1
|
Yang G, Guo Z, Wu W. Revealing transmissions of atmospheric heavy metals hidden in the Chinese supply chain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119891. [PMID: 38150928 DOI: 10.1016/j.jenvman.2023.119891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Heavy metals (HMs) pose significant risks to human health and the environment. Identifying the sectors that play a significant role in the transmission of HMs has rarely been considered and represents an efficient method to control and manage HMs. By combining atmospheric HM emission inventories, the multi-regional input-output approach, and a betweenness-based method, this study revealed the transmission of HMs (comprehensively evaluated by the Heavy Metal Pollution Load, HMPL) in 2017. In 2017, 119.86 million tons of HMPL were transmitted through China's supply chain, and Cr was the main contributor to HMPL transmission. The results suggest that metal smelting is the primary contributor to HMPL transmission, and metal smelting in Jiangsu, Hebei, Henan, Shandong, and Anhui are the top five critical nodes. These results suggest that the sector's role changes dramatically with respect to HM control under this perspective. The role of HM emission-intensive sectors changed the most, as their production-based HMPLs accounted for 84% of the total HMPL; however, the HMPL transmitted by these sectors accounted for only 45% of the total. The critical HMPL transmission sectors identified in this study provide a basis for policy-making from a transmission perspective.
Collapse
Affiliation(s)
- Guangfei Yang
- Institute of Systems Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Zitong Guo
- Institute of Systems Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Wenjun Wu
- State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing, 100041, China; The Center for Beijing-Tianjin-Hebei Regional Environment, Chinese Academy of Environmental Planning, Beijing, 100041, China; The Innovation Center for Eco-environment-Oriented Development, Chinese Academy of Environmental Planning, Beijing, 100041, China.
| |
Collapse
|
2
|
Tian X, Xiong Y, Mi Z, Zhang Q, Tian K, Zhao B, Dong Z, Wang S, Ding D, Xing J, Zhu Y, Long S, Zhang P. Mismatched Social Welfare Allocation and PM 2.5-Related Health Damage along Value Chains within China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12689-12700. [PMID: 37587658 DOI: 10.1021/acs.est.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Value chains have played a critical part in the growth. However, the fairness of the social welfare allocation along the value chain is largely underinvestigated, especially when considering the harmful environmental and health effects associated with the production processes. We used fine-scale profiling to analyze the social welfare allocation along China's domestic value chain within the context of environmental and health effects and investigated the underlying mechanisms. Our results suggested that the top 10% regions in the value chain obtained 2.9 times more social income and 2.1 times more job opportunities than the average, with much lower health damage. Further inspection showed a significant contribution of the "siphon effect"─major resource providers suffer the most in terms of localized health damage along with insufficient social welfare for compensation. We found that inter-region atmosphere transport results in redistribution for 53% health damages, which decreases the welfare-damage mismatch at "suffering" regions but also causes serious health damage to more than half of regions and populations in total. Specifically, around 10% of regions have lower social welfare and also experienced a significant increase in health damage caused by atmospheric transport. These results highlighted the necessity of a value chain-oriented, quantitative compensation-driven policy.
Collapse
Affiliation(s)
- Xin Tian
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yiling Xiong
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifu Mi
- The Bartlett School of Sustainable Construction, University College London, London WC1E 7HB, U.K
| | - Qianzhi Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kailan Tian
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Dian Ding
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jia Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yun Zhu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Shicheng Long
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Pingdan Zhang
- Business School, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Ji W, Xiao X, Li F, Fan X, Meng Y, Fan M. Theoretical insight into mercury species adsorption on graphene-based Pt single-atom catalysts. RSC Adv 2022; 12:5797-5806. [PMID: 35424583 PMCID: PMC8981981 DOI: 10.1039/d1ra08891b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023] Open
Abstract
Mercury emission from coal-fired flue gases is environmentally crucial. Revealing the interaction between mercury (Hg) and functional materials is significant to controlling emission. We conducted an investigation into the adsorption mechanism of mercury species onto graphene-based Platinum (Pt) single-atom catalysts (SACs). Single-atom Pt is the active center for Hg species chemisorption, with an adsorption energy range of 0.555-3.792 eV. In addition, Hg species adsorbed preferentially at lower temperatures. Pt/3N-GN exhibits a higher adsorption ability than Pt/SV-GN. The strong interaction of Hg0 with Pt SACs contributed to atomic-orbital hybridization between them. Further analysis revealed that s, p orbitals of Hg contribute significantly to orbital hybridization with Pt SACs. Moreover, the charge decomposition analysis confirmed that s, p orbitals of Hg hybridized with d, s orbitals of Pt SACs. The net charge transfer from Hg0 to Pt/SV-GN and Pt/3N-GN are 0.059 and 0.097 e-, respectively. The higher the charge transfers, the more intense the electron and orbital interaction between Hg and the surface. Consequently, Pt/3N-GN is a highly effective catalyst for Hg adsorption.
Collapse
Affiliation(s)
- Wenchao Ji
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Xiuhua Xiao
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Feiyue Li
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Xingjun Fan
- College of Resource and Environment, Anhui Science and Technology University Fengyang 233100 China
| | - Yuanyuan Meng
- College of Chemistry & Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming Laramie WY 82071 USA
| |
Collapse
|
4
|
Tian X, Liu Y, Xu M, Liang S, Liu Y. Chinese environmentally extended input-output database for 2017 and 2018. Sci Data 2021; 8:256. [PMID: 34593825 PMCID: PMC8484342 DOI: 10.1038/s41597-021-01035-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental footprint analyses for China have gained sustained attention in the literature, which rely on quality EEIO databases based on benchmark input-output (IO) tables. The Chinese environmentally extended input-output (CEEIO) database series provide publically available EEIO databases for China for 1992, 1997, 2002, 2007, and 2012 with consistent and transparent data sources and database structure. Based on the latest benchmark IO tables for China for 2017 and 2018, here we develop the corresponding 2017 and 2018 CEEIO databases following the same method used to develop previous CEEIO databases. The 2017 and 2018 CEEIO databases cover 44 and 28 types of environmental pressures, respectively, and consider multiple sector classifications including ones consistent with previous CEEIO databases and ones following the 2017 China's national economy industry classification standard. A notable improvement in the 2017 and 2018 CEEIO databases is the comprehensive inclusion of CO2 emissions from additional industrial processes. This work provides a consistent update of the CEEIO database and enables a wide range of timely environmental footprint analyses related to China.
Collapse
Affiliation(s)
- Xi Tian
- Research Center for Central China Economic and Social Development, Nanchang University, Nanchang, 330031, China
- Jiangxi Ecological Civilization Research Institute, Nanchang University, Nanchang, 330031, China
- School of Economics and Management, Nanchang University, Nanchang, 330031, China
| | - Yiwei Liu
- School of Economics and Management, Nanchang University, Nanchang, 330031, China
| | - Ming Xu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, 48109-1041, United States.
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, 48109-2125, United States.
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yaobin Liu
- Research Center for Central China Economic and Social Development, Nanchang University, Nanchang, 330031, China
- School of Economics and Management, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
5
|
Guan Y, Huang G, Liu L, Zhai M, Xu X. Measurement of air-pollution inequality through a three-perspective accounting model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133937. [PMID: 31450051 DOI: 10.1016/j.scitotenv.2019.133937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
China is suffering from serious air pollution. Regional air quality varies significantly due to intensive inter-provincial trades, diversified resource endowments and complicated economic structures. This study breaks the limitations of measuring environmental inequality only from a single perspective and establishes a three-perspective atmospheric pollutant equivalents accounting model (or APE accounting model) for air-pollution inequality assessment under environmentally-extend multi-regional input-output framework. From three perspectives of local production (i.e. production-based), final demand (i.e. consumption-based) and primary supply (i.e. income-based), APE emissions, APE transfers and environmental Gini coefficient are investigated to exam emission responsibilities of various impact factors, evaluate the impacts of inter-provincial trades on pollutants transfers, and characterize regional emission inequalities at both provincial and sectoral levels. The results indicate that local emitters are merely parts of contributors to air pollution. Direct emitters like Hebei Province, primary suppliers like Inner Mongolia and final consumers like Shandong Province induce large amounts of air pollutants as embedded within various economic activities. Because of unequal supply-demand levels and complex exchange mechanisms, three-perspective APE emissions are significantly heterogeneous, especially in mining, construction, energy and material-transformation sectors. Particularly, inequality of the mining sector in embodied emissions has the highest environmental Gini coefficient (0.881). This model provides a framework to assess regional environmental inequality and its findings provide scientific bases for the formulation of desired regional air pollution control policies.
Collapse
Affiliation(s)
- Yuru Guan
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing 100875, China.
| | - Lirong Liu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Mengyu Zhai
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing, 102206, China
| | - Xinli Xu
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Phu Nguyen LS, Zhang L, Lin DW, Lin NH, Sheu GR. Eight-year dry deposition of atmospheric mercury to a tropical high mountain background site downwind of the East Asian continent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113128. [PMID: 31521990 DOI: 10.1016/j.envpol.2019.113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric deposition, either dry or wet, has been identified as an important pathway of mercury (Hg) input to terrestrial and aquatic systems. Although East Asia is the major atmospheric Hg emission source region, very few studies have been conducted to quantify atmospheric Hg deposition in its downwind region. In this study, 8-year (2009-2016) atmospheric Hg dry deposition was reported at the Lulin Atmospheric Background Station (LABS), a high mountain forest site in central Taiwan. Dry deposition of speciated Hg was estimated using a bi-directional air-surface flux exchange model for gaseous elemental mercury (GEM) and dry deposition models for gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM), making use of the monitored speciated atmospheric Hg concentrations. Annual total Hg dry deposition ranged from 51.9 to 84.9 μg m-2 yr-1, with a multi-year average of 66.1 μg m-2 yr-1. Among the three forms of atmospheric Hg, GEM was the main contributor to the total dry deposition, contributing about 77.8% to the total, due to the high density of forest canopy as well as the much higher concentration of GEM than GOM and PBM at LABS. Mercury dry deposition is higher in winter and spring than in summer and fall, partly due to the elevated Hg concentrations associated with air masses from East and Southeast Asia where with high atmospheric Hg emissions. The mean annual dry/wet deposition ratio of 2.8 at LABS indicated that Hg deposition to forest landscape was governed by dry rather than wet deposition.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Leiming Zhang
- Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Da-Wei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Jhongli, 320, Taiwan.
| |
Collapse
|
7
|
Affiliation(s)
- Patricia Forbes
- Department of Chemistry, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Nguyen LSP, Sheu GR, Lin DW, Lin NH. Temporal changes in atmospheric mercury concentrations at a background mountain site downwind of the East Asia continent in 2006-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1049-1056. [PMID: 31200303 DOI: 10.1016/j.scitotenv.2019.05.425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Atmospheric mercury (Hg) has been monitored at the Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006 and is still continuing. Here we reported the trend in gaseous elemental Hg (GEM) concentrations at LABS between April 2006 and December 2016, before the Minamata Convention on Mercury entered into force in 2017. Previous research indicated nighttime (0-8 am) data collected at LABS are better representative of regional influence. Therefore, only nighttime GEM data were used for trend analysis. A significant decreasing trend in GEM at a rate of -1.5% yr-1 (-0.022 ng m-3 yr-1, p < 0.01) was found, comparable to the decreasing trends observed in Europe, North America, South Africa, and over the North Atlantic Ocean. Five major GEM source regions to the LABS were identified, including northern Indochina Peninsula, China, Northeast Asia, the Pacific Ocean, and South China Sea. Significant decreasing trends in GEM were found for air masses coming from northern Indochina Peninsula (-0.042 ng m-3 yr-1, -2.6% yr-1, p < 0.01), China (-0.041 ng m-3 yr-1, -2.4% yr-1, p < 0.01), Northeast Asia (-0.031 ng m-3 yr-1, -2.0% yr-1, p < 0.05), and the Pacific Ocean (-0.022 ng m-3 yr-1, -1.7% yr-1, p < 0.05). Decreasing GEM trend (-0.020 ng m-3 yr-1, -1.5% yr-1), but insignificant (p > 0.05), was also found for air masses coming from South China Sea. The decreasing trends observed with air from the Pacific Ocean and South China Sea indicated declining background GEM concentrations in Northern Hemisphere. Decrease in GEM concentrations at the LABS was in agreement with the reduction in atmospheric Hg export from the East Asia continent caused by changes in Hg emission quantity and speciation, and temporal and spatial distribution in emission sources that have been suggested by recent research. Additionally, changes in the frequency distribution of air mass origins and transport paths may also contribute to the changes in GEM concentrations at LABS.
Collapse
Affiliation(s)
- Ly Sy Phu Nguyen
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan.
| | - Da-Wei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Jhongli 320, Taiwan
| |
Collapse
|
9
|
|