
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada
| | - Richard Martel
- Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
4
|
Arcega RD, Chen RJ, Chih PS, Huang YH, Chang WH, Kong TK, Lee CC, Mahmudiono T, Tsui CC, Hou WC, Hsueh HT, Chen HL. Toxicity prediction: An application of alternative testing and computational toxicology in contaminated groundwater sites in Taiwan. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116982. [PMID: 36502707 DOI: 10.1016/j.jenvman.2022.116982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Groundwater contamination remains a global threat due to its toxic effects to humans and the environment. The remediation of contaminated groundwater sites can be costly, thus, identifying the priority areas of concern is important to reduce money spent on resources. In this study, we aimed to identify and rank the priority groundwater sites in a contaminated petrochemical district by combining alternative, non-animal approaches - chemical analysis, cell-based high throughput screening (HTS), and Toxicological Priority Index (ToxPi) computational toxicology tool. Groundwater samples collected from ten different sites in a contaminated district showed pollutant levels below the detection limit, however, hepatotoxic bioactivity was demonstrated in human hepatoma HepaRG cells. Integrating the pollutants information (i.e., pollutant characteristics and concentration data) with the bioactivity data of the groundwater samples, an evidence-based ranking of the groundwater sites for future remediation was established using ToxPi analysis. The currently presented combinatorial approach of screening groundwater sites for remediation purposes can further be refined by including relevant parameters, which can boost the utility of this approach for groundwater screening and future remediation.
Collapse
Affiliation(s)
- Rachelle D Arcega
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Chih
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Hsuan Huang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ting-Khai Kong
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Ching-Chang Lee
- Department of Environmental Trace Toxic Substances Research Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Trias Mahmudiono
- Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chun-Chih Tsui
- Toxic and Chemical Substances Bureau, Environmental Protection Administration Executive Yuan, Taipei City,106, Taiwan
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Laboratories, National Cheng Kung University, Tainan City,701, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
5
|
Brown KE, Wasley J, King CK. Assessing risks from fuel contamination in Antarctica: Dynamics of diesel ageing in soil and toxicity to an endemic nematode. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114345. [PMID: 36508834 DOI: 10.1016/j.ecoenv.2022.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Fuel spills are a major source of contamination in terrestrial environments in Antarctica. Little is known of the effects of hydrocarbon contaminants in fuels on Antarctic terrestrial biota, and how these change as fuel ages within soil. In this study we investigate the sensitivity of juveniles of the endemic Antarctic nematode Plectus murrayi to diesel-spiked soil. Toxicity tests were conducted on soil elutriates, and changes in concentrations of hydrocarbons, polar compounds and PAHs were assessed as the spiked soil was artificially aged at 3 °C over a 45-week period, representing multiple summer seasons of fuel degradation. Nematodes were most sensitive to elutriates made from freshly spiked soils (LC50 419 μg/L TPH and 156 μg/L TPH-SG), with a subsequent decline in toxicity observed in the first 6 weeks of laboratory ageing (LC50 2945 μg/L TPH and 694 μg/L TPH-SG). Effects were still evident up to 45 weeks (lowest observed effect concentration 2123 μg/L TPH) despite hydrocarbons being depleted from soils with ageing (84 % loss) and elutriates becoming dominated by polar metabolites (95 % polar). Nematode sensitivity throughout the ageing period showed evidence of a relationship between LC50 and the proportions of the lighter carbon range fraction of TPH in elutriates, the F2 fraction (C10-14). This study is the first to estimate the sensitivity of Antarctic terrestrial fauna to diesel and provides novel data on the dynamics of fuel chemistry under Antarctic conditions and how this influences toxicity. Findings contribute to predicting ecological risk at existing diesel fuel spill sites in Antarctica, to the derivation of site-specific remediation targets, and to environmental guidelines to assess ecosystem health.
Collapse
Affiliation(s)
- Kathryn E Brown
- Australian Antarctic Division, Kingston, Tasmania, Australia.
| | - Jane Wasley
- Australian Antarctic Division, Kingston, Tasmania, Australia.
| | | |
Collapse
|
6
|
Zemo DA, Patterson TJ, Kristofco L, Mohler RE, O'Reilly KT, Ahn S, Devine CE, Magaw RI, Sihota N. Complex mixture toxicology: Evaluation of toxicity to freshwater aquatic receptors from biodegradation metabolites in groundwater at a crude oil release site, recent analogous results from other authors, and implications for risk management. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 250:106247. [PMID: 35917677 DOI: 10.1016/j.aquatox.2022.106247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Aquatic toxicity posed by the complex mixture of biodegradation metabolites and related oxygen-containing organic compounds (OCOCs) in groundwater at typical petroleum release sites is of concern to regulatory agencies; several are using results from laboratory studies in older literature that are not appropriate analogs for risk management. Recent field studies from typical sites and natural groundwater should be utilized. In this study, OCOCs downgradient of the biodegrading crude oil release at the USGS Bemidji site were tested for freshwater aquatic toxicity using unaltered whole groundwater samples. This type of testing is optimal because the entire mixture of OCOCs present is tested directly and assessment is not affected by analytical limitations. Ceriodaphnia dubia and Pimephales promelas were tested for toxicity using USEPA Methods 1002 and 1000, which estimate chronic toxicity. OCOCs in representative samples up to the maximum concentration tested of 1710 ug/L Total Petroleum Hydrocarbons (TPH) (nC10 to nC40; without silica gel cleanup) did not result in effects relative to the lab control for C. dubia survival, or for P. promelas survival or growth; and did not result in effects above background for C. dubia reproduction. This is consistent with findings using the same testing methods and species on samples from 14 biodegrading fuel release sites: OCOCs did not cause increased toxicity relative to background at a maximum tested concentration of 1800 ug/L TPH (nC10 to nC28). Based on their toxicity testing using the same species and USEPA methods on groundwater from a biodegrading diesel release site, Washington Department of Ecology recently set a freshwater screening level for OCOCs at 3000 ug/L TPH ("Weathered DRO"). These studies indicate that, in the absence of dissolved hydrocarbons, OCOCs in groundwater from typical biodegrading fuel or crude oil releases are not toxic to C. dubia or P. promelas at typical concentrations.
Collapse
Affiliation(s)
- Dawn A Zemo
- Zemo & Associates, Inc., 986 Wander Way, Incline Village, NV 89451, USA.
| | - Timothy J Patterson
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| | - Lauren Kristofco
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Rachel E Mohler
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| | | | - Sungwoo Ahn
- Exponent, 15375 SE 30th Place, Bellevue, WA 98007, USA.
| | - Catalina Espino Devine
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Renae I Magaw
- Formerly Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| | - Natasha Sihota
- Chevron Technical Center (a Chevron USA, Inc. division), 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA.
| |
Collapse
|
7
|
Tomco PL, Duddleston KN, Driskill A, Hatton JJ, Grond K, Wrenn T, Tarr MA, Podgorski DC, Zito P. Dissolved organic matter production from herder application and in-situ burning of crude oil at high latitudes: Bioavailable molecular composition patterns and microbial community diversity effects. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127598. [PMID: 34798546 DOI: 10.1016/j.jhazmat.2021.127598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Chemical herders and in-situ burning (ISB) are designed to mitigate the effects that oil spills may have on the high latitude marine environment. Little information exists on the water solubilization of petroleum residues stemming from chemically herded ISB and whether these bioavailable compounds have measurable impacts on marine biota. In this experiment, we investigated the effects of Siltech OP40 and crude oil ISB on a) petroleum-derived dissolved organic matter (DOMHC) composition and b) seawater microbial community diversity over 28 days at 4 °C in aquarium-scale mesocosms. Ultra-high resolution mass spectrometry and fluorescence spectroscopy revealed increases in aromaticity over time, with ISB and ISB+OP40 samples having higher % aromatic classes in the initial incubation periods. ISB+OP40 contained a nearly 12-fold increase in the number of DOMHC formulae relative to those before ISB. 16S rRNA gene sequencing identified differences in microbial alpha diversity between seawater, ISB, OP40, and ISB+OP40. Microbial betadiversity shifts were observed that correlated strongly with aromatic/condensed relative abundance and incubation time. Proteobacteria, specifically from the genera Marinomonas and Perlucidibaca experienced -22 and +24 log2-fold changes in ISB+OP40 vs. seawater, respectively. These findings provide an important opportunity to advance our understanding of chemical herders and ISB in the high latitude marine environment.
Collapse
Affiliation(s)
- Patrick L Tomco
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA.
| | - Khrystyne N Duddleston
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Adrienne Driskill
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Jasmine J Hatton
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Toshia Wrenn
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
| | - Matthew A Tarr
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - David C Podgorski
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA; Pontchartrain Institute for Environmental Sciences, Shea Penland Coastal Education and Research Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Phoebe Zito
- Department of Chemistry, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA; Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA; Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
8
|
O'Reilly KT, Sihota N, Mohler RE, Zemo DA, Ahn S, Magaw RI, Devine CE. Orbitrap ESI-MS evaluation of solvent extractable organics from a crude oil release site. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103855. [PMID: 34265523 DOI: 10.1016/j.jconhyd.2021.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of oxygen-containing organic compounds (OCOC), measured as dissolved organic carbon (DOC), in groundwater exceeds those of dissolved hydrocarbons, measured as total petroleum hydrocarbons (TPH), at a crude oil release site. Orbitrap mass spectrometry was used to characterize OCOC in samples of the oil, water from upgradient of the release, source area, and downgradient wells, and a local lake. Chemical characterization factors included carbon number, oxygen number, formulae similarity, double bond equivalents (DBE) and radiocarbon dating. Oil samples were dominated by formulae with less than 30 carbons, four or fewer oxygens, and a DBE of less than four. In water samples, formulae were identified with more than 30 carbons, more than 10 oxygens, and a DBE exceeding 30. These characteristics are consistent with DOC found in unimpacted water. Between 65% and 92% of the formulae found in samples collected within the elevated OCOC plume were also found in the upgradient or surface water samples. Evidence suggests that many of the OCOC are not petroleum degradation intermediates, but microbial products generated as a result of de novo synthesis by organisms growing on carbon supplied by the oil. Implications of these results for understanding the fate and managing the risk of hydrocarbons in the subsurface are discussed.
Collapse
|
9
|
Niu A, Lin C. Managing soils of environmental significance: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125990. [PMID: 34229372 DOI: 10.1016/j.jhazmat.2021.125990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 06/13/2023]
Abstract
Globally, environmentally significant soils (ESSs) mainly include acid sulfate, heavy metal(loid)-contaminated, petroleum hydrocarbon-contaminated, pesticide-contaminated, and radionuclide-contaminated soils. These soils are interrelated and have many common characteristics from an environmental management perspective. In this review, we critically evaluate the available literature on individual ESSs, aiming to identify common problems related to environmental quality/risk assessment, remediation approaches, and environmental regulation for these soils. Based on these findings, we highlight the challenges to, and possible solutions for sustainable ESS management. Contaminated land has been rapidly expanding since the first industrial revolution from the industrialized Western countries to the emerging industrialized Asia and other parts of the world. Clean-up of contaminated lands and slowdown of their expansion require concerted international efforts to develop advanced cleaner production and cost-effective soil remediation technologies in addition to improvement of environmental legislation, regulatory enforcement, financial instruments, and stakeholder involvement to create enabling environments. Two particular areas require further action and research efforts: developing a universal system for assessing ESS quality and improving the cost-effectiveness of remediation technologies. We propose an integrated framework for deriving ESS quality indicators and make suggestions for future research directions to improve the performance of soil remediation technologies.
Collapse
Affiliation(s)
- Anyi Niu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
10
|
Podgorski DC, Zito P, Kellerman AM, Bekins BA, Cozzarelli IM, Smith DF, Cao X, Schmidt-Rohr K, Wagner S, Stubbins A, Spencer RGM. Hydrocarbons to carboxyl-rich alicyclic molecules: A continuum model to describe biodegradation of petroleum-derived dissolved organic matter in contaminated groundwater plumes. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123998. [PMID: 33254831 DOI: 10.1016/j.jhazmat.2020.123998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Relationships between dissolved organic matter (DOM) reactivity and chemical composition in a groundwater plume containing petroleum-derived DOM (DOMHC) were examined by quantitative and qualitative measurements to determine the source and chemical composition of the compounds that persist downgradient. Samples were collected from a transect down the core of the plume in the direction of groundwater flow. An exponential decrease in dissolved organic carbon concentration resulting from biodegradation along the transect correlated with a continuous shift in fluorescent DOMHC from shorter to longer wavelengths. Moreover, ultrahigh resolution mass spectrometry showed a shift from low molecular weight (MW) aliphatic, reduced compounds to high MW, unsaturated (alicyclic/aromatic), high oxygen compounds that are consistent with carboxyl-rich alicyclic molecules. The degree of condensed aromaticity increased downgradient, indicating that compounds with larger, conjugated aromatic core structures were less susceptible to biodegradation. Nuclear magnetic resonance spectroscopy showed a decrease in alkyl (particularly methyl) and an increase in aromatic/olefinic structural motifs. Collectively, data obtained from the combination of these complementary analytical techniques indicated that changes in the DOMHC composition of a groundwater plume are gradual, as relatively low molecular weight (MW), reduced, aliphatic compounds from the oil source were selectively degraded and high MW, alicyclic/aromatic, oxidized compounds persisted.
Collapse
Affiliation(s)
- David C Podgorski
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA.
| | - Phoebe Zito
- Pontchartrain Institute for Environmental Sciences, Department of Chemistry, Chemical Analysis & Mass Spectrometry Facility, University of New Orleans, New Orleans, LA 70148, USA
| | - Anne M Kellerman
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | | | | | - Donald F Smith
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Xiaoyan Cao
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | | | - Sasha Wagner
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Aron Stubbins
- Department of Chemistry and Chemical Biology, Department of Marine and Environmental Sciences, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA
| | - Robert G M Spencer
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, USA; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
11
|
Bekins BA, Brennan JC, Tillitt DE, Cozzarelli IM, Illig JM, Martinović-Weigelt D. Biological Effects of Hydrocarbon Degradation Intermediates: Is the Total Petroleum Hydrocarbon Analytical Method Adequate for Risk Assessment? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11396-11404. [PMID: 32790354 DOI: 10.1021/acs.est.0c02220] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In crude oil contaminant plumes, the dissolved organic carbon (DOC) is mainly hydrocarbon degradation intermediates only partly quantified by the diesel range total petroleum hydrocarbon (TPHd) method. To understand potential biological effects of degradation intermediates, we tested three fractions of DOC: (1) solid-phase extract (HLB); (2) dichloromethane (DCM-total) extract used in TPHd; and (3) DCM extract with hydrocarbons isolated by silica gel cleanup (DCM-SGC). Bioactivity of extracts from five wells spanning a range of DOC was tested using an in vitro multiplex reporter system that evaluates modulation of the activity of 46 transcription factors; extracts were evaluated at concentrations equivalent to the well water samples. The aryl hydrocarbon receptor (AhR) and pregnane X receptor (PXR) transcription factors showed the greatest upregulation, with HLB exceeding DCM-total, and no upregulation in the hydrocarbon fraction (DCM-SGC). The HLB extracts were further studied with HepG2 chemically activated luciferase expression (CALUX) in vitro assays at nine concentrations ranging from 40 to 0.01 times the well water concentrations. Responses decreased with distance from the source but were still present at two wells without detectable hydrocarbons. Thus, our in vitro assay results indicate that risks associated with degradation intermediates of hydrocarbons in groundwater will be underestimated when protocols that remove these chemicals are employed.
Collapse
|
12
|
Patterson TJ, Kristofco L, Tiwary AK, Magaw RI, Zemo DA, O'Reilly KT, Mohler RE, Ahn S, Sihota N, Devine CE. Human and Aquatic Toxicity Potential of Petroleum Biodegradation Metabolite Mixtures in Groundwater from Fuel Release Sites. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1634-1645. [PMID: 32418246 PMCID: PMC7496656 DOI: 10.1002/etc.4749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/18/2020] [Accepted: 05/10/2020] [Indexed: 05/29/2023]
Abstract
The potential toxicity to human and aquatic receptors of petroleum fuel biodegradation metabolites (oxygen-containing organic compounds [OCOCs]) in groundwater has been investigated as part of a multi-year research program. Whole mixtures collected from locations upgradient and downgradient of multiple fuel release sites were tested using: 1) in vitro screening assays for human genotoxicity (the gamma-H2AX assay) and estrogenic effects (estrogen receptor transcriptional activation assay), and 2) chronic aquatic toxicity tests in 3 species (Ceriodaphnia dubia, Raphidocelis subcapitata, and Pimephales promelas). In vitro screening assay results demonstrated that the mixtures did not cause genotoxic or estrogenic effects. No OCOC-related aquatic toxicity was observed and when aquatic toxicity did occur, upgradient samples typically had the same response as samples downgradient of the release, indicating that background water quality was impacting the results. This information provides additional support for previous work that focused on the individual compounds and, taken together, indicates that OCOCs from petroleum degradation at fuel release sites are unlikely to cause toxicity to human or freshwater receptors at the concentrations present. Environ Toxicol Chem 2020;39:1634-1645. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|