1
|
Guo J, Feng H, Peng C, Du J, Wang W, Kneeshaw D, Pan C, Roberge G, Feng L, Chen A. Fire effects on soil CH 4 and N 2O fluxes across terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174708. [PMID: 39032756 DOI: 10.1016/j.scitotenv.2024.174708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Fire, as a natural disturbance, significantly shapes and influences the functions and services of terrestrial ecosystems via biotic and abiotic processes. Comprehending the influence of fire on soil greenhouse gas dynamics is crucial for understanding the feedback mechanisms between fire disturbances and climate change. Despite work on CO2 fluxes, there is a large uncertainty as to whether and how soil CH4 and N2O fluxes change in response to fire disturbance in terrestrial ecosystems. To narrow this knowledge gap, we performed a meta-analysis synthesizing 3615 paired observations from 116 global studies. Our findings revealed that fire increased global soil CH4 uptake in uplands by 23.2 %, soil CH4 emissions from peatlands by 74.7 %, and soil N2O emissions in terrestrial ecosystems (including upland and peatland) by 18.8 %. Fire increased soil CH4 uptake in boreal, temperate, and subtropical forests by 20.1 %, 38.8 %, and 30.2 %, respectively, and soil CH4 emissions in tropical forests by 193.3 %. Additionally, fire negatively affected soil total carbon (TC; -10.3 %), soil organic carbon (SOC; -15.6 %), microbial biomass carbon (MBC; -44.8 %), dissolved organic carbon (DOC; -27 %), microbial biomass nitrogen (MBN; -24.7 %), soil water content (SWC; -9.2 %), and water table depth (WTD; -68.2 %). Conversely, the fire increased soil bulk density (BD; +10.8 %), ammonium nitrogen (NH4+-N; +46 %), nitrate nitrogen (NO3--N; +54 %), pH (+4.4 %), and soil temperature (+15.4 %). Our meta-regression analysis showed that the positive effects of fire on soil CH4 and N2O emissions were significantly positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), indicating that climate warming will amplify the positive effects of fire disturbance on soil CH4 and N2O emissions. Taken together, since higher future temperatures are likely to prolong the fire season and increase the potential of fires, this could lead to positive feedback between warming, fire events, CH4 and N2O emissions, and future climate change.
Collapse
Affiliation(s)
- Jiahuan Guo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan 570228, China
| | - Huili Feng
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan 570228, China.
| | - Changhui Peng
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada; College of Geographic Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Juan Du
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, Hubei 430223, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Daniel Kneeshaw
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Chang Pan
- College of Life Sciences, Anqing Normal University, Anqing, Anhui 246011, China
| | - Gabrielle Roberge
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Lei Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anping Chen
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Chen KH, Feng J, Bodelier PLE, Yang Z, Huang Q, Delgado-Baquerizo M, Cai P, Tan W, Liu YR. Metabolic coupling between soil aerobic methanotrophs and denitrifiers in rice paddy fields. Nat Commun 2024; 15:3471. [PMID: 38658559 PMCID: PMC11043409 DOI: 10.1038/s41467-024-47827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Paddy fields are hotspots of microbial denitrification, which is typically linked to the oxidation of electron donors such as methane (CH4) under anoxic and hypoxic conditions. While several anaerobic methanotrophs can facilitate denitrification intracellularly, whether and how aerobic CH4 oxidation couples with denitrification in hypoxic paddy fields remains virtually unknown. Here we combine a ~3300 km field study across main rice-producing areas of China and 13CH4-DNA-stable isotope probing (SIP) experiments to investigate the role of soil aerobic CH4 oxidation in supporting denitrification. Our results reveal positive relationships between CH4 oxidation and denitrification activities and genes across various climatic regions. Microcosm experiments confirm that CH4 and methanotroph addition promote gene expression involved in denitrification and increase nitrous oxide emissions. Moreover, 13CH4-DNA-SIP analyses identify over 70 phylotypes harboring genes associated with denitrification and assimilating 13C, which are mostly belonged to Rubrivivax, Magnetospirillum, and Bradyrhizobium. Combined analyses of 13C-metagenome-assembled genomes and 13C-metabolomics highlight the importance of intermediates such as acetate, propionate and lactate, released during aerobic CH4 oxidation, for the coupling of CH4 oxidation with denitrification. Our work identifies key microbial taxa and pathways driving coupled aerobic CH4 oxidation and denitrification, with important implications for nitrogen management and greenhouse gas regulation in agroecosystems.
Collapse
Affiliation(s)
- Kang-Hua Chen
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB, Wageningen, The Netherlands
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI, 48309, USA
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, 41012, Spain
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation and Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Wang Z, Xing A, Shen H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121848. [PMID: 37244533 DOI: 10.1016/j.envpol.2023.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Increased nitrogen (N) deposition has a great impact on soil greenhouse gas (GHG) emissions, and numerous studies have revealed the individual effects of N addition on three major GHGs (CO2, CH4, and N2O). Nevertheless, quantitative evaluation of the effects of N addition on the global warming potential (GWP) of GHGs based on simultaneous measurements is needed not only to better understand the comprehensive effect of N deposition on GHGs but also for precise estimation of ecosystem GHG fluxes in response to N deposition. Here, we conducted a meta-analysis using a dataset with 124 simultaneous measurements of the three major GHGs from 54 studies to assess the effects of N addition on the combined global warming potential (CGWP) of these soil GHGs. The results showed that the relative sensitivity of the CGWP to N addition was 0.43%/kg N ha-1 yr-1, indicating an increase in the CGWP. Among the ecosystems studied, wetlands are considerable GHG sources with the highest relative sensitivity to N addition. Overall, CO2 contributed the most to the N addition-induced CGWP change (72.61%), followed by N2O (27.02%) and CH4 (0.37%), but the contributions of the three GHGs varied across ecosystems. Moreover, the effect size of the CGWP had a positive relationship with N addition rate and mean annual temperature and a negative relationship with mean annual precipitation. Our findings suggest that N deposition may influence global warming from the perspective of the CGWP of CO2, CH4, and N2O. Our results also provide reference values that may reduce uncertainties in future projections of the effects of N deposition on GHGs.
Collapse
Affiliation(s)
- Zixuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aijun Xing
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haihua Shen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Liu Y, Men M, Peng Z, Chen HYH, Yang Y, Peng Y. Spatially explicit estimate of nitrogen effects on soil respiration across the globe. GLOBAL CHANGE BIOLOGY 2023; 29:3591-3600. [PMID: 37052888 DOI: 10.1111/gcb.16716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/03/2023] [Indexed: 06/06/2023]
Abstract
Soil respiration (Rs), as the second largest flux of carbon dioxide (CO2 ) between terrestrial ecosystems and the atmosphere, is vulnerable to global nitrogen (N) enrichment. However, the global distribution of the N effects on Rs remains uncertain. Here, we compiled a new database containing 1282 observations of Rs and its heterotrophic component (Rh) in field N manipulative experiments from 317 published papers. Using this up-to-date database, we first performed a formal meta-analysis to explore the responses of Rs and Rh to N addition, and then presented a global spatially explicit quantification of the N effects using a Random Forest model. Our results showed that experimental N addition significantly increased Rs but had a minimal impact on Rh, not supporting the prevailing view that N enrichment inhibits soil microbial respiration. For the major biomes, the magnitude of N input was the main determinant of the spatial variation in Rs response, while the most important predictors for Rh response were biome specific. Based on the key predictors, global mapping visually demonstrated a positive N effect in the regions with higher anthropogenic N inputs (i.e., atmospheric N deposition and agricultural fertilization). Overall, our analysis not only provides novel insight into the N effects on soil CO2 fluxes, but also presents a spatially explicit assessment of the N effects at the global scale, which are pivotal for understanding ecosystem carbon dynamics in future scenarios with more frequent anthropogenic activities.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environmental Sciences, Key Laboratory of Farmland Eco-Environment of Hebei, Hebei Agricultural University, Baoding, China
| | - Mingxin Men
- College of Resources and Environmental Sciences, Key Laboratory of Farmland Eco-Environment of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhengping Peng
- College of Resources and Environmental Sciences, Key Laboratory of Farmland Eco-Environment of Hebei, Hebei Agricultural University, Baoding, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Lee J, Oh Y, Lee ST, Seo YO, Yun J, Yang Y, Kim J, Zhuang Q, Kang H. Soil organic carbon is a key determinant of CH 4 sink in global forest soils. Nat Commun 2023; 14:3110. [PMID: 37253779 DOI: 10.1038/s41467-023-38905-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Soil organic carbon (SOC) is a primary regulator of the forest-climate feedback. However, its indicative capability for the soil CH4 sink is poorly understood due to the incomplete knowledge of the underlying mechanisms. Therefore, SOC is not explicitly included in the current model estimation of the global forest CH4 sink. Here, using in-situ observations, global meta-analysis, and process-based modeling, we provide evidence that SOC constitutes an important variable that governs the forest CH4 sink. We find that a CH4 sink is enhanced with increasing SOC content on regional and global scales. The revised model with SOC function better reproduces the field observation and estimates a 39% larger global forest CH4 sink (24.27 Tg CH4 yr-1) than the model without considering SOC effects (17.46 Tg CH4 yr-1). This study highlights the role of SOC in the forest CH4 sink, which shall be factored into future global CH4 budget quantification.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Youmi Oh
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Sang Tae Lee
- Forest Technology and Management Research Center, National Institute of Forest Science, Gyeonggi, Korea
| | - Yeon Ok Seo
- Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Jeju, Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Korea
| | - Qianlai Zhuang
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
7
|
Rafalska A, Walkiewicz A, Osborne B, Klumpp K, Bieganowski A. Variation in methane uptake by grassland soils in the context of climate change - A review of effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162127. [PMID: 36764535 DOI: 10.1016/j.scitotenv.2023.162127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/19/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Grassland soils are climate-dependent ecosystems that have a significant greenhouse gas mitigating function through their ability to store large amounts of carbon (C). However, what is often not recognized is that they can also exhibit a high methane (CH4) uptake capacity that could be influenced by future increases in atmospheric carbon dioxide (CO2) concentration and variations in temperature and water availability. While there is a wealth of information on C sequestration in grasslands there is less consensus on how climate change impacts on CH4 uptake or the underlying mechanisms involved. To address this, we assessed existing knowledge on the impact of climate change components on CH4 uptake by grassland soils. Increases in precipitation associated with soils with a high background soil moisture content generally resulted in a reduction in CH4 uptake or even net emissions, while the effect was opposite in soils with a relatively low background moisture content. Initially wet grasslands subject to the combined effects of warming and water deficits may absorb more CH4, mainly due to increased gas diffusivity. However, in the longer-term heat and drought stress may reduce the activity of methanotrophs when the mean soil moisture content is below the optimum for their survival. Enhanced plant productivity and growth under elevated CO2, increased soil moisture and changed nutrient concentrations, can differentially affect methanotrophic activity, which is often reduced by increasing N deposition. Our estimations showed that CH4 uptake in grassland soils can change from -57.7 % to +6.1 % by increased precipitation, from -37.3 % to +85.3 % by elevated temperatures, from +0.87 % to +92.4 % by decreased precipitation, and from -66.7 % to +27.3 % by elevated CO2. In conclusion, the analysis suggests that grasslands under the influence of warming and drought may absorb even more CH4, mainly because of reduced soil water contents and increased gas diffusivity.
Collapse
Affiliation(s)
- Adrianna Rafalska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Anna Walkiewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Bruce Osborne
- UCD School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Katja Klumpp
- INRAE, University of Clermont Auvergne, VetAgro Sup, UREP Unité de Recherche sur l'Ecosystème Prairial, 63000 Clermont-Ferrand, France
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
8
|
Responses of Soil N2O Emission and CH4 Uptake to N Input in Chinese Forests across Climatic Zones: A Meta-Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced nitrogen (N) deposition has shown significant impacts on forest greenhouse gas emissions. Previous studies have suggested that Chinese forests may exhibit stronger N2O sources and dampened CH4 sinks under aggravated N saturation. To gain a common understanding of the N effects on forest N2O and CH4 fluxes, many have conducted global-scale meta-analyses. However, such effects have not been quantified particularly for China. Here, we present a meta-study of the N input effects on soil N2O emission and CH4 uptake in Chinese forests across climatic zones. The results suggest that enhanced N inputs significantly increase soil N2O emission (+115.8%) and decrease CH4 uptake (−13.4%). The mean effects were stronger for N2O emission and weaker for CH4 uptake in China compared with other global sites, despite being statistically insignificant. Subtropical forest soils have the highest emission factor (2.5%) and may respond rapidly to N inputs; in relatively N-limited temperate forests, N2O and CH4 fluxes are less sensitive to N inputs. Factors including forest type, N form and rate, as well as soil pH, may also govern the responses of N2O and CH4 fluxes. Our findings pinpoint the important role of Southern Chinese forests in the regional N2O and CH4 budgets.
Collapse
|
9
|
Wang X, Hu HB, Zheng X, Deng WB, Chen JY, Zhang S, Cheng C. Will climate warming of terrestrial ecosystem contribute to increase soil greenhouse gas fluxes in plot experiment? A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154114. [PMID: 35231511 DOI: 10.1016/j.scitotenv.2022.154114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
One of the main manifestations of global climate change is its profound impact on the emission of greenhouse gases from terrestrial soil. Numerous field warming experiments have explored the effects of different temperature rise intensities and durations on soil greenhouse gas fluxes in the growing season of different terrestrial ecosystems. However, the results were inconsistent due to the variations in vegetation, soil, and climatic conditions in different ecosystems. In the present work, we carried meta-analysis to synthesize 99 datasets from 52 field warming experiments in growing seasons of terrestrial ecosystems to evaluate the response of soil greenhouse gas fluxes to global warming. The results showed that warming greatly stimulated soil CO2 in temperate forest and farmland by 12.64% and 25.57%, respectively, significantly increased soil N2O emissions in grassland (27.23%), farmland (44.33%), and shrubland (223.36%), and increased soil CH4 uptake by 57.81% in grasslands. However, no significant impact on the greenhouse gas fluxes in other ecosystems was observed. Generally, short-and medium-term (≤ 3 years) warming can promote soil greenhouse gas fluxes. Also, low temperature and low-medium temperature (≤ 2 °C) significantly promoted N2O emission and CH4 absorption, and medium temperature (2-4 °C) considerably assisted CO2 flux, but high temperature (> 4 °C) had no significant effect on greenhouse gas flux. Our results demonstrated that soil greenhouse gas fluxes in terrestrial ecosystems during the growing season do not increase linearly with the increasing climate warming, and it is still uncertain whether there is acclimatization to long-term climate warming.
Collapse
Affiliation(s)
- Xia Wang
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Hai-Bo Hu
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiang Zheng
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Bin Deng
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Jian-Yu Chen
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Zhang
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Can Cheng
- Co-Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Soil and Water Conservation and Ecological Restoration in Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Wei B, Zhang D, Kou D, Yang G, Liu F, Peng Y, Yang Y. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bin Wei
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Biogeochemistry Research Group Department of Biological and Environmental Sciences University of Eastern Finland Kuopio 70210 Finland
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Futing Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Research Institute of Natural Protected Area Chinese Academy of Forestry Beijing 100091 China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Chen J, Feng M, Cui Y, Liu G. The impacts of nitrogen addition on upland soil methane uptake: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148863. [PMID: 34247074 DOI: 10.1016/j.scitotenv.2021.148863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Elevated nitrogen (N) addition from anthropogenic activities has great impacts on soil methane (CH4) uptake, which could interrupt the existing global CH4 balance and cause feedbacks to climate and biogeochemical processes. Previous studies have come to inconsistent conclusions on both the quantification of the response of CH4 uptake to N addition and understanding of its underlying mechanisms, probably due to the lack of experimental data. Here, we conduct a broad meta-analysis of 90 papers to quantify the responses of CH4 uptake to N addition in upland soil. The results show that N addition has a significant negative impact on soil CH4 uptake (-19.25%), which is termed the N inhibition effect. Soil pH is identified as the dominant factor, with the other factors affecting the CH4 uptake through the alteration of soil pH. The N inhibition effect is observed to be large and significant in forest and grassland, but small and insignificant in farmland, because of the distinct composition of their methanotrophic communities. A threshold of the N addition level is identified at about 68 kg N ha-1 year-1, which indicates the lowest N inhibition effect. Furthermore, the convex relationship between response ratio of CH4 uptake (negative) and N addition duration indicates that a medium level of N addition duration has the largest N inhibition effect, and longer or shorter durations will both reduce the effect. Our analysis of the N inhibition effect implies that controlling the N addition level could effectively reduce the CH4 concentration in the atmosphere and thus relieve global warming.
Collapse
Affiliation(s)
- Jianyu Chen
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Maoyuan Feng
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Gang Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| |
Collapse
|
12
|
Mori A. Farmyard manure application and associated root proliferation improve the net greenhouse gas balance of Italian ryegrass - Maize double-cropping field in Nasu, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148332. [PMID: 34147791 DOI: 10.1016/j.scitotenv.2021.148332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In Japan, most cows are fed indoors, so cow manure must be carefully treated and used to manage soil fertility. The objective of this study was to compare the net greenhouse gas (GHG) balance (NGHGB) of Italian ryegrass - corn (maize) double-cropping fields receiving farmyard manure (FYM), slurry, or methane fermentation digestion liquid (MFDL). FYM, Slurry, MFDL, mineral fertilizer only (Fert.), and no-N control (Cont.) plots were set up in a randomized block design (n = 3). FYM, slurry, or MFDL was applied to meet the K requirement for forage production, and then mineral fertilizers were supplemented to meet the N and P requirements. From September 2017 to September 2020, C inputs as manure and crop residue, heterotrophic respiration (RH), and emissions of methane (CH4) and nitrous oxide (N2O) from soil were determined. The similarity of the total yields in FYM, Slurry, MFDL, and Fert. plots reflected judicious fertility management. However, the residue-C input of Italian ryegrass was 38% greater in FYM plots than in the other plots. Manure-C input decreased in the order of FYM > Slurry > MFDL plots. RH was greater in FYM and Slurry plots than in MFDL plots. Net ecosystem C balance (NECB) ([residue-C + manure-C] - [RH-C + CH4-C]) decreased in the order of FYM > Slurry > MFDL plots. N2O emission was greater in Slurry and MFDL plots than in FYM plots. Consequently, NGHGB ([CH4 and N2O emissions] - NECB) in terms of CO2 equivalent decreased in the order of MFDL > Slurry > FYM plots, so FYM application contributed most to GHG mitigation. Yield-scaled NGHGB was smallest in FYM plots owing to the synergy of the greatest residue-C and manure-C inputs, less N2O emission, and the achievement of a high enough yield, reflecting judicious fertility management based on manure and mineral fertilizer.
Collapse
Affiliation(s)
- Akinori Mori
- Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan.
| |
Collapse
|
13
|
Zhang D, Peng Y, Li F, Yang G, Wang J, Yu J, Zhou G, Yang Y. Changes in above‐/below‐ground biodiversity and plant functional composition mediate soil respiration response to nitrogen input. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13783] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jun Wang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Jianchun Yu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
14
|
Liu W, Yuan W, Xu S, Shao C, Hou L, Xu W, Shi H, Pan Q, Li L, Kardol P. Spatiotemporal patterns and drivers of methane uptake across a climate transect in Inner Mongolia Steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143768. [PMID: 33229097 DOI: 10.1016/j.scitotenv.2020.143768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Steppe soils are important biological sinks for atmospheric methane (CH4), but the strength of CH4 uptake remains uncertain due to large spatiotemporal variation and the lack of in situ measurements at regional scale. Here, we report the seasonal and spatial patterns of CH4 uptake across a 1200 km transect in arid and semi-arid steppe ecosystems in Inner Mongolia, ranging from meadow steppe in the east plain to typical and desert steppes on the west plateau. In general, seasonal patterns of CH4 uptake were site specific, with unimodal seasonal curves in meadow and typical steppes and a decreasing seasonal trend in desert steppe. Soil moisture was the dominant factor explaining the seasonal patterns of CH4 uptake, and CH4 uptake rate decreased with an increase in soil moisture. Across the transect, CH4 uptake showed a skewed unimodal spatial pattern, with the peak rate observed in the typical steppe sites and with generally higher uptake rates in the west plateau than in the east plain. Soil moisture, together with soil temperature, soil total carbon, and aboveground plant biomass, were the main drivers of the regional patterns of CH4 uptake rate. These findings are important for model development to more precisely estimate the soil CH4 sink capacity in arid and semi-arid regions.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Yuan
- School of Atmospheric Sciences, Center for Monsoon and Environment Research, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Sutie Xu
- Department of Biosystems Engineering & Soil Science, The University of Tennessee, 2506 E J Chapman Drive, Knoxville, TN 37996, United States of America
| | - Changliang Shao
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfang Xu
- School of Atmospheric Sciences, Center for Monsoon and Environment Research, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Huiqiu Shi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Qingmin Pan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå 901 83, Sweden
| |
Collapse
|
15
|
Agathokleous E, Calabrese EJ. A global environmental health perspective and optimisation of stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135263. [PMID: 31836236 DOI: 10.1016/j.scitotenv.2019.135263] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/21/2019] [Accepted: 10/27/2019] [Indexed: 05/17/2023]
Abstract
The phrase "what doesn't kill us makes us stronger" suggests the possibility that living systems have evolved a spectrum of adaptive mechanisms resulting in a biological stress response strategy that enhances resilience in a targeted quantifiable manner for amplitude and duration. If so, what are its evolutionary foundations and impact on biological diversity? Substantial research demonstrates that numerous agents enhance biological performance and resilience at low doses in a manner described by the hormetic dose response, being inhibitory and/or harmful at higher doses. This Review assesses how environmental changes impact the spectrum and intensity of biological stresses, how they affect health, and how such knowledge may improve strategies in confronting global environmental change.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | - Edward J Calabrese
- Professor of Toxicology, Department of Environmental Health Sciences, Morrill I, N344; University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|